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ABSTRACT 

Let  be a graph. If there exists a spanning subgraph G F  such that    1,3, , 2 1Fd x n  , then F  is called to be 

-odd factor of . Some sufficient and necessary conditions are given for  to have   n  1,2 1 G G U– 1,2 1n  -odd 

factor where  is any subset of  such that U  V G U k . 

 
Keywords: Claw Free Graphs; -Odd Factor; Factor-Criticality 1,2 1n  

1. Introduction 

We consider finite undirected graph without loops and 
multiple edges .Let  be a graph with vertex set 

 and edge set  Given 
G
E G V G  .  x V G , the set 

of vertexes adjacent to x is said to be the neighborhood 
of x , denoted by , and  xGN    G Gd x N x  is 
called the degree of x , If there exists a spanning sub- 
graph F  such that     1,3,5, , f xFd x  , then F  
is called a  1, f -odd factor of , especially, if for 
every 

G
 x V G  such that   2 1f x n 

1,2n
, then it is 

called -odd factor. especially,   2 1, 1n  1 -odd 
factor is 1-factor when n = 1. For a subset  GS V

G
, let 

 denote the subgraph obtained from  by delet- 
ing all the vertexes of  together with the edges inci- 
dent with the vertexes of 

G S
S

 G S 
G S

 1,

S o  denotes the num- 
ber of odd components of . The sufficient and 
necessary condition for graph to have f -odd factor 
was given in paper [1] Ryjacek [2] introduced one kind 
of new closure operation: let  be a graph, G  x V G

x

, 
if the subgraph induced by  is not complete 
graph, we consider the following operation: jointing 
every pair of nonadjacent vertex in  makes 

G   to be a complete graph. The operation is 
called local completely at point 

 GN x

GN
 xG N 

x . If the subgraph in- 
duced by  is k-vertex connected, then vertex  GN x x  
is called local -vertex connected graph . k G

Favaron gave the concept of k-factor critical in paper 
[3]. If   2V G k  , and for any    ,T V G T k , 

 is perfect matching ,then we call the graph  to 
be k-factor critical. Of course, 0-factor critical graph is 
perfect matching. Favaron popularized a series of the 
properties of perfect matching to k-factor critical, at the 

same time the sufficient and necessary conditions were 
given for the graph to be k-factor critical, more results in 
factor critical graphs were referred to [4,5]. 

G T G

For  1, f -odd factor, Chen Ci-ping [6] gave a suffi- 
cient condition for a matching with exactly  edges 
extended to 

k
 1,2 1n  -odd factor. Teng Cong general- 

ized some results on k- to  1, f -odd factor, and proved 
that the connected graph  exists G 1, f -odd factor 
with k-extended, then for the any edge  of G , e G e  
exists  1, f -odd factor [7] with -extended. If 
there exists 

 1k
 1, f -odd factor of  with k-extended, 

then there exists 
G

 1, f -odd factor with -extended, 
and  is 

 1k  
G  1k  -connected [8]. We will popularize 

some results of k-factor critical to -odd factor, 
and gain several sufficient and necessary conditions for 

 2 1n  1,

G U  to have  11,2n  -odd factor for any subset  
of 

U
 V G  such that U k . 

2. Main Results 

We start with some lemmas as following. 
Lemma 1 The sufficient and necessary condition for a 

graph  to have G  1,2 1n  -odd factor after cutting off 
any  vertexes is k

     2 1o G B n B k B k       

Proof For set  with any  vertexes, U k G G U    
has  1,2 1n  -odd factor, next we will prove 

     2 1o G B n B k B k       

For any  B V G  and B k , let B U B  , 
where U k . Since G G U    has a  1,2 1n  -odd 
factor, by the sufficient and necessary condition for 
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graph with -odd factor we have 1,2 1n  
   2 1o G

G B 

 

B n B     . 

Noting that , G B  
Therefore 

   
  

2 1

2 1

o G B 

B V G

o G B n B

n B k

    

  
 

For any  and  B k  we have 

    2 1o G B

U 1,2


n B k    , 

the following that the set U  with any  vertexes, 
 has -odd factor, i.e., for any 
, there 

k
G G  

B V G 
 1n  
   2 1o G

B
B   n B  . 

Noting that , of course B U B k . 
By 

    2 1o G B

G B   

 

n B k    , 

and , we have G B

    
 

2 1

2 1 .

o G B o  

1
1n 

2n 


 

G B n B k

n B

   

 
 

Lemma 2 [9] Connected claw free graphs of even or-
der have 1-factor. 

Lemma 3 Connected claw free graphs of even order 
have -odd factor. 1,2n

Proof If , by lemma 2, the conclusion is proved. 
Assume that . 

By contradiction, we assume that  has no  
-odd factor, i.e.,  such that 

G
 G1,2 1n  S V 

   2 1 3 2o G S  n S S n   . 

then there exists x S  such that x  connecting with 
three components of  at least. If not, for G S x S  , 
x connects with two components of  at most, 
consequently 

G S
  2o G S

G
S  , contradiction. 

Theorem 1 Let  be graph with  order, p ,x y  
are a couple of nonadjacent vertexes and satisfy 

 d x

k
y



1,2 1n 



  1G Gd y p k   





, 

then the sufficient and necessary condition for  re-
moving any  vertexes with -odd factor is 
that  getting rid of any  vertexes with 

-odd factor. 

G
1,2 1n 

kG x
1n 1,2

Proof The necessary condition is obvious, next we 
prove the sufficient condition. 

By contradiction, let  remove any  ver- 
texes with -odd factor, but there exist  ver- 
texes after getting rid of the  vertexes of G  without 

-odd factor. By lemma 1, there exists 

G xy

k

k
k

1,2 1n 

  ,B V G B k   

such that 

    2 1o G B n B k    , 

and  

     2 1o G xy B n B k     . 

at the same time, by   mod 2o G B B p     and  
 mod 2p k , 

Thereby     2 1 2o G B n B k     . 

Furthermore, by     2o G xy B o G B     , 
Consequently 

      
  

2 1 2

2 1 2 2

n B k o G xy B o G B

n B k

       

    
 

Accordingly 

     2 1 2o G B n B k      

and 

    2 1o G xy B n B k     . 

It shows that ,x y
B

 are part of two odd components 
 of 1 2,C C G   respectively. 

Thus 

       1 21 1G Gd x d y V C V C B      2 . 

On the other hand, by hypothesis 

       
  

1 21

2 1 1.

G Gd x d y p k B V C V C

n B k k

      

    
 

But  

   2 2 2 2 1n B n k    . 

Contradiction. 
Theorem 2 Let  1t k   connected graph  be 
 order, 

G
p ,x y  are a couple of any nonadjacent vertexes 

of , and satisfy G

    1G GN x N y p t k    , 

then the sufficient and necessary condition for  re-
moving any  vertexes with -odd factor is 

G
k 1,2 1n  

G xy  getting rid of  any  vertexes with  k
 1,2 1n  -odd factor. 

Proof  is a spanning subgraph of , so the 
necessary condition is obvious. 

G G xy

Next we prove the sufficient condition. We suppose 
G xy  getting rid of any  vertexes with k  1,2 1n  - 
odd factor, but  is not, i.e. there exist  G

  ,B V G B k   

such that 

    2 1o G B n B k    . 

Be similar to the discussion of theorem 1 
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    2 1 2o G B n B k      

and 

    2 1o G xy B n B k     . 

thereby ,x y  are part of two odd components  of 
 respectively. 

1 2,C C
G B

Noting that 

       1 21 1G GN x N y V C V C B       (1) 

By hypothesis 

   
   

   
1 21

2 1 1

G GN x N y

p t k V C V C B

n B k t k

      

     



          (2) 

Combining (1) with (2) 

  2 2 1n B k t k      1 

Consequently 

1

2 1

t k
k B k

n

 
  


, 

but . 1t k 
Contradiction. 
Theorem 3 Let  be claw free graphs, G x  be partial 
 connection point.  be graph obtained by locally 

fully on  in 
k G

G x  point, then for   ,U V G U k  , 
the sufficient and necessary condition for G U  with 

-odd factor is  2 1n  1, G U   with  11,2n  -odd 
factor. 

Proof  is a spanning subgraph of , so the nec-
essary condition is obvious. 

G G

Next we prove the sufficient condition. Let G U   
have -odd factor,  have no 1,2 1n   G U  2 1n1,  - 
odd factor. has G U  1n 1,2  -odd factor,  

   mod 2kV G  , so    mod 2V G k . 
On the other hand, G  is claw free, so G U  is 

claw free. 
By lemma 2, lemma 3, G U  has two odd compo- 

nents at least. 
If x U , let 0 x C  ( 0C  is branch U of G  ). 

G U  has the same odd componen UNow, ts as G  , 
theref U  1nore, G has 1, 2  -odd factor. which is 

contradiction. 
Next let x U , since G  has not odd compo- 

nents, for any odd components of , 
U 

G U

   GN x V C    

is complete. 
Let 1 2,x x  be adjacent vertexes of x  in two odd 

components of G U  respectively. 
Then 1 2,x x  is nonadjacent in the induced subgraph of  

    GN x U x  , which is contradiction to the fact that  

x  is a locally  connected vertex, since  k

  1U x k    

The proof is complete. 
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