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ABSTRACT

The main object of this paper is to study some properties of certain subclass of analytic functions with negative coeffi-
cients defined by a linear operator in the open unit disc. These properties include the coefficient estimates, closure

properties, distortion theorems and integral operators.
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1. Introduction

Let H be the class of analytic functions in the open
unit disc

U={zeC:|z|<1},
and H[a,n] be the subclass of H consisting of func-
tions of the form

n+l

f(z)=a+a,z"+a,,,2"" +---.

Let A(n) denote the class of functions f (z) nor-

malized by
f(z)=z+ i a .z (neN={123), (1)
k=n+1
which are analytic in the open unit disc. In particular,
A(L)=A.

For two functions f(z) given by (1) and g(z)

given by

9(z)=z+ ibkz",(neN),

k=n+1

the Hadamard product (or convolution) (f=g)(z) is
defined, as usual, by

(f*g)(z)=2z+ i ab.z =(g* f)(2).

k=n+1

Let the function ¢(a,b;z) be given by:

p(ab;z)= z+k§h$;—ka",(b¢0,—1,—2,—3,-~-),

“Corresponding author.
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where (x), denotes the Pochhammer symbol (or the
shifted factorial) defined by:
(X), = 1 fork =0,xe C—{0},
K] x(x+1)-+(x+k-1) forkeN=123,:.
Carlson and Shaffer [1] introduced a convolution

operator on A involving an incomplete beta function
as:

L(a,b) f(z):=p(ab;z)* f(z). )

Our work here motivated by Catas [2], who introduced
an operatoron A as follows:

DM f(2)=2+ 3 [M] 82",

k=n+1 1+ I

where
zeU,A20,meZ,I|>0.

Now, using the Hadamard product (or convolution),
the authors (cf. [3,4]) introduced the following linear
operator:

Definition 1.1 Let

o (abi2)= 3 (1+/1(k—1)+|J"“ (a),, n

k=n+1 1+1

where
(zeU,b¢0,—1,—2,—3,~~-),/120,meZ,I >0,

and (x), is the Pochhammer symbol. We defines a
linear operator D™ (a,b):.A(n)— A(n) by the fol-
lowing Hadamard product:
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D™ (a,b) f(z)=¢" (ab;z)* f(2)

e (k- (), ®)
_Z+k§l( 1+l \J (b)k—l akz ’

where
(zeU,b¢O,—1,—2,—3,~~~),/120,meZ,I >0,

and (x), the Pochhammer symbol .
Special cases of this operator include:

e DJ°(a,b)f(z)=DP*(a,b)f(z)=L(ab)f(z),
see [1].

« the Catas drivative operator [2]: D/™*(1,1) f (z).

o the Ruscheweyh derivative operator [5] in the cases:

Dy’ (B+11)f(z)=D"f(z);B2-1.

« the Salagean derivative operator [6]: Dy (11) f (z).

o the generalized Salagean derivative operator intro-
duced by Al-Oboudi [7]: Dg**(1,1) f (z).

o Note that:

DI* (ab) f (z)=L(ab) f (2),

DM (a,b) f (z):(ﬂ)ua,b) f(2)

1+1

Az
+17(L(ab) f(2))=D,(L(ab)f(2)).220.
Let 7(n) denote the class of functions f(z) of

the form

f(z)=z= > az,a 20neN, (4)
k=n+1
which are analytic in the open unit disc.
Following the earlier investigations by [8] and [9], we
define (n,7)-neighborhood of a function f(z)e 7 (n)

by

N, ()
={g(z):z— 3 bz €T (n): Zk|ak—bk|sn}
k=n+1 k=n+1
or,
Nm(h):z{g(z)zz— > b z“eT(n): Zk|bk|sn},
k=n+1 k=n+1

where h(z)=z
Let S; () denote the subclass of 7 (n) consisting
of functions which satisfy

(zf’(z)}
Re >a,2eU,0<a <.

f(2)

A function f(z) in S;(«) is said to be starlike of
order « in U.

Copyright © 2012 SciRes.

A function f(z)e7(n) is said to be convex of
order « it it satisfies

2®"(2)
Re|l+—~ |>a,2eU,0<a <.
f'(z)

We denote by C,(«) the subclass of 7 (n) con-
sisting of all such functions [10].

The unification of the classes S; («) and C, () is
provided by the class 7, (a,y) of functions
f (z)e 7T (n) which also satisfy the following inequality

' 2¢nm
Re[ zf'(z)+7z f"(z2) ]>a!
yzt'(z2)+(1-y) f(z)

zeU,0<a<1,0<y <L

Theclass 7, («,y) was investigated by Altintas [11].

Now, by using D™ (a,b) we will define a new class
of starlike functions.

Definition 1.2 Let

0<a<l0<y<],
b#0,-1-2,-3,---,meZ,1>0,41>0.

A function f belonging to 7 (n) is said to be in
the class 7| (n,a,y,a,b) ifand only if

(1-7)2(DM (a.b) f (2)) +72(D* (a.b) f(2))
(1—;/)2(D,“ (a,b) f (z))jt;/z(Dl"‘*M (a,b) f (z))

>a,z2e€U.

’

Re

(6)

Remark 1.3 The class 7. (n,a,7,a,b) is a genera-
lization of the following subclasses:

) 7.5(1a,011)=T"(a)=8 (a) and
T, (La,0,11)=C(a)=C (a) defined and studied by
[12];

i) 7,5(Le,011) and 77 (La,0,11) studied by
[13] and [14];

i) 7.5 (La,0,1,1)=T7 (m,«) studied by [15];

iv) 7.5 (n,e,7,11) studied by [16].

Now, we shall use the same method by [17] to estab-
lish certain coefficient estimates relating to the new
introduced class.

2. Coefficient Estimates

Theorem 2.1 Let the function f be defined by ().
Then f belongs to the class 7 (n,« y,a,b) if and
only if

kgﬂck(m,/l,l,a,b)(k—a)[lJrI+y/1(k—1)}ak -
<A+)(1-a),

where
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(1+H(1-a) K

G (m A1 ab)(k—a)[1+1+7i(k-1)] ')

¢ (m,4,1,a,b) f(z)=2-

={1+,1(k—1)+|}”‘ (s (®)

(b) k>n+1.
“ Proof: Assume that the inequality (7) holds and let

The result is sharp and the extremal functions are |z| =1. Then we have

1+1

’

‘ 2(DP (a,b) £ (z)) +72(DM* (a,b) f (2)) 1

‘ z(DM (a,b) f(z))+yz(D" (a,b) f(2))
1+ A2 (k=) +1 " [1+1+2(k-2)](a),, 1
{ (1+I ! } { 17/+I( )}(b) _1(k_1)akz

- {1+,1(k—1)+|}"[1+l+M(k—1)}(a)k1 a7

1__
Z 1+1 1+1

k=n+1

(
i 1+l(k+—1)+l 1+|+7j(k 1)](a), 'k, ~1
k””[w Fjﬂl(kll IHm {1+1I Jrlyﬂ(k}l)})(a)kal a
( k

1+1 1+1 b),.,

<1+

1—

k=n+1

Consequently, by the maximum modulus theorem one Conversely,suppose that
obtains f(z)eT}(na,y.ab).

f(z)eZ]i(na.y.ab). Then from (6) we find that

{1+/1(k 1)+ I}m{1+l+7ﬂ(k—1)}(a)k_1 a, 2

1+1 1+1 (b),.,
Z_k%{lm(lkﬂl) |}”[1+|+1yfl(k—1)}8

Choose values of z on the real axis such that

(1-7)z(DP (a.b) f (2)) +72(D** (a.b) f(2))
(1-7) z(Dl’“ (a,b)f (z))+ yz(D,m*“ (a,b) f (z))

k=n+1

k1 g, 2"

k-1

’

is real. Letting z — 1" through real values, we obtain

L Z {1+/1(1k I1) I} {1+I+1;//1Ik -1) }ES
n+! + +
Re k=n+1 ] >a,
- i 1+ 2(k=2)+1 " [214+1+p2(k 1) (akl
S 1+1 1+1 (b).,

or, equivalently

~ i {1+/1(1k—|1)+l} {1+I+1M|k 1} :klka
Za{l_k%{lm(ll:—ll)n} {1+|+1yjl(k 1) EZ; }

Copyright © 2012 SciRes. AM
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which gives (7).

Remark 2.2 In the special case a=b=1 Theorem
2.1 yields a result given earlier by [17].

Remark 2.3 In the special case 4=1,1=0,
a=b=1, Theorem 2.2 yields a result given earlier by
[6].

Theorem 2.4 Let the function f defined by (3) be in
the class 7| (n,a,7,a,b). Then

i (1+)(1-a)

D g <

ot Corr (M 4,1, a,0)(1+1+ yAn)(n+1-a)

» (10)

and
. (1+1)(1-a)(n+1)
2 e D)L+ An)(n i)

. (11)

The equality in (10) and (11) is attained for the func-
tion f given by (9).
Proof: By using Theorem 2.2, we find from (6) that

(1+147n)(n+1-a)c,, (m 21 ab) 3 a,

k=n+1
< ¢ (mALab)(k-a)[L+1+72(k-1)]a,
k=n+1

<(1+1)(1-a),

which immediately yields the first assertion (10) of
Theorem 2.3.

On the other hand, taking into account the inequality
(6), we also have

0

(1+1+n)c, (m A, 1a,b) > (k-a)a,

k=n+1
<(1+1)(1-a),
that is
(1+1+yan)c,..(m, 4,1,a,b) i kay

k=n+1
<(1+1)(1-a)+a(lrl+7an),, (m2lab) X a,

which, in view of the coefficient inequality (10), can be
put in the form

(1+1+yAn)c,..(m, 4,1,a,b) i ka,

k=n+1

<(A+1)(1-a)+a(1+1+pin)c, (M 4,1,a,b)

(1+1)(1-a)

Con (M, 4,1, 3,0)(1+1+pAn)(n+1-a)’

and this completes the proof of (11).

3. Closure Theorem

Theorem 3.1 Let the function f,(z),(j=12,---,m) be
defined by

Copyright © 2012 SciRes.

for zeU, be in the class 7)) (n,a,7,a,b) then the
function h(z) defined by

h(z)=z- i b,z",(ay >0),
k=n+1

also belongs to the class 7| (n,a, 7,a,b), where
1 om
bk :sz:nakj.

Proof: Since f;(z)e7/|(n a,7,ab), it follows
from Theorem 2.1, that

0

Y e (mAlab)(k—a)[1+l+yA(k-1)]ay

k=n+1

<(1+1)(1-a),(j=12,m).

Therefore,

0

Y o (mAlab)(k-a)[1+1+yi(k-1)]b,

k=n+1

= Yo (m Al ab)(k-a)[1+1+ A (k —1)][%2%)

k=n+1

:%,Zm;[éfk (m 4,1,a,b)(k— ) [1+] +7//1(k—1):|akjj
<(1+)(1-a).

Hence by Theorem 2.1, h(z)e 7} (n,a,7,a,b) also.
Morever, we shall use the same method by [17] to
prove the distrotion Theorems.

4. Distortion Theorems

Theorem 4.1 Let the function f defined by (1) be in
the class 7| (n,a,y,a,b). Then we have

D (a.b) 1 (2)

. 1+1)(1-a) e (12)
2l T A ab) (nrima) @)
and
DI (a.b) f (2)

(1+1)(1-a) (13)

<[]+ 2™,

¢ (m—i,A,1,a,b)(n+1—a)(1+1+p4n)

for zeU, where 0<i<m and c (m-i,4,l,ab) is
given by (8).

The equalities in (12) and (13) are attained for the
function f given by

fn+1(z)
(1-a)(1+1)™
(1+An+1)" (n+1-a)(1+1+pn)

n+l (14)
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Proof: Note that f €7 (n,«,7,a,b) if and only if
D*(a,b) f(z)e Z;}" (n,a,7,a,b), where
D" (a,b) f(z)=z- i ¢ (i,4,1,a,b)a, z*.
k=n+1
By Theorem 2.2, we know that
¢ (m-i,4,1,a,b)(n+1-a)
(1+1+y4n) E.O:ck(i,/l,l,a,b)ak

k=n+1

< Y (m Al ab)(k-a)[1+1+ 72 (k-1)]a,

k=n+1

<1+ (1-a),
that is
> ¢ (i,4.1,a,b)a,
(1+H(1-a)

(Mo ALab)(n+l-a)(Lrl+7An)

The assertions of (12) and (13) of Theorem 4.1 follow
immediately. Finally, we note that the equalities (12) and
(13) are attained for the function f defined by

D*(a,b) f(z)

(1+1)(1-a)

¢ (m—i,A,1,a,b)(n+1-a)(1+1+yn)

This completes the proof of Theorem 4.1.

Remark 4.2 In the special case a=b=1 Theorem
4.1 yields a result given earlier by [17].

Corollary 4.3 Let the function f defined by (1) be
inthe class 7. (n,a,7,a,b). Then we have

| (2)
[z (1+1)(1-a) P, (15)
¢ (m 4,1,a,b)(n+1-a)(1+1+yin)
and
| (2)

n+l (16)

. (1+1)(1-a) "

(m 2,1, a,b)(n+1-a)(1+1+y4n)

for zeU . The equalities in (15) and (16) are attained
for the function f ., given in (14).
Corollary 4.4 Let the function f defined by (1) be in

the class 7| (n,a,7,a,b). Then we have

7'(2)

(L+D)(1-a)(n+1) oan
Ck(m,/l,l,a,b)(n+1—a)(l+|+Mn)|2| ,

Copyright © 2012 SciRes.

|7'(2)
(1+1)(1-a)(n+1) (18)
¢ (mA,1a,b)(n+1-a)(1+1+yan) 2"

for zeU . The equalities in (17) and (18) are attained
for the function f,_, given in (14).

Corollary 4.5 Let the function f defined by (3) be in
the class 7.} (n,a,7,a,b). Then the unit disc is mapped
onto a domain that contains the disc

[w
¢ (m A,1a,b)(n+1-a)(1+1+yin)—(1+1)(1-a)
¢ (m 4,1,a,b)(n+1-a)(1+1+yin)

The result is sharp with the extremal function f_,;
given in (14).

5. Integral Operators

Theorem 5.1 Let the function f(z) defined by (1) be
in the class 7| (n,a,7,ab) and let c be a real
number such that ¢>-1. Then F(z), defined by

F(z):c—tljozt“lf (t)dt,
Zz

also belongs to the class 7| (n,a,7,a,b)
Proof: From the representation of F(z), it is ob-
tained that

F(z)=z- ibkzk,(neN),

k=n+1
b_(c+1jak
*Ak+c)

3 ¢ (m A 1,a,b)(k—a)[1+1+ 72 (k-1)b,

k=n+1

c+1
kZn‘ilck(m A dab)(k-a)[1+1+y2 (k- 1)}(k c)ak

where

Therefore

< 3¢ (m Al ab)(k-a)[1+1+ 7 (k-1)]a"

< (141)(1-a),

since f(z) belongs to 7. (n,a,7,a,b) so by virtue
of Theorem 2.1, F(z) isalso element of

T;i(na.y,ab)
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