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ABSTRACT 

One of the challenges still pending in string theory and other particle physics related fields is the accurate prediction of 
the masses of the elementary particles defined in the standard model. In this paper an original algorithm to assign 
graphs to each of these particles is proposed. Based on this mapping, we demonstrate that certain indices associated 
with the topology of the graph (graph theoretical indices) are very effective in predicting the masses of the particles. 
Specifically, the spectral moments of the graph adjacency matrix weighted by edge degrees play a key role in the excel- 
lent correlations found. Moreover, the same topological pattern is found in other well known quantum systems such as 
the particle in a box and the vibrational frequencies of diatomic molecules, such as hydrogen. The results shown here 
open a suggestive pathway for the use of graph-theoretical approaches in predicting properties of elementary particles 
and other physical systems, which seem to match similar topological patterns. 
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1. Introduction 

Among the most important achievements generally re- 
cognized to string theory is its potential capability to pre- 
dict the masses of elementary particles, specifically of the 
12 particles that make up the three families of the stan- 
dard model [1]. The process, however, require very com- 
plex mathematical calculations which are still far from 
complete. 

There is a well known precedent in particle physics to 
the study of interactions between particles, which are the 
Feynman diagrams [2]. Figure 1 shows the Feynman dia- 
gram for electron-positron annihilation. 

It is interesting that, although representing a space- 
time event, Feynman diagrams are ultimately graphs. A 
graph is a set of points called vertices (or nodes) connected 
by lines called edges. The studies of graphs constitute a 
discipline known as graph theory. It was L. Euler (1707- 
1783) the one who introduced the notion of graph [3], 
which was developed later on by A. Cayley [4] and J. J. 
Sylvester [5] along the nineteenth century. In the 20th 
century, graph theory became an essential tool in different 
areas of science and technology where connectivity plays 
a role. Think, for instance, of the optimization of com- 
munication and transport networks [6], the design of 
electrical circuits (e.g. in computers) [7], the synchroni- 
zation of interacting oscillators with different topologies 
[8], the analysis of social networks [9], among others. 

Although graphs in general are also widely employed 

in theoretical physics, however graph-theoretical indices 
are rarely used [10]. Our goal here is just using graph- 
theoretical indices to predict the masses of the elemen- 
tary particles referred above as well as of other physical 
systems such as molecular vibrational energy. 

2. Assignation of Graphs to Some Vibratory 
Physical Systems. Theoretical Framework 

Starting by the elementary particles, we must remind the 
origin of the Feynman diagrams. It is well known that the 
interactions between particles are expressed as an inte- 
gral, which is typically too difficult to do, so that Feyn- 
man developed a perturbation theory which was based 
upon an expansion in terms of graphs. The type of such 
graphs depends on the interactions. 
 

 

Figure 1. Feynman diagram for electron-positron an- 
nihilation. e: electron (–) or positron (+) q: quark γ = gam- 
ma emission. 
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A similar approach can be also found in the so called 
force-based algorithms [11], in which the entire graph is 
then simulated as if it were a physical system, for exam- 
ple an elementary particle. Moreover, the use of graphs 
and matrices to study the interactions between elemen- 
tary particles, for example quarks, has been also carried 
out by other authors [12].  

On string theory, the way to explain that an elementary 
particle, say an electron, has a given mass is based on the 
different modes of vibration of the strings. Indeed, in the 
perturbative approach to string theory, the strings interact 
by joining and splitting [13]. 

Each vibrational mode has an associated energy ac- 
cording to Einstein’s equation: 

2E m c                   (1) 

This energy is transformed into the elementary particle 
mass. In this sense we can say that elementary particles 
are made of strings. 

In the perturbative string theory, the influence of each 
incoming string results from adding together the influ- 
ences of graphs with ever more loops.  

The algorithm proposed here is similar, i.e. assigning 
each perturbative term to each one of the particles so that 
each graph simply adds a loop over the next particle with 
increasing mass; in other words we propose assigning 
one-to-one the perturbative terms to the particles. 

The process of assigning individual graphs to each 
elementary particle proposed here is done as follows: 
First, the elementary particles are sorted in increasing 
order of mass ranging from the electron-neutrino (<10–8) 
up to top-quark (189), both in GeVs. Table 1 reflects the 
values, in increasing order of energies, for these particles. 
On the first column is the allocation of families for every 
one of the particles. A data taken from reference [13]. 
 
Table 1. Elementary particles, according to the standard 
model, ordered in increasing values of energy. F1, F2 and 
F3 represent the three families in which they are classified. 

Family (Standard Model) Elementary Particle Mass (GeV)a 

F1 Electron-neutrino 0.00000001 (aprox)

F2 Muon-neutrino 0.0003 (aprox) 

F1 Electron 0.00054 

F1 Up-quark 0.0047 

F1 Down-quark 0.0074 

F2 Muon 0.11 

F2 Strange-quark 0.16 

F3 Tau-neutrino 0.33 (aprox) 

F2 Charm-quark 1.6 

F3 Tau 1.9 

F3 Bottom-quark 5.2 

F3 Top-quark 189 

For the first particle, namely electron-neutrino, we as- 
sign a simple graph that is equivalent to the interaction 
electron-positron described before. Figure 2 illustrates 
the Feynman-like 3D diagram associated to the strings 
interaction, i.e. the string/antistring pair, together with 
the simple (no loops) graph assigned to it: 

The following larger energy particles are represented 
by pseudographs which take into account different to- 
pologies with 1, 2, 3, ...11 holes. For example, for the 
muon-neutrino, the second lowest energy particle, we would 
have the following equivalence between the strings’ inter- 
action and the graph (Figure 3): 

In this case, the two strings interact creating a hole 
whose graph theoretical equivalent is the one-loop graph 
on the right (B) of Figure 3. In short, the two diagrams 
in Figure 3 correspond to the Feynman representations 
for string (A) and quantum field theory (B) [14]. The 
advantage of this approach is that there is just one dia- 
gram for each order of perturbation and that each dia- 
gram avoid the drawback of short-distance infinities, i.e. 
contrary to quantum field theory, the graphs in Figures 
2(a) and 3(a) have not singularities (nodes). It is also 
curious that the topological pattern that we meet here is 
the same as the one of harmonic vibrations of a macro- 
scopic string (such as a violin string), in which each fre- 
quency of the overtones (n = 2, 3, 4…) is an integer mul- 
tiple of the first one (n = 1, fundamental), as shown in 
Figure 4. 

Note that the graph-theoretical equivalent of each mode 
of vibration would be graphs with a progressive increase 
in the number of loops. 

Figure 5 shows the graphs allocated to the different 
particles, according to our algorithm. 
 

 
(a)                        (b) 

Figure 2. Allocation graph to electron-neutrino. Left (a) 
Feynman-like graph for the springs interaction and right; (b) 
corresponding simple graph. 
 

 
(a)                        (b) 

Figure 3. Allocation of graph to muon-neutrino, the second 
particle with lower mass. To the left (a) Feynman graph and 
on the right (b) corresponding pseudograph. 
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Figure 4. Simple modes of vibration of a string. The har- 
monic frequencies shown are multiples of the first one (fun- 
damental vibration). 
 

Particle Graph Graph's label n Ψ

electron-neutrino G1 0 0

muon-neutrino G2 1

electron G3 2

up-quark G4 3

down-quark G5 4

muon G6 5

strange-quark G7 6

tau-neutrino G8 7

charm-quark G9 8

tau G10 9

bottom-quark G11 10

top-quark G12 11
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Figure 5. Allocation of graphs to different particles. On the 
right, the real part of wavefunctions for particle in a box for 
different quantum levels (n). 

Except for the less massive particle, the electron-neu- 
tri

re, the same graph allocation can be done on 
ot

sed allocation of graphs can be based 
on

no, which is assigned a simple graph, the rest are as- 
signed on pseudographs with increasing number of adja- 
cent loops. 

Furthermo
her quantum systems such as the particle in a box, 

whose wave functions (the real part) are also outlined in 
Figure 5 for the different quantum levels (n). These 
wave functions show a shape that is equivalent to the 
graphs assigned to each particle. This approach relating 
graphs to wavefunctions has been proposed previously 
by the author [15]. 

In fact, the propo
 very simple theoretical terms considering the vibra- 

ting strings as particles in a one-dimensional box and 
giving each particle a quantum number (n). Indeed, con- 
sidering only the real part of the wave function associ- 
ated with a one-dimensional box of length “a”, we have 
[16]: 

n
( ) 2 / sin ( )

x
x a

a


            (2) 

Which normalized for a = 2 leads to: 

n
( ) sin ( )

2

x
x


                (3) 

It is clear from Equation (3) that the number of maxi- 
ma-minima associated with the wave function is equal to 
the quantum number n, which can take the values 0, 1, 2, 
3... The value 0 is associated to the ground state which 
corresponds to annihilation. 

A similar result could be reached using the harmonic 
oscillator model, in which, for the one-dimensional case, 
the number of interior nodes on the boundary points is 
zero for the ground state and increases by one for each 
successive excited state, according to: 

       21 2 1 4 2 12 ! π ev x
v v

2x v H 
   x    (4) 

where: 
24π vm h   

Vibrational quantum numberv    

Hermite polinomialsvH  . 

In this case there is a residual vibrational energy that 
would correspond to the lowest mass particle (electron- 
neutrino), so that the association would be between the 
number of nodes and the number of loops in the graph. 
This way we can see that, regardless the model used, if 
we translate into graph-theoretical terms the wave func- 
tions, each graph has the same number of loops as num- 
ber of singular points (maxima-minima or nodes) has the 
wave function. The relationship between wave functions 
and graphs is implicit in Heisenberg’s matrix formulation 
of quantum mechanics, because for each array or matrix 
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a graph of connections can be assigned. Moreover, Filk 
has solidly demonstrated the equivalence between wave 
functions and graphs [17]. 

Within this theoretical framework, it is to be expected 
th

3. Results and Discussion 

nt graphs, the next step 

 
ar

vari- 
ab

at the same allocation of graphs we have proposed for 
elementary particles, may also work in other physical 
systems, as for example, the vibrational energies of a 
diatomic molecule. In concrete we have applied this ap- 
proach to predict the vibrational levels energy for the 
molecule of hydrogen. Given that in this case we have a 
residual vibrational energy for the lowest quantum level 
(v = 0), we assign the graphs G2, G3, G4, … to the first, 
second, third, ...vibrational levels, respectively. 

After the allocation of the differe
is to calculate the topological descriptors associated with 
each graph and try to establish a correlation with the en- 
ergy of the particles. For calculation of topological de- 
scriptors, the software Dragon (a pull of some 330 indi- 
ces) was used [18] and to obtain the regression equations, 
the BMDP statistical package [19] was run on the data.  

The results clearly demonstrate that spectral moments
e the variables that contribute most to the variance as 

for the correlation with the elementary particle masses. 
Thus, Figure 6 illustrates the representation of the para- 
meter F (Fisher-Snedecor) as a function of the spectral 
moments’ ranges (ordinals). As can be seen, in almost all 
cases the value is greater than 100, so demonstrating that 
the spectral moments play a key role in the predictive 
equation of the particle masses, being the #7 to #9 the 
major contributors to the variance (F around 500).  

The best regression equations with one and two 
les were: 

log 56.69 4.780 08M ESpm x           (5) 

N = 12   R = 0.99095   SE = 0.3739   F = 545.1 

log 53.99 4.537 08 4.028M ESpm x EEi        (6) 

N = 12   R = 0.99684   SE = 0.2333   F=708

 

.5 
The symbols in Equations (5) and (6) are: 

 

Figure 6. Representation of the values of Fisher-Snedecor 
parameter (F) as a function of the spectral moments. 

cency 
m

t 
ate 

dge adjacency matrix 
ar

M = Particle mass (GeV)  
ESpm08x = Spectral moment 08 from edge adja
atrix weighted by edge degrees  
EEig11x = Eigenvalue 11 from edge adjacency matrix 

weighted by edge degrees. 
N = Number of data 
R = Regression coefficien
SE = Standard error of estim
F = Fischer-Snedecor parameter 
The spectral moments of the e
e defined as the traces, i.e., the sum of the main diago- 

nal entries, of the different powers of the matrix [20].  
The k-th spectral moment of a graph G,

  k G , with 
eigenvalues λ , λ  . . . , λ , is defined as: 1 2 n

( ) (
n kESpmkx G

k t
    )

1t 
        (7) 

It is to be noted that the spectral moment k

the num

si

μ  represents 
ber of weighted closed walks of length k existing 

in the graph, what makes the outcome from Equations (5) 
and (6) all the most reasonable considering the allocation 
of graphs done here. Moreover, both equations showed to 
be non-random and stable under the cross validation 
(leave-one-out) procedure. Interestingly, although both 
equations exceed 0.99 of correlation coefficient, the lar- 
ger value of the parameter F (Fisher-Snedecor) as well as 
the significant drop in the standard error (from 0.37 to 
0.23) in Equation (6), clearly shows that the two-variable 
equation is more significant.  

Table 2 illustrates the values of the two topological 
indices from the selected regression equation (ESpm08x 
and EEig11x) for each particle, as well as the comparison 
between the experimental and the calculated values from 
the two-variable equation in both, logarithmic and direct 
scale. As can be seen, the variable explaining most of the 
variance is ESpm08x, whereas the other, EEig11x, only 
improves the prediction for the two most massive parti- 
cles (bottom and top quarks).  

Furthermore, there is a good matching between the 
actual and the calculated values, what is to be empha- 

zed given the simplicity of the procedure followed and 
the ease of calculation. It is also noteworthy the low 
standard errors achieved, which, except for the lowest 
and the highest value, are always below 0.1, i.e. 10%, 
what can be considered a significant achievement taking 
into account the wide range of magnitude of the particle 
energies.  

Figure 7 illustrates the plot of the experimental versus 
the calculated values. It is noteworthy the excellent 
agreement. 

Interestingly, in both Equations (5) and (6), the indices 
therein are those derived from the edge adjacency matri- 
ces weighted by edge degrees, what accounts for the im- 
portance of interconnections between the nodes rather 
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erved and calculated (Equation (6)) values of particle masses. 

 

  
Table 2. Values of the topological indices together to the obs

Particle ESpm08x EEig11x 
log mass (experi-

mental value, GeV)
log mass (calculated 

by Equation (6)) 
Standard error of 

pred. value 
Mass experimental 

value (GeV) 
Mass calculated by

Equation (6) 

Elec ino tron-neutr 10.2 0 –8 –7.848 0.195 10–8 1.4 × 10–8 

Muon-neutrino 11.1 0 –3. 0.

Up-  11.

Down-  11.

Stra k 11.

Botto k 12. 0. 12.

523 –3.661 0.089 0003 0.0002 

Electron 11.2 0 –3.268 –3.244 0.082 0.0005 0.0006 

quark 3 0 –2.328 –2.536 0.074 0.0047 0.0029 

quark 5 0 –2.131 –1.892 0.072 0.0074 0.0128 

Muon 11.6 0 –0.959 –1.329 0.075 0.1100 0.0469 

nge-quar 7 0 –0.796 –0.826 0.081 0.1600 0.1494 

Tau-neutrino 11.8 0 –0.482 –0.377 0.088 0.3300 0.4202 

Charm-quark 11.9 0 0.204 0.036 0.096 1.5999 1.0874 

Tau 12.0 0 0.279 0.413 0.104 1.9002 2.5876 

m-quar 1 1 0.716 1.089 0.097 5.2000 2603 

Top-quark 12.1 0.8 2.277 2.164 0.224 189.02 145.85 

 

 

Figure 7. Plot of the observed versus the calculated values of the particle masses according to Equation (6). 
 
than that 

at, as expected, the topology associated with each par- 

e next 
on

er

est regression 

of the nodes themselves. Of course, this implies equation obtained for the first twelve levels was 
th 1773.80 450.23 03Ev ESpm r         (8) 

N =12   R =0.9998   SE = 2.6275   F = 26602.74 
The symbols in Equation (8) are 

ticle plays a key role, beyond geometric characteristics 
related to size or shape. In particular the presence of suc- 
cessive adjacent loops stands as an essential element of 
the predictive, which is interpreted as successive stages 
of annihilation-splitting of the interacting strings.  

It is also compelling that the great difference between 
the less massive particle (electron-neutrino) and th

Ev = Vibrational energy (KJ/mole).  
ESpm03r = Spectral moment 03 from edge 

m

e comparison between the expe- 
rim ulated from the Equation 
(8 e the graph G2 is as- 
si because of the 
ex

adjacency 
atrix weighted by resonance integrals.  
N = Number of data. 
R = Regression coefficient. 

e (muon-neutrino) is a pure “topological” gap because 
it is the difference between no-loop and one-loop graphs.  

As pointed above, no one theory has been yet capable 
to exact prediction of the elementary particle mass-en- 

SE = Standard error of estimate. 
F = Fischer-Snedecor parameter. 
Table 3 illustrates th
ental values and those calc

gy, although some interesting attempts have been made 
[21]. The problem remains far to be solved and this is 
why any step forward is of great interest.  

Regarding the results of prediction of the vibrational 
energy levels for hydrogen molecule, the b

). As can be observed, in this cas
gned to the first quantum state (v = 0), 
istence of the vibrational residual energy in the an- 

harmonic oscillator. 
As seen, another spectral moment, namely ESpm03r, 
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accounts for more than 99% of the variance, what is im- 
portant because we are in presence of a completely dif- 
ferent physical system. 

sics. For example, Broote and 
K

he energy of any system, 
ac

t

The preponderant role of spectral moments as a mea- 
sure of the energy in different systems has enough prece- 
dents in the literature, although little application has been 
done so far on particle phy

örner have posed arguments on the role of spectral 
moments in perturbation theory, particularly in the study 
to the low-energy hadron production associated to elec- 
tron-positron annihilation [22]. 

The spectral moments have been related elsewhere to 
the concept of “energy of graphs” [23]. Moreover, Estrada 
[24] has demonstrated in a very solid way that the spec- 
tral moments can be related to t

cording to the equation: 

 ( ) ( ) ^ ( ) ( )

( )

E t t t d t

t c

  

   

   

( ) ( ) ( )

( ) ( )

i i
i

i i
i

t E t d

c t E t

   

 


 







 





      (9) 

where E(t) are the different types of energies
and ε(t) are the discrete values of the energy levels for 
energy of type t. is the spectral density function and 

are th rresponding spectral moments as- 

 involved 

   
e co E t     i

sociated to that type of energy. 
Based on Equation (9), for a given spectral moment 

 value, for example k , and given that the spectral 
den- sity function is continuous and differentiable, the 
energy of the system can be expressed as a series expan-
sion by powers of k  in the form: 

   2

0

e
!

k

j

k c
k k

j

c
E t c c

j


  







      (10) 

where c and c' are just two proportionality constants. 
Taking logarithms and considering that in our case we 
have a vibrational energy, , it results: Ev

log log kEv c c              (11) 

Since the vibrational energy is the mass of the particle 
(in GeV units),  may be replaced by m (mass of the 
particle), so coming finally to the equation: 

Ev

log log ' km c c              (12) 

Equation (12) stands for a possible theoretical inter- 
pretation of Equations (5) and (6), however the definitive 
interpretation of the role of the topological indices in 
Equations (5), (6) and (8) remains an open question that 
might perhaps encourage other fellow experts to take 
over the issue under the framework of theoretical physics.  

The application of graphs in various fields, particularly 
in molecules, has been extremely productive, demon- 
strating to be a very effective tool for predicting molecu- 
lar properties [25-27]. 

Furthermore, our research group has cover a long way 
in the topological design of new drugs [28-30]. 

 
llocation of graphs and comparison between obser

cule of hydrogen. 
Table 3. A ved and calculated values of vibrational energies for the mole- 

ESpm03r 
ergy observed* Vibrational energy calculated Standard error of  Vibrational quantum Graph  Vibrational en

number allocated (KJ/mole) through Eq. (8) (KJ/mole) predicted value 

0 G2 3.99 26.1 22.2 1.58 

1 G3 4.11 76.0 77.1 1.29 

2 G4 4.22 123.1 126.2 1.06 

3 G5 4.32 167.3 169.9 0.90 

4 G6 4.41 208.6 210.4 0.79 

5 G7 4.49 247.1 247.3 0.76 

6 G8 4.56 282.7 281.1 0.79 

7 G9 4.63 315.4 313.0 0.86 

8 G10 4.70 345.2 342.3 0.95 

9 G11 4.76 372.1 370.2 1.07 

10 G12 4.82 396.2 396.3 1.18 

11 G13 4.87 417.4 421.1 1.30 

*Data taken from J.M. Hernando. Problemas de Quimica Fisica. Graficas A. Martin S.A. ISBN: 84-400-6995-2. 
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Not surprisingly, the topology associated to graphs can

also be useful in predicting properties in other areas, such 
as that of atomic and su ic syste As previously

a

atomic particles is a 
unexplored field. The results outlined here demonstrate 

can be useful on this goal. Indee

t SAF2009-13059-C0
He is also grateful to Maria Galvez-Llompart for her in-

rk. 

a Science, and What 
Comes Next,” The Mathematical Intelligencer, Vol. 30,
No. 3, 2008, p 02985383

 

batom ms.  
mentioned, the role of graphs in the interactions between 
p rticles (Feynman diagrams) and in string theory, is 
well known. However, it is noteworthy that the contribu- 
tion done here is significant because it shows how the 
graph-theoretical algorithms can perform simple calcula- 
tion of atomic and sub-atomic properties, what in turn 
might suggest new approaches to solve the much more 
complex problems associated with the theoretical for- 
malisms of particle physics. 

4. Conclusion 

The use of graph-theoretical indices for the prediction of 
properties of atomic and sub rather 

that this approach d, al- 
though there must be other alternative graph-theoretical 
algorithms as the one illustrated here, it seems clear that 
it points toward a new framework that can yield interest- 
ing results in the near future. 
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