
Open Journal of Applied Biosensor, 2012, 1, 44-52 
http://dx.doi.org/10.4236/ojab.2012.13006 Published Online November 2012 (http://www.SciRP.org/journal/ojab) 

Sensitive Colorimetric and Fluorescent Detection of  
Mercury Using Fluorescein Derivations 

Zhihui Xie1*, Fangjun Huo2*#, Jing Su1, Yutao Yang1,2, Caixia Yin1#, Xuxiu Yan2, Shuo Jin2 
1Key Laboratory of Chemical Biology and Molecular, Engineering of Ministry of Education,  

Institute of Molecular Science (IMS), Shanxi University, Taiyuan, China 
2Research Institute of Applied Chemistry (RIAC), Shanxi University, Taiyuan, China 

Email: #yincx@sxu.edu.cn 
 

Received September 23, 2012; revised October 24, 2012; accepted November 1, 2012 

ABSTRACT 

A colorimetric and fluorometric dual-model probe for mercury (II) ion was developed employing fluorescein hydrazide 
(FH) in ethanol-HEPES solution (1:1, v/v, pH 8.0). The probe exhibited high selectivity and sensitivity for Hg2+ detec- 
tion using UV/Vis and fluorescence spectroscopy. Addition of Hg2+ caused a visual color change from colorless to col- 
oured and a fluorescence change from colorless to bright green. Other metal ions did not interfere with the detection of 
Hg2+. 
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1. Introduction 

The development of selective and sensitive imaging tools 
capable of monitoring heavy- and transition-metal ions 
has attracted considerable attention because of the wide 
use of these metal ions and their subsequent impact on 
the environment and nature [1-3]. Mercury pollution spe- 
cifically is a topic of recent concern [4-6] because mer- 
cury contamination is widespread and originates from a 
variety of natural and anthropogenic sources including 
oceanic and volcanic emission [7,8], gold mining [9], 

solid waste incineration, and the combustion of fossil 
fuels [10]. Once introduced into the marine environment, 
bacteria convert inorganic mercury into methylmercury, 
which enters the food chain and accumulates in higher 
organisms, especially in large edible fish [11]. Mercury 
can accumulate in the human body and may cause wide 
variety of diseases even in a low concentration, such as 
prenatal brain damage, kidney failure [12], serious cog- 
nitive and motion disorders, and Minamata disease [13]. 

Many types of mercury sensors have been developed 
based on small fluorescent organic molecules [14-20], 
proteins [21], oligonucleotides [22,23], genetically engi- 
neered cells [24], conjugated polymers [25], foldamers 
[26], membranes [27], electrodes [28], and nanomaterials 
[29-32]. Recently, considerable efforts have been made 
to develop a colorimetric or fluorescent molecular probe 
for mercury ions [33-37]. Many of these systems are ba- 

sed on well established and unique molecular frame- 
works, such as crown ethers [38,39], calix[4] arenes [40], 
cyclams [41], squaraines [42], 8-hydroxyquinolines [43] 
1,4-disubstituted azines [44], thioureas [45], 1,3-dithiole- 
2-thione [46]. Before fluorescein hydrazide or other fluo- 
rescein derivations were used as sensors for Cu2+ [39,40]. 
However, in current work, we employed fluorescein de- 
rivation (Figure 1) to design and construct colorimetric 
and fluorometric dual-channel assay to specifically detect 
Hg2+ the presence of a wide range of other cations and 
anions in ethanol-HEPES (1:1, v/v, pH 8.0) solution. It is 
noted that FH was used as Cu2+ sensor by Chen et al. in 
pH 7.2 Tris buffer before, which there are many differ- 
ences from those in the manuscript: a) sensor conditions 
are different; b) the sensor targets are different; c) UV- 
Visible spectra are different; d) the system color changes 
are different; e) fluorescence properties and intensity are 
different. These studies have demonstrated for the first 
time a controllable and multifunctional chemosensor in 
different buffer conditions. Thus, the results are signifi- 
cant and interesting as a new generation of chemosensors 
produced. 

2. Experimental 

2.1. Reagents and Chemicals 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) was purchased from Sigma-Aldrich. FH was 
synthesized using a modification of a literature method. 
HEPES solutions were adjusted to pH 8.0 by adding  
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Figure 1. The structures of FH. 
 
NaOH (0.1 M) to aqueous HEPES (10 mM). Cationic 
salts were purchased from Shanghai Experiment Reagent 
Co., Ltd (Shanhai, China). All the common chemicals 
used were of analytical grade. 

2.2. Apparatus 

A Mettler Toledo pH meter (Mettler-Toledo International 
Inc, Switzerland) was used to determined pH. The UV- 
Visible spectra were recorded on a Cary 50 Bio UV- 
Visible spectrophotometer (Agilent, Santa Clara, CA). 
Fluorescence spectra were measured using a Cary Ecli- 
pse fluorescence spectrophotometer (Agilent, Santa Clara, 
CA). A PO-120 quartz cuvette (10 mm) was purchased 
from Huamei Experiment Instrrument Plants (Shanhai, 
China). 1H NMR and 13C NMR spectra were recorded on 
a Bruker DRX-300MHz NMR spectrometer (Billerica, 
MA). A light yellow single crystal of FH was mounted 
on a glass fiber for data collection. Cell constants and an 
orientation matrix for data collection were obtained by 
least-squares refinement of diffraction data from reflec-
tions with 2.04˚ - 27.4˚ for FH using a Bruker SMART 
APEX CCD automatic diffractometer. Data were col-
lected at 173 K using Mo Kα radiation (λ = 0.710713 Å) 
and the ω-scan technique and corrected for Lorentz and 
polarization effect (SADABS) [50]. The structures were 
solved by direct methods (SHELX97) [51], and subse-
quent difference Fourier map and then refined on F2 us-
ing a full-matrix least-squares procedure and anisotropic 
displacement parameters. 

2.3. Preparation of FH 

FH was prepared in high yield by reacting fluorescein 
with hydrazine hydrate in methanol (Scheme 1) accord- 
ing to the literature [52,53]. An excessive hydrazine hy- 
drate (85%, 1.2 mL) was added to a 0.35 g of fluorescein 
dissolved in 20 ml of ethanol, and the reaction solution 
was refluxed in oil bath for 8 h. A brown oily product re- 
sulted from evacuating ethanol under reduced pressure. 
The solid product was precipitated by adding water and 
recrystallized from ethanol/water mixture, producing the 
fluorescein hydrazide (FH) as a yellow powder with 72% 
yield (0.25 g). The H2O/ethanol solution was allowed to 
evaporate slowly at room temperature for several days 
and yellow crystals suitable for X-ray crystallography 

were formed. 1H NMR ,(DMSO-d6): δ (ppm) 9.80 (s, 2H), 
7.76 (m, 1H), 7.48 (m, 2H), 6.99 (m, 1H), 6.58 (s, 2H), 
6.43 (d, 2H), 6.38 (d, 2H), 4.37 (s, 2H); 13C NMR (75 
MHz, CDCl3): δ 24.25, 33.00, 113.31, 117.96, 121.58, 
121.88, 123.80, 138.69, 156.24, 196.37 (Figure S1(a)); 
ESI-MS m/z 347.2 [FH+H]+ (calcd. 347.l) (Figure 
S1(b)); Elemental analysis (calcd.%) for C20H14N2O4: C, 
69.36; N, 8.09; H, 4.07: Found: C, 69.30; N, 8.11; H, 
4.01. Crystal data for C20H16N2O5 (Figure S1(c)): crystal 
size: 0.22 × 0.2 × 0.1, triclinic, space group P-1 (No. 2). 
a = 7.5959(15) Å, b = 10.690(2) Å, c = 11.028(2) Å, α = 
104.34(3)˚, β = 109.09(3)˚, γ = 99.67(3)˚, V = 789.0(4) 
Å3, Z = 2, T = 173K, θmax  = 25.0˚, 7521 reflections 
measured, 2762 unique (Rint = 0.0412). Final residual for 
250 parameters and 2503 reflections with I > 2σ(I): R1 = 
0.0622, wR2 = 0.1390 and GOF = 1.17. 

2.4. General UV-Vis and Fluorescence Spectra  
Measurements 

Since the chemosensor was not fully soluble in 100% 
aqueous media, ethanol was used as a solubilizing me- 
dium. FH stock solutions were prepared in ethanol. The 
UV-Vis and fluorescence spectra were obtained in mixed 
ethanol /HEPES aqueous buffer (1:1, v/v, 10 mM, pH 8.0) 
solution. Aqueous metal ion solutions were also prepared. 
Fluorescence measurements were carried out with a slit 
width of 10 nm. 

2.5. Preparation of FH 

The UV-Vis spectrum was characterized by a main band 
centred at 641 nm. The low detection threshold for Hg2+ 
was in the order of 10−6 - 10−5 M and at this level the col- 
our change was very obvious. The fluorescence emission 
was measured for each sample by exciting at 450 nm and 
spectra and measuring from 475 - 700 nm. The sensitiv- 
ity range for Hg2+ was 10−7 - 10−6 M. 

3. Results and Discussion 

3.1. UV-Vis Spectra 

The complexation ability of FH with Hg2+ ion was inves- 
tigated by UV-Vis absorption techniques. FH does not 
absorb in the range of 400 - 800 nm in a mixed solution 
of ethanol/HEPES (v/v = 1:1). Figure 2 shows the spec- 
tral changes of FH in ethanol/HEPES (v/v = 1:1) upon 
addition of various competitive metal ions, such as Hg2+,  
 

 

Scheme 1. Synthesis of probe. 
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Figure 2. (a) UV-Visible spectra of FH (30 μM) in the pres- 
ence of various metal ions in ethanol/HEPES solution (1:1, 
v/v, pH 8.0); (b) Optical density of the probe FH (30 μM) at 
642 nm in the presence of various metal ions (250 μM) in- 
cluding: Hg2+, Mg2+, Ca2+, Cu2+, Fe3+, Zn2+, Ni2+, Bi3+, Co2+, 
VO2+, Mn2+, Ba2+, Cd2+, Pb2+, Sn2+, Yb3+, Cr3+, La3+, Er3+ etc. 
Inset: a color change photograph for Hg2+ and other cations. 
From left to right, then from top to bottom: FH (30 μM), 
and FH with Hg2+, Mg2+, Ca2+, Cu2+, Fe3+, Zn2+, Ni2+, Bi3+, 
Co2+, VO2+, Mn2+, Ba2+, Cd2+, Pb2+, Sn2+, Yb3+, Cr3+, La3+, 
Er3+ etc.; (c) Absorption spectral changes of FH (30 μM) in 
ethanol/HEPES buffer solution (1:1, v/v, 10 mM, pH 8.0) 
upon addition of Hg2+; Hg2+ added gradually with [Hg2+] = 
0, 6, 12, 18, 24, 30 μM; each spectrum is recorded 3 h after 
Hg2+ addition. Inset: visual color changes of FH (30 μM) 
upon addition of Hg2+ in ethanol/HEPES buffer solution (1:1, 
v/v, 10 mM, pH 8.0). 

Mg2+, Ca2+, Cu2+, Fe3+, Zn2+, Ni2+, Bi3+, Co2+, VO2+, 
Mn2+, Ba2+, Cd2+, Pb2+, Sn2+, Yb3+, Cr3+, La3+, Er3+, etc. 
From UV/Vis spectra (Figure 2(a)), we can clearly ob- 
serve a new absorption band centered at 397, 504 and 
641 nm for FH (30 µM) in the presence of 1 equiv of 
Hg2+. In contrast, other ions lead to almost no spectral 
changes (Figures 2(a) and (b)). In our present experi- 
ments, HgCl2 as a Hg2+ source was gradually added to 
the ethanol /HEPES (v/v = 1:1) FH solution. Notably, the 
new band at 397, 504 and 641 nm appeared and con- 
comitantly grew with increasing Hg2+ concentration (Fig- 
ure 2(c)). 

3.2. Fluorescence Spectra 

The ability of FH to selectively sense Hg2+ was deter- 
mined analysis of the fluorescence spectra obtained with 
1 μM of FH in ethanol/HEPES (v/v = 1:1) in the pres- 
ence of a number of cations including Mg2+, Ca2+, Cu2+, 
Fe3+, Zn2+, Ni2+, Bi3+, Co2+, VO2+, Mn2+, Ba2+, Cd2+, Pb2+, 
Sn2+, Yb3+, Cr3+, La3+ and Er3+ etc. (100 equiv to Hg2+, 
respectively). The fluorescence spectra (Figure 3) show 
a similar result, which is consistent with that of UV- 
Visible spectra. Addition of 3 equiv of Hg2+ ion results in 
an obviously enhanced fluorescence at 522 nm (OFF- 
ON), with an excitation at 460 nm while other ions in- 
duce no increase in fluorescence (Figure 3(a)). More 
interestingly, Hg2+-induced fluorescence-on change for 
the FH is visual with a solution color change from color- 
less to green under illumination with a 365 nm UV lamp 
(Figure 3(b)). As shown in Figure 3(c), a new emission 
band peak appears with the fluorescence intensity in- 
creasing with increase in Hg2+ concentration. Both UV- 
Vis and fluorescence results indicate that FH shows a 
good selectivity and sensitivity toward Hg2+ over other 
competitive cations. 

Furthermore, a plot of fluorescence intensity when FH 
is titrated with 3 µM of Hg2+ shows good linearity (cor- 
relation coefficient of R = 0.9985) for a Hg2+ concentra- 
tion range of 0.25 - 3 µM (Figure 4). 

3.3. pH Dependent 

The above-mentioned UV-Visible light absorption oc- 
curred at a pH of 8.0, which is close to physiological 
conditions. At a pH of 9.0, it seems that Hg2+ detection is 
possible, and that the absorbance was affected by solu- 
tion alkalinity. At all other pH conditions, no notable 
change in either color or UV-Visible spectrum was noted 
(Figure 5). 

3.4. Proposed Mechanism 

To provide reasonable envidence of FH sensing of Hg2+ 
ion, electrospray ionization mass spectrometry (ESI-MS) 
analysis was conducted (Figure S2). Mass peaks at m/z 
531.2 corresponding to [Fluorescein + Hg]+ are clearly  
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Figure 3. (a) Fluorescence spectra of FH (1 μM) in the 
presence of various metal ions in ethanol/HEPES solution 
(1:1, v/v, pH 8.0) (λex = 460 nm, λem = 522 nm, slit: 10 nm/10 
nm) ; (b) Optical density of the probe FH (10 μM) at 522 
nm in the presence of 300 μM various metal ions including: 
Hg2+, Mg2+, Ca2+, Cu2+, Fe3+, Zn2+, Ni2+, Bi3+, Co2+, VO2+, 
Mn2+, Ba2+, Cd2+, Pb2+, Sn2+, Yb3+, Cr3+, La3+, Er3+ etc. Inset: 
a visual fluorescence change photograph for Hg2+ and other 
cations under illumination with a 365 nm UV lamp. From 
left to right, then from top to bottom: FH (30 μM), and FH 
wit Hg2+, Mg2+, Ca2+, Cu2+, Fe3+, Zn2+, Ni2+, Bi3+, Co2+, VO2+, 
Mn2+, Ba2+, Cd2+, Pb2+, Sn2+, Yb3+, Cr3+, La3+, Er3+ etc.; (c) 
Fluorescence spectral changes of FH (1 μM) in ethanol/ 
HEPES buffer solution (1:1, v/v, 10 mM, pH 8.0) (λex = 460 
nm, λem = 522 nm, slit: 10 nm/10 nm) upon addition of Hg2+; 
Hg2+ was added gradually with [Hg2+] = 0, 0.25, 0.5, 0.75, 
1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0 μM; Each spec-
trum is recorded 6 h after Hg2+ addition. Inset: visual fluo-
rescence changes of FH upon addition of Hg2+ in etha-
nol/HEPES buffer solution (1:1, v/v, 10 mM, pH 8.0) under 
illumination with a 365 nm UV lamp. 

observed, This provides direct evidence for the proposed 
response mechanism (Scheme 2). The hydrolysis com- 
plex with fluorescein anion is responsible for the above 
dual color and fluorescence changes. 

4. Conclusion 

In summary, we have demonstrated a simple Hg2+-selec- 
tive chromogenic and fluorogenic chemodo-simeter sys- 
tem using a fluorescein hydrazide (FH) molecule in 
semi-aqueous solution. The sensor mechanism was pro- 
posed to be mercury-promoted hydrolysis procedure of  
 

 

Figure 4. Plot of fluorescence intensity change of FH (1 μM) 
at 522 nm against Hg2+ concentration varied from 0.25 to 3 
μM at λex/em = 460 - 522 nm. 
 

 

Figure 5. pH ranges for the measurement. 
 

 

Scheme 2. Proposed detection mechanism of FH for Hg2+. 
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FH. This is another case of chemodosimeters as Rhoda- 
mine B hydrazide sensor for Cu (II) [44]. Visual color 
and fluorescence response suggests the probe’s practica- 
bility for further environmental and biological mecury 
ions detection. 
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(c) 

Figure S1. 1H NMR , 13C NMR, ESI-MS of fluorescein hydrazide (FH). (a) 1H NMR (300 MHz, 25˚C, DMSO-d6, TMS as an 
interior criterion): δ 9.83 (s, 2H), 7.78 (m, 1H), 7.49 (m, 2H), 6.98 (m, 1H), 6.59 (s, 2H), 6.38-6.47 (m, 4H), 4.41 (s, 2H); (b) 13C 
NMR (75 MHz, DMSO-d6): δ 78.15 (Cspiro), 101.58, 109.09, 111. 17, 121.55, 122.65, 127.16, 127.54, 128.59, 131.74, 150.73, 
151.64, 157.42, 164.70; The ESI-MS spectra of fluorescein hydrazide (FH). 
 

 

Figure S2. ESI-MS spectra analytic of fluorescein hydrazide (FH) sensing to Hg2+ ion (fluorescein-Hg complex). 
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