
Energy and Power Engineering, 2012, 4, 506-522 
http://dx.doi.org/10.4236/epe.2012.46064 Published Online November 2012 (http://www.SciRP.org/journal/epe) 

Fault Classification and Localization in Power Systems  
Using Fault Signatures and Principal Components Analysis 

Qais H. Alsafasfeh1, Ikhlas Abdel-Qader2, Ahmad M. Harb3,4 
1Electrical Engineering Department, Tafila Technical University, Tafila, Jordan 

2Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, USA 
3Energy Engineering Department, German Jordanian University, Amman, Jordan 

4School of Natural Resources Engineering, Jordan University of Science and Technology, Amman, Jordan 
Email: qsafasfeh@ttu.edu.jo, abdelqader@wmich.edu 

 
Received May 4, 2012; revised June 20, 2012; accepted July 5, 2012 

ABSTRACT 

A vital attribute of electrical power network is the continuity of service with a high level of reliability. This motivated 
many researchers to investigate power systems in an effort to improve reliability by focusing on fault detection, classi-
fication and localization. In this paper, a new protective relaying framework to detect, classify and localize faults in an 
electrical power transmission system is presented. This work will extract phase current values during (1 4 )th of a cycle 

to generate unique signatures. By utilizing principal component analysis (PCA) methods, this system will identify and 
classify any fault instantaneously. Also, by using the curve fitting polynomial technique with our index pattern obtained 
from the unique fault signature, the location of the fault can be determined with a significant accuracy. 
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1. Introduction 

Fault detection and localization is a focal point in the 
research of power systems area since the establishment 
of electricity transmission and distribution systems. The 
objectives of a power system fault analysis is to provide 
enough information to understand the reasons that lead to 
an interruption and to, as soon as possible, restore the 
handover of power, and perhaps minimize future occur-
rences if possible at all. Analysis should indeed provide 
us with an understanding of the network that can lead to 
producing a set of preventive measures which can be 
implemented to reduce the likelihood of equipment 
damage. Circuit breakers and other control elements are 
designed to help protective relays to take appropriate 
actions [1,2] and thus minimize damage and length of 
interruption. Prompt detection of a fault will have a sig-
nificant impact on the equipment safety since it will en-
gage the circuit breakers instantaneously and before any 
significant damage occurs. In recent years, with an in-
crease in the number of power system networks within 
one control center, the behavior and effect of faults be-
came more complex and as a result, fault impacted area 
has expanded. Researchers in applied mathematics and 
signal processing have developed many techniques for 
the detection, classification and localization of faults in 
electrical power systems and used them in conjunction 
with relaying and protection devices. Recent tools in-

clude Artificial Neural Network (ANN) and Wavelets  
among other powerful pattern recognition and classifica-
tion tools. ANN based algorithms depend on indentifying 
the different patterns of system variables using impe- 
dance information. The proposed neural network archi-
tectures suffer from a large number of training cycles and 
a high computational burden. Another significant draw-
back for using ANN is that the resolution is not efficient 
since it can be a very sparse network with the need for 
large size training data adding an additional burden on its 
computational complexity [3-6]. Wavelet transform has 
been proposed by many to decompose voltage and cur-
rent waves in an effort to identify a fault. It has been re-
ported that wavelet transform based methods for fault 
detection are fast and effective analysis methods [7]. 
Others incorporated wavelet transform with other methods 
such as Probabilistic Neural Network (PNN), adaptive 
resonance theory, adaptive neural fuzzy inference system, 
and support vector machines [8-11]. Fuzzy logic was also 
combined with discrete Fourier transform, adaptive 
resonance theory, principles of estimation and independ-
ent component analysis to enhance performance [11-16]. 
In comparison with ANN, Fuzzy logic systems are sub-
jective and heuristic and in general, they are simpler than 
the wavelet transform or the neural network based tech-
niques. Unfortunately, most of the available tools for 
fault detection and classification are not efficient and are  
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not investigated for real time implementation [4]. There 
is a need for new algorithms that have high efficiency, 
general applicability, and suitable for real time usage. In 
this work, we present a protection scheme consisting of 
three stages; the first stage includes the fault detection 
and classification based on patterns generated from phase 
current while the second stage is to initiate the classifica-
tion process via PCA to declare the occurrence of a fault, 
if any, and its type. For the third stage, and once a fault is 
declared, a localization process is initiated to determine 
the fault location by combining our pattern indices gen-
erated from the unique fault signatures and the polyno-
mial curve fitting technique. This framework is illus-
trated in Figure 1. 

2. Signature Estimation of Fault Signal 

Figure 2 represents a 3-phase system signals in the time 
domain extracted from a power system. In Part a, the 
three current signals from each phase are shown while 
part b is showing the diagram of the difference signal, S, 
from an unbalanced three-phase system. 

The difference signal S between current signal and 
its previous reading at each (1 4 )th of a cycle is gene- 
rated at the sending end of the transmission line. The 
difference signal, shown in Figure 2(b), at each instant 
of time is assumed to model a line equation of the form: 

0Bt C   A S               (1) 

where A, B and C are constant derived from line specific 
intersect points. Once S is modeled using the line equa-
tion given in Equation (1), it is used to transform the data 
into a phasor domain by transforming each value of the 
difference signal as a magnitude and phase of its line  

tors in the ρ-λ space as 
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The magnitude and phase values for this new vector 
representation are computed using Equations (3) and (4) 
as follows: 
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where r  and k  are the mathematical magnitude and 
phase at each value of the S signal, respectively. Con-
sidering three variables for the three phases a, b, and c, 
we will produce the following 3-phase set of equations:  
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where 1 ia , r 1 ib , and r 1 ic  are the mathematical 
magnitude values at one instant of S signal for phase a, 
b, and c, receptively and 1

r

 , 1 , and 1  are the 
mathematical phase values at one instant of the of S 
signal for phase a, b and c, receptively. Our data trans-
formation is followed by a transformation into symme- 
trical components via the symmetrical components tech-
nique [17], which allows for systematic analysis and  

 

 

Figure 1. An illustration of the electrical protective relaying system proposed in this work showing the multistage process 
involved. 
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Figure 2. Unbalanced system signals: (a) each phase signal 
and (b) difference signal of current wave for phase a under 
a fault condition. 
 
design of three phase systems as shown in Equation (6). 
In the left hand side of Equation (6) are the sought sym-
metric quantities while the right hand side is the system 
phasor quantities. In Equation (7) we replace the phasor 
quantities of Equation (6) by our transformed data of the 
difference signal S, 
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This allows us to capture the symmetric components 

of S by generating positive and negative patterns of 
each instant. Hence for total k samples, the symmetrical 
components will be: 
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 over a time series all 
within (1/4)th of a cycle, we generate, shown in Equation 
(9), the positive and negative signatures which is a model 
for any unbalanced and nondeterministic time three- 
phase system which was allowed by symmetrical com-
ponents method utilization. 
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

Figure 3 shows a plot of the unique signature of phase 
a in a 3-phase system with a fault a-g only while samples 
of other signatures are shown in the experimental work in 
Section 4. 

The output of this process will then be supplied into 
the classification process to detect the fault and obtain a 
classification for the event. This proposed work is im-
plemented and simulated using several PSCAD simula-
tions. In Figure 4 a functional block diagram for the 
framework steps is shown. 

3. Principal Component Analysis (PCA) 
Based Fault Detection and Classification 
Method 

PCA has proven to achieve excellent results in feature 
extraction and data reduction in large datasets [18-20]. 
Typically PCA is utilized is to reduce the dimensionality 
of a dataset in which there is a large number of interre-
lated variables while the current variation in the dataset is 
maintained as much as possible [21]. The principal  
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Figure 3. A plot of the unique signature of phase a in a 3-phase system with a fault a-g only. 
 

 

Figure 4. Detailed procedure followed to generate the sig-
natures; difference signal is used thought data transforma-
tion and symmetrical component method to obtain a unique 
signature of every event. 

components (PCs) are calculated using the covariance ma- 
trix after a simple normalization procedure. The covari-
ance matrix is, then calculated for these patterns simply as 
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where ia
  and iaP , generated earlier per Equation (9), 

are the positive and negative patterns respectively, iaP  
and ia

  the mean of iaP P , ia  respectively, and k is the 
number of samples used. Projection into the PC space is 
performed by using 
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where C is the covariance matrix; αi is the principal 
component in the ith dimension and i  is its corre-
sponding eigenvalue. Projecting the normalized data 

  ,ia ia ia iaP P P P    

 

 onto the principal components, a 

new vector of data will be generated (PC1, PC2). Ac-
company the usage of PCA for feature extraction is the 
usage of a similarity measure usually as a distance meas-
ure. These may include Chebyshev, Euclidean, Manhat-
tan, City Block, Canberra, and Minkowski, [22,23]. In 
this paper, the Euclidean distance measure is adapted as 
shown in Equation (12). 
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The classification process of a fault is divided into two 
stages; the first is the training procedure using all signa-
tures generated prior to testing, to enforce their projec-
tions onto the principal components space. The second 
stage is the testing process, in which steps in Figure 3 
are followed to project the test pattern onto PCA space 
followed by measuring for similarity of the PCs using the 
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minimum distance between the stored projections and 
test one. This minimum distance will identify a match of 
a pattern to a fault or no fault at all. In Figure 5 we dis-
play the general framework for fault classification. 

4. Experimental Results on Fault Detection 
and Classification 

Using the simulation package PSCAD, transmission line 
model shown in Figure 6 is used to simulate our frame-
work. The network is composed of two sources, 220 kv 
each, that are connected by the transmission line with 
zero sequence parameter Z(0) = 82.5 + j308 Ω and a 
positive sequence impedance Z(1) = 8.25 + j94.5 Ω while 
ES = 220 kv and ER = 220∠δ kv. 

We also, to show the validity of our algorithm on a 
more complex network, simulate our framework using a 
6 bus network as shown in Figure 6(b). For this bus, the 
source voltages are at 400 kv each and the transmission 
line parameters are the same as the previous transmission 

line model. Positive and negative patterns for the 3-phase 
system are displayed by Figures 7-10 and classification 
results are presented in Tables 1 and 2. The result of “No 
Fault” is the healthy condition event which we show its 
pattern in Figure 7. It is clear from Figure 7 that the sig-
nature of each event is completely unique. A viewer for 
the signatures can easily identify the pattern of the faulty 
phase and declare the type of the fault from Figures 8 
and 9. Projections into PCA results are also demonstrated 
in Figures 10-12. The Power system fault classifier was 
tested to classify the faults into a-g, b-g, cg, ab-g, ac-g, bc-g, 
ab, ac, bc, or abc using a total 220 samples for testing. 

Classification accuracy is presented in the confusion 
matrix in Table 1. These results were obtained with one 
template/pattern in the training data set. Table 2 displays 
the results storing two templates in the training set. The 
error percentage in the later case is zero. Results are con-
sidered to be of significant improvement over the tradi-
tional approaches. 

 

 

Figure 5. The general framework for fault classification using principal component analysis as a tool for feature extraction of 
fault signatures. 
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Figure 6. Using PSCAD simulation package, our framework 
was tested using (a) a 220 kv transmission lines and (b) a 
400 kv 6-bus network. 

5. Fault Localization 

This framework can also be expanded to include a fault 
localization procedure. In this paper, the fault location is 
calculated by combining the curve fitting polynomial 
technique with our unique pattern indices that are gener-
ated from the signatures as follows: 
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where a , a  are the positive and negative 
Pattern indices for phase a. Using curve fitting, a training 
set is  produced for  the positive and negative pattern  

in
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Figure 7. Positive and negative pattern for each phase 
(phase a, phase b and phase c) for healthy condition. 
 
indices and their fault corresponding distances. The Posi- 
tive and negative indices are calculated at different loca-  
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Figure 8. Positive and negative pattern for fault a-g in the 
first row, for fault b-g in the middle, and for fault c-g in the 
last row for (A) phase a, (B) phase b and (C) phase c. 
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Figure 9. Positive and negative pattern for fault ab-g in the 
first row, for fault ac-g in the middle, and for fault bc-g in 
the last row for (A) phase a, (B) phase b and (C) phase c. 
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Figure 10. Projection of the patterns onto principal compo-
nent for healthy condition. 
 
tions (5, 25, 35, 50, 75, 95) km from sending end of the 
transmission line with a variety of operating conditions 
such as power angles and source impedance but at a spe-  
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Figure 11. Projection of the patterns onto principal 
compo-nent for fault a-g in the first row, for fault b-g in the 
middle, and for fault c-g in the last row for (A) phase a, (B) 
phase b and (C) phase c. 
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Figure 12. Projection of the patterns onto principal compo-
nent for fault ab-g in the first row, for fault ac-g in the mid-
dle, and for fault bc-g in the last row for (A) phase a, (B) 
phase B and (C) phase c. 

cific fault resistance. To estimate the fault location, the 
positive and negative Pattern indices of the real inci-
dent/test signals are determined and projected onto the 
fitted curve polynomial. An average of the two readings 
is taken as the fault location. 

 
   index index

index
2

a a

a

D D
D

 
     (14) 

where indexD

 

 is the average distance of the previous 
estimates taken to be an accurate estimate of the fault 
location. The estimated distance in the first polynomial 
curve fitting is dependent on the specific value of the 
fault resistance and so if the fault to occur at a different 
values of fault resistance, that is, at a fault resistance not 
used in the first polynomial curve fitting, then an error in 
the distance estimate will occur. However, the error can 
be compensated by accounting for the difference in the 
fault resistance. That is, ∆R, the difference between the 
new fault resistance and the one used in the training, is 
used to generate a new polynomial curve to extract the 
corresponding ∆D. Upon testing and if there is any 
change in fault resistance then ∆D, the error in the dis-
tance, will be added to the calculated fault distance  as 
shown in (15).  

   index1 index2
index,

2

D D
D D D


      (15) 

The error in fault location is given as (16).  

ExactError 100%
D D

L


 

D

        (16) 

where D is the estimated fault distance, Exact  is the 
exact fault distance, and L is the transmission line total 
length, the functional block diagram as shown in Figure 13. 

6. Experimental Results on Fault  
Localization 

Using the simulation package PSCAD, transmission line 
model shown in Figure 6(a) is used to simulate our 
framework. The network is composed of two sources, 
220 kv each, that are connected by the transmission line 
with zero sequence parameter Z(0) = 82.5 + j308 Ω and a 
positive sequence impedance Z(1) = 8.25 + j94.5 Ω while 
ES = 220 kv and ER = 220∠δ kv. 

We also, to show the validity of our algorithm on a 
more complex network, simulate our framework using a 
6-bus network as shown in Figure 6(b). For this bus, the 
source voltages are at 400 kv each and the transmission 
line parameters are the same as the previous transmission 
line model. After applying the fault classification was 
presented in our paper Fault Classification of Power 
Systems Using Fault Signatures and Principal Compo-
nents Analysis Table 3 provides the fault location esti-
mates for a-g, ab-g, and ab faults at various network con-  
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Table 1. Classification performance using one template for each fault type in the training set producing a 94.54% average 
accuracy. 

Confusion matrix 
Type of 

fault 
Samples 

a-g b-g c-g ab-g ac-g bc-g ab ac bc abc No fault 

Accuracy 

a-g 20 20 0 0 0 0 0 0 0 0 0 0 100% 

b-g 20 0 20 0 0 0 0 0 0 0 0 0 100% 

c-g 20 0 0 20 0 0 0 0 0 0 0 0 100% 

ab-g 20 0 0 0 20 0 0 0 0 0 0 0 100% 

ac-g 20 0 0 0 0 20 0 0 0 0 0 0 100% 

bc-g 20 0 0 0 0 0 20 0 0 0 0 0 100% 

ab 20 0 0 0 0 0 0 20 0 0 0 0 100% 

ac 20 0 0 0 0 0 0 0 20 0 0 0 100% 

bc 20 0 0 0 0 0 0 0 0 20 0 0 100% 

abc 20 0 0 0 0 0 0 0 0 0 20 0 100% 

No fault 20 0 0 0 0 0 0 0 0 0 0 20 100% 

 
Table 2. Classification performance by using two templates for each fault type in the training set producing 100% accuracy. 

Confusion matrix 
Type of 

fault 
Samples 

a-g b-g c-g ab-g ac-g bc-g ab ac bc abc No fault 
Accuracy 

a-g 20 19 0 0 0 0 0 0 0 0 0 1 95% 

b-g 20 0 19 0 0 0 0 0 0 0 0 1 95% 

c-g 20 0 0 20 0 0 0 0 0 0 0 0 100% 

ab-g 20 0 0 0 18 0 0 2 0 0 0 0 90% 

ac-g 20 0 0 0 0 20 0 0 0 0 0 0 100% 

bc-g 20 0 0 0 0 0 18 0 0 2 0 0 90% 

ab 20 3 0 0 0 0 0 17 0 0 0 0 85% 

ac 20 0 0 0 0 0 0 0 20 0 0 0 100% 

bc 20 0 0 0 0 0 0 0 0 17 0 3 85% 

abc 20 0 0 0 0 0 0 0 0 0 20 0 100% 

No fault 20 0 0 0 0 0 0 0 0 0 0 20 100% 
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Figure 13. Functional block diagram for fault location based on patterns indices. 
 

Table 3. Fault location for different fault. 

Fault 
location 

Type of 
fault 

Fault  
resistance 

Estimated 
fault  

location km
Error

10 a-g 39 9.45 0.004

25 a-g 44 26.05 0.009

33 a-g 53 31 0.018

56 a-g 22 58.3 0.020

73 a-g 45 71.5 0.013

89 a-g 66 89.5 0.004

99 a-g 71 96 0.027

70 ab-g 35 69.08 0.009

15 ab-g 77 18 0.027

45 ab-g 40 44.6 0.003

80 ab-g 61 81.2 0.010

65 ab-g 57 67.4 0.021

54 ab-g 45 56.26 0.020

90 Ab 10 90.8 0.007

85 Ab 35 86.4 0.012

90 Ab 25 92.8 0.025

50 Ab 50 51.91 0.017

15 Ab 60 17 0.018

65 Ab 40 64.5 0.004

ditions. Maximum error is 2.7% in ab-g fault at 15 km 
from relaying point with fault resistance of 77 Ω and 
minimum error of 0.3% in ab-g at a 45 km from relaying 
point with fault resistance of 40 Ω. Table 4 shows the 
results for fault detection, classification and fault location 
for a 6 bus network with maximum error of 3% in cases 
of bc-g and ab faults with a 5 Ω and a 100 Ω fault resis-
tance respectively. A functional block diagram for fault 
location based on patterns indices is shown in Figure 2.  

7. Conclusions 

This paper presented a new electrical protective relaying 
system framework to detect, classify, and localize any 
fault type in electrical power system using pattern recog-
nition. The detection and classification process depends 
on unique signatures generated from the difference be-
tween pre- and post-fault current signal values during a 
(1 4 )th of a cycle only. Fault signatures were projected 
into the PC space and stored, as a training set, for system 
monitoring. This protective relaying framework is of a 
general applicability such that it can be deployed at one 
end of a transmission line without the need for commu-
nication devices between the two ends. The Power sys-
tem fault classifier was tested to classify all fault types  
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Table 4. Fault detection, classification and localization for a 6-bus network. 

Fault type 
Fault section 
between bus 

Fault location Fault resistance 
Power 
angle δ 

Type of fault using 
algorithm 

Estimation 
fault location

Error

a-g 2-3 30 km from Bus 1 5 45° a-g 31 0.010

a-g 2-3 30 km from Bus 1 100 60° a-g 31.8 0.018

b-g 1-2 45 km from Bus 2 5 45° b-g 45.5 0.005

b-g 1-2 45 km from Bus 2 100 60° b-g 43 0.020

c-g 4-5 80 km from Bus 4 5 45° c-g 77.9 0.021

c-g 4-5 80 km from Bus 4 100 60° c-g 78 0.020

ab-g 2-3 30 km from Bus 1 5 45° ab-g 30.2 0.002

ab-g 2-3 30 km from Bus 1 100 60° ab-g 32.4 0.024

ac-g 1-2 45 km from Bus 2 5 45° ac-g 45.7 0.007

ac-g 1-2 45 km from Bus 2 100 60° ac-g 45.8 0.008

bc-g 4-5 80 km from Bus 4 5 45° bc-g 77 0.030

bc-g 4-5 80 km from Bus 4 100 60° bc-g 83 0.030

ab 2-3 30 km from Bus 1 5 45° ab 33 0.030

ab 2-3 30 km from Bus 1 100 60° ab 31 0.010

ac 1-2 45 km from Bus 2 5 45° ac 44 0.010

ac 1-2 45 km from Bus 2 100 60° ac 46.1 0.011

bc 4-5 80 km from Bus 4 5 45° bc 80.5 0.005

bc 4-5 80 km from Bus 4 100 60° bc 81.3 0.013

abc 2-3 30 km from Bus 1 5 45° abc 30.2 0.002

abc 2-3 30 km from Bus 1 100 60° abc 30.1 0.001

 
into a-g, b-g, cg, ab-g, ac-g, bc-g, ab, ac, bc, and abc with 
a total of 220 fault samples for algorithm simulation and 
testing. The classification accuracy was calculated to be 
at 94.54% using only one template per fault signature in 
the training set, and was improved to 100% by increasing 
the templates per fault signature to two. Determining 
fault location was also considered by combining poly-
nomial curve fitting technique with the pattern index 
ratio of both the voltage signal and current signal unique 
signatures. The error in fault location is found to be be-
low 2.7%. This proposed work is computationally simple, 
efficient, and can be used in real-time applications. This 
work can be easily expanded to more complex networks 
and can be used in distribution systems. 
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