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ABSTRACT 

In this paper we develop equivalent problems for the Discrete Agglomeration Model in the continuous context. 
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1. Introduction 

Agglomeration of particles in a fluid environment (e.g., a 
chemical reactor or the atmosphere) is an integral part of 
many industrial processes (e.g., Goldberger [1]) and has 
been the subject of scientific investigation (e.g., Siegell 
[2]). A fundamental mathematical problem is the deter- 
mination of the number of particles of each particle-type 
as a function of time for a system of particles that may 
agglutinate during two particle collisions. Little analyti- 
cal work has been done for systems where particle-type 
requires several variables. Efforts have focused on parti- 
cle size (or mass). This allows use of what is often called 
the coagulation equation which has been well studied in 
aerosol research (Drake [3]). Original work on this equa- 
tion was done by Smoluchowski [4]) and it is also re- 
ferred to as Smoluchowski’s equation. The agglomera- 
tion equation is perhaps more descriptive since the term 
coagulation implies a process carried out until solidifica- 
tion whereas we focus on the agglomeration process; that 
is, on the determination of a time-varying particle-size 
distribution even if coagulation is never reached. 

In his original work Smoluchowski considered the ag- 
glomeration equation in a discrete form. Later it was 
considered in a continuous form by Muller [5]). In either 
case, an initial particle-size distribution to specify the 
initial number of particles for each particle size is needed 
to complete the initial value problem (IVP). We refer to 
these as the Discrete Agglomeration Model and the 
Continuum Agglomeration Model respectively. Solu- 
tion of either model yields an updated particle-size dis- 
tribution giving number densities as time progresses. 
For various conditions, studies of these and more general 
models include Morganstern [6], Melzak [7], Mcleod [8], 
Marcus [9], White [10], Spouge [11], Treat [12], Mc- 
Laughlin, Lamb, and McBride [13], Moseley [14], and 
Moseley [15]. 

Let R be the real numbers, oInt I :  R  I is a finite, 

infinite, or semi-infinite open interval}, and for oI Int ,  

   
   
   
   

1

I, f; I ; f is analytic on I

C I, f : I : f is continuously differential on I

C I,R f : I R : f  is continuous on I

I, f : I : f is a function on I
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If A is a subspace of a vector space B we write 

vsA B . These function spaces are vector spaces and 
       1

vs vs vsI, C I, C I, F I, .  R R R RA  

To develop the discrete model, assume that all parti- 
cles are a multiple of a particle of smallest size (volume), 
say v . Thus a particle made up of i smallest-sized par- 
ticles has size i v . In polymer chemistry, the particle is 
called an i-mer. The initial time is 0 0 ot I Int   where 
I0 is the largest time interval of interest. We indicate this 
by the extended interval notation  0 0 0 0+I t , t , t . 
We also let    o 0 o 0Int I I Int : I I    and 

   o 0 0 o 0 0Int t , I I Int : t I I    . Unless otherwise 

specified, we assume  o 0I Int I . Now for each 
 i 1,2,3, N   let  in t  be a real-valued function 

(either in    1C I,  or I,R RA ) that approximates the 
number of i-mers in the reactor at time t. Since there are 
an infinite number of sizes, initially, we take the state  

(or phase) space to be   i ii=1
a : a

  R R . Assume 

the initial number density  0
0 i i 1

n
 


 Rn  is known.  

As time passes, particles collide, agglutinations occur, 
and larger particles result. The net rate of increase in ni(t) 
with time, dni/dt, is the rate of formation minus the rate 
of depletion (conservation of mass). For  o 0 0I Int t , I  
we consider as a possible Σ space (i.e., the designated 
space where we look for solutions) either  cw I, RA  
for the analytic context or  1

cw I, RC  for the con-
tinuous context where 
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Functions in  C I, R  are continuous, but functions in 

 cw I, RC  are not as we have not established a topol- 
ogy on R∞. They are componentwise continuous. 

For     1
i cwi 1

n t I,
 


  Rn C  we may define  

 i 1
d dt dn dt

i




n . The derivatives dni/dt exist and are  

in C(I,R). However, we can not assert that  

    
h 0

d dt lim t + h t h

   n n n  as we have no topol-

ogy on R∞. 

Let   i,j i,ji,j 1
a : a




 R R  be the set of “infinite  

matrices”. The kernel (which measures adhesion or  

“stickiness”),     i,j i,j 1
K t




K t  = , is a doubly infinite  

array of real-valued functions of time either in  

      
   

cw 0 ij i, j 1

i, j 0

I , t K t : for all i, j ,

K t I ,




  



R K N
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A
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(analytic context) or in 

      
   

cw 0 ij i, j 1

i, j 0

C I , t K t : for all i, j ,

K t C I ,




  



R K N

R
 

(continuous context). As with R , we establish no 
topology on R . 

The resultant Discrete Agglomeration Model or Dis-
crete Agglomeration Problem (DAP) is an IVP con-
sisting of an infinite system of Ordinary Differential 
Equations (ODE’s) each with an Initial Condition (IC) 
that may be written in scalar (componentwise) form as: 

   

 

i 1
i

i j, j i j j i i, j j
j i j 1

0 0 0 0+

dn 1
ODE's K t  n n n K t  n ,

dt 2

t I t , t , t

 

 
 



 

 

 
  (1) 

IVP 

   0
,i 0 i 0 0 0 0 0+IC's :    n t n     t I t , t t        (2) 

where for i = 1 the empty sum on the right hand side of 
(1) is assumed to be zero. The first sum in the scalar 
(componentwise) discrete agglomeration Equation (1) 
is the (average) rate of formation of i-mers by agglutina- 
tions of  i j - mers  with j-mers. The 1/2 avoids dou- 
ble counting. The second sum is the (average) rate of  

depletion of i-mers by the agglutinations of i-mers with 
all particle sizes. We model a stochastic process as de- 
terministic. The physical system is often stationary so 
that each i, jK  is time independent and the model is said 
to be autonomous. In a physical context, we require 

  0 0
i, j 1 iK t 0, n 0, and n 0 for i 1    . However, we 

will address DAP as a mathematical problem where we 
allow the initial number of particles 0

in , the components 
of the kernel  i, jK t , and the components of the solu-
tion,  in t , to be negative. The physical context will be 
a special case. 

Smoluchowski found in the physical context that when 
 i, j 0K t A 0   is a constant, that 
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where 

 
1 2 n 1

1 2 n+1

0

n 1 0 0 0
i i i i

i i i i

0
i

i 1

k n n n

and M n





   
















n

     (4) 

uniquely satisfies DAP on its interval of validity 

   IV 0 0 0 0 o 0 0I I , t , ,A Int t , In . If we assume  

 0 0I t ,  , then    0 IV 0 0 0 0t , I I , t , , A  n . 
The requirement on 

0
Mn  in (4) and the infinite sum 

in (1.1) motivate consideration of the Banach spaces  

  pp
i i vsi 1

i 1

n : n


  




       
 

R R n  where 

p 1  (Martin [16, p. 3]) with norm 
1 p

p

ip
i 1

n




   
 
n  

(and hence a metric and a topology). Equality of two 
vectors in p  requires the metric (the norm of their dif- 
ference) to be zero. This is equivalent to both vectors 
being in p  and being componentwise equal. If  

  pt, n I  , then    1 p

p1,p
t, n t + n  defines a  

norm on pI   (Naylor and Sell [17, p. 58]). To insure 
that 

0
Mn  exists (even for negative initial conditions),  

we will require  0 1
0 i vsi 1

n
 


   Rn  so that 

0

0
i

i 1

M n




  n . 

We are particularly interested in the time-varying ker- 
nel    i, jK t A t  which depends on time, but not on 
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particle size. In the continuous context where  

        
       

CT 0 i,j i,j 1

×
cw 0 i, j 0

I , t K t

C I , R : K t A t C I ,





 

   

 

K t M R K

R
 

the problem parameters are 
    1

0 0 0 0 0 0I , t , n , A t Int I C I ,    R . In the analytic 
context where 

        
       

¥

AT 0 i, j i,j 1

×
cw 0 i, j 0

I , t  K t

I , : K t = A t I ,





 

  

 

K t M R K

R RA A
 

the problem parameters are 
    1

0 0 0 o 0 0I , t , n , A t Int I I ,    R A . For any ker-
nel, solution requires that both sides of (1) are continuous 
in the continuous context and analytic in the analytic 
context. 

The ith depletion coefficient associated with 0t I   

and the distribution  j j 1
n

 


 Rn  is defined for- 

mally by the infinite series 

     d
i i, j j

j 1

f t, ; K t n ,i 1,2,3,




  n K N   (5) 

The only direct dependence of  d
if t, ;Kn  on t is 

through  tK . If (5) converges for all   0t, I  Rn , 
then  d

if t, ;Kn  maps 0I R  to R . We may view 
 d

if t, ;Kn  as a function of an infinite number of real 
variables or as a function of time and a size distribution. 
Regardless, if    t I,  Rn F , and we have conver-  

gence, the composition   d
if t, t ;Kn  maps I to R.  

Implicit in (1) is that for solution in the continuous con-
text, we must have for all  o 0 0I Int t , I , that  

    d
if t, t ; C I,K Rn . That is, DAP requires us to 

first find    cwt I,  Rn C  such that for all iN  

and t I ,   d
if t, t ;Kn  exists (i.e., converges) and  

defines a function in  C I,R . If, in addition,  
   1

cwt I,  Rn C  (the Σ space) and satisfies (1) on I 
and (2), then it solves DAP on I. This formulation of 
DAP does not require mathematics beyond calculus and 
is often used by engineers and scientists. 

For DAP with a time varying kernel,    i, jK t A t , 
in the analytic context, Moseley [14] established that the 
more general formula 
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where    
0

t

t

t A d




 




 A , satisfies DAP uniquely on  

its interval of validity     IV 0 0 0 0 o 0I I , t , , A t Int In .  

or the physical context where  0
in 0, A t 0  , again  

we have     0 IV 0 0 0 0t , I I , t , ,A t I  n  and require  

0

0 0
i i

i 1 i 1

0 M n n
 

 

     n . The formula (6) satisfies  

(1) on I and (2) in the continuous context as well where 
we now allow    0A t C I , R  However, since (6) was 
not derived using equivalent equation operations, 
uniqueness has not been proved rigorously for  

 ×
CT 0M I ,  K R . Unless otherwise stated, for the rest 

of the paper, we focus on the continuous context. 
Moseley [14] divided DAP into several problems 

which could be considered separately. Under certain 
conditions, a reasonably complicated change of (both the 
independent and dependent) variables transforms DAP 
with a time varying kernel (Moseley, [14]) into another 
IVP which Moseley later referred to as the Fundamental 
Agglomeration Problem (FAP). The solution process for 
FAP is fully documented in Moseley [15]. For FAP, 
Moseley established existence and uniqueness for both 
the analytic and continuous contexts by using a sequen-
tial solution. To facilitate further progress, in this paper 
we develop equivalent problems for DAP in the con-
tinuous context. Analogs for the analytic context can be 
obtained. 

To rearrange terms in infinite series we will need  
i 1 i 1

i,j i j,j i j,j
i 1 j 1 i 1 j 1 i 2 j 1

a a a
     

 
     

         (7) 

If all sums exist, we add all of the elements in  

 ij i, j 1
A a

 


 R  in two different ways. Since we use  

them often, we will use   to mean “for all” and   to 
mean “there exists” (with apologies to the logicians). If y 
= n(t), we use any of n, n(t), y(t) and n(  ) to denote the 
function. Also, we denote the restriction of a function to 
a smaller domain by the same symbol. The context will 
make it clear. 

2. Mathematical Problem Solving 

Often, a mathematical problem is specified by giving a 
condition (or conditions) (e.g., an algebraic equation or 
an ODE with an initial condition) on elements in a Σ set 
(the designated set where we look for solutions, e.g., 

 1or C I,R R ). If the   set is a vector space, we say Σ 
space. A problem is (set-theoretically) well-posed if it 
has exactly one solution in its   set. (In this paper, we 
will not consider continuity with respect to problem pa- 
rameters.) A well-developed model of dynamics using an 
IVP is well-posed (exactly one event happens). As mod- 
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elers, we expect our models to be well-posed. As mathe- 
maticians, we require rigorous proof. Often, we solve 
equations by using equivalent equation operations to 
isolate the unknown(s). This yields uniqueness, and, as 
all steps are reversible, existence. (Squaring both sides of 
an equation is not an equivalent equation operation and 
may lead to extraneous roots.) For linear ODE’s, we may 
guess the form of a solution and prove existence and 
uniqueness by using the linear theory. For nonlinear 
problems, we may prove existence by substituting back 
into the equation. Uniqueness then becomes an issue. 

Let A B . If a solution is unique in B, and it is in A, 
then it is unique in A. If A is the Σ set for the problem 
and contains only one solution, then the solution is 
unique in B. Being in A is a requirement for existence. In 
the continuous context, for  o 0 0I Int t , I , we look for 
solutions to 

 
 0 0 0

IVP  ODE  dy dt f t, y

IC y t y , t I



 
            (8) 

in the   space  1C I,R . Thus, as is usually done, we 
require solutions to (8) to not only exist, but to also have 
continuous derivatives. We also require  f C I U,  R  
where U  R  and the range of y(t) is in U for y(t) in 
the   space. Placing these additional constraints avoids 
dealing with pathology, but narrows the space where a 
known solution is to be shown to be unique. There may 
be (pathological) solutions to (8) where the derivative 
exists, but is not continuous. 

Also, as is usually done, we allow I to vary. If we 
show that there exists a solution for some I, then we say 
that we have local existence on I. The largest  

 o 0 0I Int t , I  where a solution exists is the interval of 
validity for the solution (i.e., the domain). We say that 
we have shown global existence on I if, given  

 o 0 0I Int t , I , we prove that there exists a solution on I 
(i.e., a solution in  1C I, R ). Suppose a solution on 

 o 0 0I Int t , I  goes through the point where 1t t . It is 
said to be locally unique at 1t  if there exists  

 1 o 1 0I Int t , I  such that it is the only solution on I1. It 
is locally unique on I if it is locally unique at every 
point in I. Obviously, if a solution exists globally on  

 o 0 0I Int t , I , and is locally unique on I, then it is 
globally unique on I. That is, it is the only solution in the 
  space  1C I,R ). 

For DAP in the continuous context we start with the 
large   space  1

cw I, C R  and say that  

    i i 1
t n t




n  satisfies (1) on I if i N , the com- 

position   d
if t, t ;Kn  exists (converges) and is in 

 C I,R  and ni(t) satisfies (1) on I. Since composition of 
continuous functions is continuous, we expect  

    d
if t, t ; C I,K Rn  if in some sense  d

if t, ;Kn  
from I toR R  given by (5) is continuous. But we do 

not have a topology on R  and hence not one on 

0I I   R R . Instead of requiring i N ,  

    d
if t, t ; C I, K Rn  as a separate condition for so- 

lution, we may incorporate it into the Σ space. We refer 
to DAP with the Σ space 

     
      

1 1
cw,d cw

d
i

I, t I, :

i , f t, t ; t C I,

  

  

R R

N K R

C n C

n
 

as the Scalar Discrete Agglomeration Problem (SDAP). 
Obviously, this may be formulated in an analytic context 
as well. 

Recalling the constraint 

 0 0

0 1
i

i 1

M n M




    n n , instead of R , we may  

choose the state space as 1
vs

 R  which has a norm 
(and hence a metric and a topology). A solution on I is 
then a time-varying infinite-dimensional “state vector” 
    i i 1
t n t




n . Later we will choose an appropriate 

  space and write DAP in vector form. We refer to this 
formulation of DAP as the Vector Discrete Agglomera-
tion Problem (VDAP). As with SDAP, VDAP may be in 
the continuous or analytic context. If SDAP is well-posed, 
and its solution is in the (smaller)   space for VDAP, 
then SDAP and VDAP are equivalent except for the 
space where local uniqueness is proved. That is, by 
choosing a smaller   space, VDAP requires proving 
local uniqueness in a smaller space than does SDAP. If 
we do not worry about pathology, and redefine the   
space for SDAP to be the same as for VDAP, the two 
problems are equivalent. The question is: How do we 
choose an appropriate (smaller)   space? But first we 
consider an equivalent scalar problem and p  spaces. 

2.1. Equivalent Scalar Problems 

Again assume for iN  that  d
if t, ;Kn  converges  

  0t, I   Rn  where  i 1
n

i




n . Now define the  

functions 

   
i 1

1
i i j, j j i j

j i

1
f t, ; K t  n n

2



 


 Kn     (9) 

   

 

2
i i i, j j

j 1

d
i i

f t, ; n K t  n

n f t, ;









K

K

n

n

       (10) 

     1 2
i i if t, ; f t, ; f t, ; K K Kn n n  (11) 

which also map 0I toR R . For these functions, as 
with  d

if t, ; ,Kn  the only explicit dependence on t is 
through  tK . For   0t, I  Rn  we may now write 
(1) as the system of ODE’s 
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i
i 0 0 0 0+

dn
f t, ;  , t I t , t , t , 

dt
i 1,2,3,

  

 

K

N 

n
  (12) 

If the restriction of  d
if t, ;Kn  to 1I   (which we 

denote by the same symbol) converges   1t, I   n  
and is continuous on 1I   with respect to the norm 
topology, we write    d 1

if t, ; C I , K Rn . That is,  

    1 1
0 0C I , f : I f t, is continuous   R R  n .  

Initially, we assume    d 1
if t, ; C I , K Rn  and in- 

vestigate  1
if t, ;Kn   2

if t, ;Kn , and  if t, ;Kn . Note  

 1
if t, ;Kn  is just a finite sum involving Ki,j(t) and 

components of n ,  2
if t, ;Kn  is just the product of 

 d
if t, ;Kn  with a component of n , and  if t, ;Kn  is 

just the difference of  1
if t, ;Kn  and  2

if t, ;Kn . 

Theorem 2.1. Let    ×
cw 0t C I ,  K R  and  

   d 1
i 0f t, ; C I , ,K Rn . Then  1

if t, ;Kn , 

 2
if t, ;Kn , and  if t, ;Kn  are all in  1

0C I , R . 

Proof. Sums, products, and compositions of continu- 
ous functions involving ℓ1 are continuous. ■ 

Detailed ε-δ proofs follow proofs in an elementary real 
analysis course. All functions map to R. We must choose 

   1 1 1 1 11,1
t, t , t t + n   n n n  sufficiently small  

so that    1 1f t, f t ,  n n . For example, if  

 i i 1
n




n , then the projection function   if nn  is 

continuous since if  1
1 i i 1

n



n , then 

    1
1 i i 1f f n n    n n n n  satisfies a Lipschitz  

condition (Bartle [18, p. 161]) and hence is continuous  

on ℓ1 i.e., is in  1C , R . Since it is a constant function  

of t, it is in  1
0C I , R . We investigate continuity and 

differentiability in ℓp in more detail in the next section. 

Let    cwt I,  Rn C . If the composition 

 d
if t, ;Kn  converges t I   and is continuous on I, 

we write     d
if t, t ; C I,K Rn . Previewing the next 

section, we define the function spaces 

      1 1I, : I  is continuous    C n n  and  

 1
cw I,C  as the componentwise continuous functions 

that have codomain ℓ1, and claim that  

     1 1
vs cw vs cwI, I, I,   R C C C . 

Corollary 2.2. Let    ×
cw 0t C I ,  K R  and  

   d 1
if t, ; C I , K Rn . If    1t I,C n , then the  

compositions 

        d 1 2
i i if t, t ; , f t, t ; , f t, t ; ,K K Kn n n  and 

  if t, t ;Kn  are all in  C I,R . 

Proof. Sums, products, and compositions of continu- 
ous functions involving 1  are continuous. ■ 

We now show that in the continuous context if  

   1
i 0f t, ; C I , K Rn , then SDAP given by (12) and  

(2) with the Σ space  1
cw I, RC  is equivalent to the 

infinite system of scalar (componentwise) Voltera inte-
gral equations 

    
0

t
0

i i i
t

n t n f s, s ; ds   Kn     (13) 

where     i i=1
t n t


n  is a solution to (13) if it is in  

the   space 

 
         

cw,d

d
cw i

C I,

t I, : i , f t, t ; C I,



    

R

R N K Rn C n
 

and i N ,  in t  satisfies (6). (We require 

   cwt I,  Rn C  and not just that the integral in (6)  

exists.) We refer to this problem as the Integral Scalar 
Discrete Agglomeration Problem (ISDAP) in the con-
tinuous context. A formulation in the analytic context can 
also be established. 

Theorem 2.3. In the continuous context, a distribution  

 tn  is a solution of SDAP in  1
cw,d I, RC  if and only  

if it is a solution of ISDAP in  1
cw,d I, RC . 

Proof. First assume that     i i 1
t n t




n  is a solution  

of SDAP in  1
cw,d I, RC . We have by the definition of 

a solution of SDAP, that  

      1
i cw,di 1

t n t I,
 


  Rn C , that  

    d
ii , f t, t ; C I,  N K Rn , that (13) is satisfied on 

I, and that (2) is satisfied. Since both sides of (13) are 
continuous, we may integrate from t0 to t I  to obtain 

      
0

t

i i i
t

n t c f s, s ; s ds   Kn      (14) 

Applying the initial condition we obtain (13). Simi- 

larly, let us assume that     i i 1
t n t




n  is a solution 

of (13) in  cw,d I, RC . Substituting in t0 we obtain (2).  

Since    cw,dt I,  Rn C , we have i N  that  

    d
if t, t ; C I,K Rn  so that the integrand,  

  if s, s ;Kn , is continuous. Since ni(t) is written as an 
integral, it is differentiable so that    1

cw,dt I,  Rn C . 
Differentiating we see that (11) is satisfied. ■ 

For the scalar Equation (2.1), it is the integral formula- 
tion that is used to obtain existence (Picard iterations) 
and uniqueness using a Lipschitz condition. If we choose 
to specify  1

cw,d I, RC  as the   space for both prob- 
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lems, the problems remain equivalent as any solution to 
(13) in  cw I, RC  is in fact in  1

cw,d I, RC . That is, 
there are no solutions to (13) in  

   1
cw cw,dI, I, R RC C . These results can also be  

established in the analytic context. 

2.2. Continuity and Differentiability for ℓp 
Spaces 

Since p  has a norm (and hence a metric) we have a 
topology on the subspace p  of R . Many of the limit 
laws can be extended to p . For example, if  

 
0

1 1
t t
lim t L


n  and  
0

2 2
t t
lim t L


n , then  

   
0

1 2 1 2
t t
lim t t L L


    n n . We also have if  

 
0

1
t t
lim f t L


  and  
0

2
t t
lim t L


n , then 

   
0

1 2
t t
lim f t t L L


n  

Definition 2.1. A function   p: I  n  is continu- 
ous at 1t I  with respect to the norm topology if  

   
1

1
t t
lim t t


n n  in p ; that is, given ε > 0, 0    

such that 10 t t     implies 

       
1 p

p

1 i i 1p
i 1

t t n t n t 




     
 
n n . If it is con- 

tinuous t I  , it is continuous on I. Similarly, a func-
tion   pM :  R  is continuous at p

1  n  with  
respect to the norm topology if    

1
1lim M M




n n
n n  in I;  

that is, given 0, 0     such that 

   
1 p

p

1 i i 1p
i 1

0 n t n t 




      
 
n n  implies  

   1M M  n n . If it is continuous p  n , it is 
continuous on p . Similarly for the functions 
  p p:  f ,   pf , : I    R , and 

  p p, : I    f .  

Hence we can define the function spaces  

      p pI, : I  is continuous    C n n  and 

      p p, M : M  is continuous   R R C  as well 

as  p p, C ,  pI , RC  and  p pI , C . If  

B C , then we may assume    A,B A,CF F . For 
 A,BF , the range is restricted to the set B whereas, for 
 A,CF , it is allowed to be in the larger set C. Since 

   p p
vs, I, I,  R R C C . However, p  has a 

norm (and hence a metric and a topology), but R  does 
not. (We could establish a topology for R , but this is 
not necessary if the system states are all in p .) We will 
use  p

cw I,C  for functions that are componentwise 
continuous with codomain p  and write  

     p
cw cwI, I,    Rn C C , 

     p p p
cw cw, ,    R  f C C , and 

     p p p
cw cw, I , I ,       R  f C C . Also, if  

A B , we write    f A,C F  if    f B,C F ; 
that is, we use the same symbol for the restriction of a 
function to a smaller domain. 

We give necessary and sufficient conditions for  n  
to be in  pI,C . 

Theorem 2.4.      p p
vs cw vs cwI, I, I, .  R C C C  

Proof. We show that    p p
cwI, I, C C . That is, if 

   pI, n C , then  tn  is componentwise continu-  

ous. As  pI,C  is a vector space, by our previous 

comments      p p
vs cw vs cwI, I, I,   R C C C  fol-

lows. Let       p
i 1

n I,
i




    n C  and 1t I . Then  

   
1

1
t t
lim t t


n n  in p . That is, given 0, 0      

such that 10 t t     implies 

       
1 p

p

1 i i 1p
i 1

t t n t n t 




     
 
n n . Since 

       
1 p

p

i i 1 i i 1
i 1

n t n t n t n t




    
 
 , given  

0, 0     such that 10 t t     implies  

   i i 1n t n t   . Hence i N ,    
1

i i 1
t t
lim n t n t


  

in R so that    pI,  n C . Hence  

     p p
cw cwI, I, I,   R C C C . ■ 

Theorem 2.5. If    pI,  n C , then    
p

C I,  Rn .  

If   1
i i 1

n



  n , then    1

0 j
j 1

M n ,




  Rn C . If 

      1
i 1

n I,
i




    n C , then 

      0 j
j 1

M n C I,




    Rn . 

Proof. If p
1 2,  n n  (or any normed linear space),  

then the triangle inequality 1 2 1 2p p p
n n n n    

implies 2 1 2 1p p p
  n n n n  so the norm function  

p

p
:  R  satisfies a Lipschitz condition on p  and 

hence is continuous on p  i.e., is in  pC , R . We say 
it is Lipschitz continuous on p . Now let 

   pI,  n C . Since  
p

n  is the composition of the  

norm function with  n ,    pI,  n C  implies  

   
p

C I,  Rn . For   1
i 1

n
i

 


   Rn , let  



J. L. MOSELEY 

Copyright © 2012 SciRes.                                                                                  AM 

1708 

 0 j
j 1

M n




 n . Since  

 0 j j 1
j 1 j 1

M n n
 

 

     n n ,  0 j
j 1

M n




 n   

exists (converges absolutely). If 

   1 1
i 1 i1 1

n , n
i i



 
   n n , then so that M0(A) is 

Lipschitz continuous on 1  so that    1
0M C ,  R .  

Since the composition of continuous functions (to and  

from 1 ) is continuous,       0 j
j 1

M n I,




    Rn C  

Example 2.1. Let  I 1,2   and for t I  let 
 

 
        

   
     

in t

0 if t 1 i + 3

i + 2 i + 3 t i + 2 if 1 i + 3 t 1 i + 2

1 if 1 i + 2   t 1 i +1

i i +1 t + i +1 if 1 i +1   t 1 i 

0 if 1 i t




  
  
   
 

 

(15) 

Then       p
i cw1

t n t I,
i




  n C  as each ni(t) is 

continuous and t I  ,    
1 p

p

ip
i 1

t n t 3




   
 
n . 

However,    i 1
0 0




 n 0 ,  

p
t 0
lim t 0


 n 0  but 

for 0 t 1 2  ,  
p

t 1n . Hence  
p

t 0
lim t


n 0  

either does not exist or is greater then or equal to 1. 

Hence  
p

tn  in not contiuous at t 0  as 

 
pt 0

lim t


n  does not exist. Hence  
t 0
lim t


n  does not 

exist in p . Hence    pt I, n C . Hence the relations 

     p p
vs cw vs cwI, I, I,   R C C C  are proper. 

Example 2.2. Let  I 1,1   and for any t let 

 1

1 for t 0
n t

1 for t 0

 
  

 and  in t 0  otherwise.  

Then t, p , we have   pt   n  and  
p

t 1n . Ob-  

viously    p
cwC I,  n  so    pC I,  n  even 

though    
p

C I,  Rn  as t ,  
p

t 1n . 

Although not sufficient individually for   : I   Rn   

to be in  pC I, , we need its range to be in p ,  

   p
cw I,  n C , and    

p
C I,  Rn . However, all  

of these do force  n  to be in  pI,C . 

Theorem 2.6. 

          p p
cw p

I, I, : C I,     R C n C n  

Proof. Let  

      p
i cwi=1

n I,


    n C ,    
p

C I,  Rn , , 

and 

   
N

i

0          for  i N
t

n t       for  i N
 

  
n . 

Since    p
cw I,  n C ,    ii ,  n C I,   N R  and 

  pt I, t   n . Also,    
1 pN pN

ip
i 1

n


    
 
n , 

  p

p
n , 

        

     

p Np p pN+

p
i N 1 i 1 i 1

pp
N

p p

n n n
 

   

      

   

  n

n n

 

and  N+

p
 n  are all in  C I,R . Let 1t, t I . Then 

   

       

       

1 p

N N+ N N+
1 1 p

N N N+ N+
1 1p p p

t t

t + t t t

t t t t



  

   

n n

n n n n

n n n n

. 

Now let  0  . Since     
p p

i 1p
i 1

n t




   n , 

we can choose N sufficiently large so that  

      
p p pN+

1 i 1p
i N 1

t n t 6


 

 n . Since  

   N+

p
C I,  Rn , N   such that 1 N0 t t      

implies    N+ N+
1 p p

t t 6 n n  so that  

   N+ N+
1p p

t t 6 3   n n . Since 

   p
cw I,  n C , i  choose δi so that 1 i0 t t     

implies      p p

i i 1n t n t 2 N  . Hence 

        

 

p N pN N
1 i i 1p

i 1

p
p

t t n t n t

1
N = 2

2 N

 



  

   
 

n n

. 

Now choose  1 N Nmin , , ,      . Hence 

10 t t     implies 
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1 p

N N N+ N+
1 1p p p

t t

t t t t

2 3 6   



   

   

n n

n n n n . 

Hence    pI, C n . ■ 

Rather than check directly that    pI,  n C , it may  

be easier to check that for each t I ,   pt  n ,  

       cw p
I, and C I,   R Rn C n  since  in   

and  
p

n  map from I to R. Similarly, 

Corollary 2.7. 

          p p p p p
cw p

, , : C ,     R    C f C f , 

and 

 
        

p p

p p p
cw p

I ,

, I , : , C I ,



         R

 

  

C

f C f
. 

Following the standard proof for products, we also 
have 

Theorem 2.8. If    A C I,  R  and    pI,  n C , 

then      pA I,   n C . 

Proof. Let 0 1   and 1t I . Choose δ1 such that  

1 10 t t     implies    
  1

1

A t A t
2 t 1


 

n
  

and δ2 such that 1 20 t t     implies 

   
  1 p

1

t t
2 A t 1


 


n n . Let  1 2min ,   .  

Then 10 t t     implies 

       

             
             
           

      
  

1 1 p

1 1 1 p

1 1 1p p

1 1 1p p

1p
1 1

A t t A t t

A t A t t A t t t

A t A t t A t t t

A t A t t A t t t

t A t
2 t 1 2 A t 1

  



   

   

   

  
 

n n

n n n

n n n

n n n

n
n

 

■ 
Similarly, 

Corollary 2.9. If    A C I,  R  and    pM C ,  R , 

then      pA M C I ,    R . If    A C I,  R  and 

   p p,   f C , then      p pA I ,    f C . If  

   A C I,  R  and    p pf , I ,     C , then 

     p pA f , I ,      C . 

We say       p
i i 1

n I,



    n C  is differentiable  

(with respect to the norm topology) at 1t I , if  
   

1

1

t t
1

t td
lim

dt t t





n nn

 exists in p . If 
 d t

dt

n
 exists 

t I   and is in  pI,C , then    1 pI,  n C . We  

define integration componentwise. Following Theorem 
2.6, we have 

Theorem 2.10. If       p
i i 1

n I,



    n C , then 

    p
i i 1

d dt dn t dt I,



  n C . Also, 

         1 p 1 p
cw

1

d
I, = I, : C I,

dt

     
  

R 
n

C n C . 

Proof. That   i i 1
d dt d t dt




n n  follows from con- 

sidering the limit for components. A proof of 

 pd dt I, n C  can be obtained following the proof for  

scalar valued functions in calculus books (e.g., Stewart 
[19, p. 88]). The description of  1 pI,C  follows from 
Theorem 2.6. ■ 

If at 1t I , n(t) has an infinite number of derivatives  

and equals it’s Taylor series,  
     
k

1
1

k 0

t
t t t

k!





 
n

n   

in a neighborhood of t1, it is analytic at t1. If it is analytic  

t I  , then    pI,  n A . 

Theorem 2.11.  

   1 p p
vsI, I, C C , 

     1 p 1 p 1
vs cw vs cwI, I, I,   R C C C , 

     1 p p 1 p p 1 p
vs cw vs cw, , ,   R    C C C , 

     1 p p 1 p p 1 p
vs cw vs cwI , I , I ,      R    C C C , 

     p p
vs cw vs cwI, I, I,   R A A A  

and 

     p 1 p p
vs vsI, I, I,   C CA . 

Proof. The first containment follows from Theorem 
2.10. The remaining proofs are straight forward and often 
similar to the proof of Theorem 2.4. ■ 

Theorem 2.12 (Fundamental Theorem of Calculus)  
If    pI,  n C , then 

   
0

s t

s t

d
t s ds

dt




 n n ,         Part 1. (16) 

If    pI,  n C , then 

     
0

s t

0 s t

d s
t t ds

ds




  

n
n n .     Part 2. (17) 
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Note that the indefinite integral requires an arbitrary con-
stant vector. 

2.3. Kernels, State Spaces and Σ Spaces 

In the analytic context with an analytic kernel,  

   AT 0I ,  K M R , Moseley [14] used the following  

procedure to solve DAP. He first established local uni-  

queness in  cw 0I , RA  by considering the Taylor se- 

ries coefficients obtained from the initial conditions and 
the differential equation. However, he chose a smaller Σ 
space containing only distributions where if  tn  is in 
the Σ space, then 

    d
i i ,  f , : I,    N K Rn A . He then obtained the  

explicit formula (6) for the (analytic) solution when A(t) 
is analytic. He did not rigorously isolate the unknown so 
he established global existence by showing that the solu-
tion given by the formula (6) was in the Σ space, check-
ing the initial conditions (2), and then substituting the 
formula into (1). Since global existence holds, local 
uniqueness implies global uniqueness. 

The problem of interest is to extend Moseley’s results 
for the analytic context to the continuous context. The 
solution given by (6) remains the same except that we 
now only require    0A t C I , R . Global existence 
may be obtained as before. However, local uniqueness is 
not as easy as it was in the analytic context. McLaughlin, 
Lamb, and McBride [13] provided local existence and 
uniqueness for a Continuum Agglomeration Model of 
linear fragmentation with coagulation as a perturbation 
using semigroup theory. Spouge [11] provided a local 
existence theorem in the physical case, but not unique-
ness. The standard procedure in Brauer and Noel [20] for 
a finite dimensional system requires a Lipschitz condi-
tion on the right hand side to obtain local existence and 
local uniqueness. In this paper, we provide preliminaries 
for using a Lipschitz condition to prove uniqueness in the 
continuous context by giving equivalent problems in 
scalar and vector form for DAP with K(t) in a larger col-
lection than  CT 0I , M R . 

Let     d d
i i 1

t, ; f t, ;



K Kf n n . If i N ,  

 d
if t, ;Kn  converges   0t, I   Rn , then 

 d t, ;Kf n  maps 0I R  to R . We say that (the 

restriction of)  d t, ;Kf n  (to 1I  ) is in  

 1
cw I ,  RC  if i N , (the restriction of)  

 d
if t, ;Kn  (to 1I  ) is in  1I , RC  and write 

   d 1
cw, ; C I ,    K Rf . Furthermore, when  

   I,   Rn C , we write  

        d d
i cwi 1

, ; f , ;  I,
 


     K K Rf n n C  if  

    d
ii , f , n ; C I,    N K R . 

Theorem 2.13. If    d 1
cw, ; I ,    K Rf C , and 

   1I,  Cn , then     d
cw, ;  I,   K Rf n C . 

Proof. Compositions of continuous functions (in 1 )  

are continuous so that if    d 1, ; C I ,   K Rf  and  

   1I,  Cn , then     d
if , ; C I,  K Rn . (See Cor-

ollary 2.2.) ■ 
In the continuous context we wish conditions on 

 K  so that    d 1
cw, ; I ,    K Rf C . Then for  

 n  in (any subspace of)  1I,C  we have  

    d
cw, ;  I,   K Rf n C . Then the convergence and  

continuity condition on   d , ;  Kf n  need not be ex-
plicitly stated for the Σ space or as a condition for solu-
tion (except as required for interpreting (1)). We begin 
with three classes of kernels:  CT 0I , M R , 

        
 



×
B i, j CW 0i, j 1

i, j i, j Bmax

i, j Bmax

I, t K t I ,R :

K t B constant,so that M such that for all

i, j N, B M

  


  

  

 

M R K C

, 

and  

        
         

× ×
CTB i, j CW 0i, j 1

0 1 i, j B 0i, j 1

I, B A I ,R :

A C I , and  B I ,

   



 



    

   

M R K

R K = M R

C
. 

Since    ×
CT CTBI, I,  M R M R  and  

   ×
B CTBI, I,  M R M R , if we can prove that for 

   ×
CTB I,   K M R , we have 

   d 1
cw, ; I ,    K Rf C , then for all kernels in these 

three classes, if    1I,  Cn , we have  

    d
cw, : I,   K Rf n C . However, for clarity, we  

proceed class by class. 

If       ×
i, j CTi, j 1

K t I,
  


  K M R  and  

  1
i i 1

n



  n , then for all i, jN  we have  

   i, jK t A t  so that 

       d
i i, j j 0

j 1

f t, ; K t n A t M




 Kn n  

where  0 j
j 1

M n




 n  is the zeroth moment of the  

sequence. In the physical context, in 0  so that,  
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 0M n  is the total number of particles and  1M vn  
is the total mass of the particles (which should not  

change) where    1 j
j 1

M t jn t




   is the first moment  

of the solution and ρ is the mass density. Treat [12] sug-
gested (as have others) on a physical basis, that these and 
other moments, possibly all moments, should exist (con-
verge and be continuous). We will take our Σ space as a  

subspace of      1 1
cw cwI, I, I,   R C C C . Again,  

we view a solution as a time-varying infinite-dimensional 
“state vector”  tn . 

Theorem 2.14. Let    ×
CT 0I ,   K M R  so that 

i N ,      d
i 0f t, ; A t MKn n . If   1

i i 1
n




 n , 

then  0 j
j 1

M n




 n  exists (converges absolutely) and 

   1
0M C , Rn . If   1t, I n , then  d

if t, ;Kn   

exists (converges absolutely) and 

   d 1
cw, ; I ,    K Rf C . If    1I, C n , then 

    0M C I,  Rn  and     d
cw, : I,   K Rf n C . 

Proof. Let    ×
CT 0I ,   K M R  so that i N , 

     d
i 0f t, ; A t MKn n . By Theorem 2.5, if 

1   Rn , then  0 j
j 1

M n




 n  exists (converges 

absolutely) and    1
0 j

j 1

M n C ,




  Rn . If 

  1t, I n , then  0 1
M   n n  and 

       d
i 0 1

f t, ; A t M A t   Kn n n  so that 

 d
if t, ;Kn  exists (converges absolutely). By Corollary  

2.9,        d 1
i 0f t, ; A t M C I ,  K Rn n . Now let 

   1I,  n C . By Theorem 2.6    
1

C I,  Rn  so 

that  
1

tn  exists (converges absolutely) t I  . Since 

    0 1
M t t  n n  and 

         
   

d
i 0

1

f t, t ; t A t M t

A t t



  

Kn n

n
,   0M tn  and  

    d
if t, t ; tKn  exist (converge absolutely) t I  . 

As compositions and products of continuous functions  

(in 1 ) are continuous,   0M tn , and 

       d
i 0f t, t ; A t M tKn n  are in  C I,R . ■ 

Theorem 2.15. Let    ×
B 0I ,   K M R . Then  

   1 d
it, I , f t, ;   Kn n  exists (converges absolutely)  

and is in  1I , RC . If    1I,  n C , then  

    d
cw, : I,   K Rf n C . 

Proof. Let      ×
B 0i,j i,j 1

I ,B
  


  K M R . (Note  

that  tK  is a constant function of t for this kernel.) 
Then BmaxM  such that i, j Bmaxi, j , B M  N . Let  

  1t, I n  and  i i=1
n

n . Then 

 d
i i, j j

j 1

i, j j Bmax j
j 1 j 1

Bmax j Bmax 1
j 1

f t, ; B  n

B  n M  n

M  n M





 

 







 

   



 



Kn

n

 

so that  d t, ;Kf n  exists (converges absolutely). Now  

let  d
i i, j j

j 1

f B  n




 n  and  1 1
1 i i 1

n



  n . Then 

   

 

 

d d 1
i i 1 i, j j i, j j

j 1 j 1

1 1
i, j j j i, j j j

j 1 j 1

1
Bmax j j Bmax 1 1

j 1

f f B  n B  n

B  n n B  n n

M  n n M

 

 

 

 





  

   

   

 

 



n n

n n

 

Hence  d
if n  is Lipschitz continuous and hence in  

 1C ,R . Since    d d
i i i, j j

j 1

f t, ; f B  n




  Kn n  is a  

constant function of time,    d 1
if , ; C I ,   K R . 

Hence    d 1
cw, ; C I ,    K Rf . If    1I,  n C  

then     d
if , : C I,  K Rn  and  

    d
cw, : C I,   K Rf n . ■ 

Theorem 2.16. Let    ×
CTB 0I ,   K M R . Then 

   1 d
0 it, I , f t, ;   Kn n  exists (converges absolutely) 

and    1
cw 0, ; I ,    K Rf C . If    1I,  n C , 

then     d
cw, : I,   K Rf n C . 

Proof. Let         ×
CTB 0i,j i,j 1

t I ,A t B t
  


 K M R  

and       ×
1 B 0i,j i,j 1

I ,B t
  


  K M R . Then 

   

     

d
i i, j j

j 1

d
i, j j i 1

j 1

f t, ; A t B  n

A t  B  n A t  f t, ;











 





K

K

n

n

 

where    A t C I, R  and 
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   d 1
i 1 i, j j

j 1

f t, ;  B  n C I ,




  K Rn  (by Theorem 

2.15). By Corollary 2.9 

       d d 1
i i 1f t, ; A t  f t, ; C I ,  K K Rn n . If 

   1I,  n C , then     d
if , : I,  K Rn C . ■ 

2.4. Weierstrass M-Test and Local Uniform 
Boundedness 

Let    cInt I J I :  J is a closed finite interval   and 

    c 1 c 1Int t , I J Int I : t J   . For  cJ Int I , let  

   C J, f : J :  f is continuous R R . We briefly re-
view the Weierstrass M-test and succeeding theorems on 
absolute and uniform convergence (Kaplan [21, pp. 
436-444]). This should be familiar to engineers and sci-
entists. We then consider a fourth class of kernels. Let 

 
      

   

    

×
CTB 0

×
CW 0i,j i,j 1

1 0 c 1 0 Kmax

i, j Kmax
t J

I ,

t I , :K t

t I and J Int t , I , M J such that

i, j , max K t M J

 

  





  

   

    

M R

K C R

N

 

Note    × ×
CTB CTBSI, I,   M R M R  (let  

   i, j i, jK t A t B  and    Kmax Bmax
t J

M J max A t M


 ). 

We say that K(t) is locally uniformly bounded in 
time and size. 
Theorem 2.17 (Weierstrass M-Test Extended). Let  

1t I ,       i cwi 1
C I,

 


    Rn n  and 

    0 i
i 1

M t n t




 n . Suppose 

    c 1 nmax i 1
J Int t , I , M i, J




    such that t J  , 

   i nmaxn t M i, J  and  

   nmax nmax
i 1

M i, J M J




   , then 

    0 i
i 1

M t n t




 n  and    i1
i 1

t n t




 n  exist  

(converge absolutely t J   and are uniformly conver-
gent on J so that theyare in  C J, R . Since t1 was arbi- 

trary,   1t I, t   n  so    1
cwt C I, n  and 

  M tn  and  
1

tn  are in  I, RC  so that 

   1C I,  n . If    1
cwC I,   Rn  and 

    1
c 1 nmax i 1

J Int t , I  , M i, J



    such that t J  , 

   i 1
nmax

dn t
M i, J

dt
  and  

   nmax nmax
i 1

M i, J M J




   , then 
 i

i 1

dn t

dt




  and 

   i

i 11

d t dn t

dt dt





 
n

 exist (converge absolutely) 

t J   and are uniformly convergent on J so that they 

are in C(J,R). Since t1 was arbitrary, 
  1d t

t I, 
dt

   
n

 

so 
   1

cw

d t
C I,

dt
 

n
 and 

 i

i 1

dn t

dt




  and 

 
1

d t

dt

n
 

are in  C I, R  so that    1 1C I,  n . Also, 

      i

i 1

dM t dn t
C J,

dt dt





  R
n

. 

For    ×
CTBS 0I ,   K M R , to insure  

    d
cwt, t ; I, K Rf n C , we will require  

    i i 1
t n t




n  to satisfy a stronger local uniform  

boundedness condition in time. 
Definition 2.2. Let       i cwi 1

t n t I,
 


  Rn C .  
Then  tn  is locally uniformly bounded at t1 if  

    1
c 1 nmax i 1

J Int t , I  , M i, J



   , such that t J  , 

   i nmaxn t M i, J  and    nmax nmax
i 1

M i, J M J




   .  

We say  tn  is locally uniformly bounded on I if it is 
locally uniformly bounded t I  . 

Now let 

   


LUB cwI, I, : is locally uniformly 

                    bounded on I

  R C RC n n
, 

   


1 1
LUB CWI, I, : d dt is locally 

uniformly bounded on I

  R RC n C n
, 

and 

   


LUB CWI, I, : is locally uniformly

 bounded on I

  R Rn nA A
. 

Moseley (2007) used  LUB I, RA  (which he denoted 

by  AUBS I, D R ) as the Σ space in the analytic context. 

We have 

     1
LUB vs LUB vs cwI, I, I,   R R RC C C . 
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Example 2.3. Let       1
i i 1

n I,



    n C  with  

 in t 0  and ni(t) increasing. Now for 1t I , let 
   c 1J a, b Int t , I   and 

     nmax i i
t J

M i, J max n t n b


  . Then 

     nmax i
i 1 i 1

M i, J n b t
 

 

     n . Hence 

   LUBt I,  Rn C . 

It can be shown (similar to Moseley [14] in the ana-
lytic context) that in the continuous (physical) context, 

    A
i i 1

t n t



n  where  A

in t  is given by (1.6) is in 

   1
LUB IV 0 0 0I I , t , , A t , RC n  where  

    0 IV 0 0 0 0t , I I , t , ,A t I  n . 

Theorem 2.18. Let 

        i LUB cwi 1
n I, I,

  


    R Rn C C . Then 

   i1
i 1

n




  n  and     0 i
i 1

M n




  n  are in 

C(I,R) and    1I,  n C . If    1
LUB I,   Rn C  then 

   1 1I,  n C ,     1
0M C I,  Rn  and 

    0 j

j 1

dM t dn t

dt dt





 
n

. 

Proof. Let 1t I  and       i LUBi 1
n I,

 


    Rn C . 

Then     c 1 nmax i 1
J Int t , I  , M i, J




    such that 

t J  ,    i nmaxn t M i, J  and 

   nmax nmax
i 1

M i, J M J




   . Hence t J  , 

  1t  n  so that    1
cw J,  n C . By Theorem 2.17, 

   i1
i 1

t n t




 n  and     0 i
i 1

M t n t




 n  are in 

C(J,R). Since t1 was arbitrary,  
1

tn  and   0M tn   

are in C(I,R). Hence by Theorem 2.6,    1t I, n C . If 

   1
LUBt I,  Rn C , then, again by Theorem 2.17, 

     i

i 11

d t dn t
C I,

dt dt





  R
n

 and 

      0 i

i 1

dM t dn t
= C I,

dt dt





 R
n

. Hence by Theorem 

2.6,    1 1t C I, n  and so 

      j j 1h 0
d t dt lim t + h h dn t dt




   n n . ■ 

Since the range of functions in  LUB I, RC  is con-

tained in 1 , we have    1
LUB LUBI, I, R C C . Simi-

larly,    1 1 1
LUB LUBI, I, R C C . 

Corollary 2.19. 

     
   

1 1
LUB LUB vs

1
vs cw vs cw

I, I, I,

I, I,





 

 

R

R

 



C C C

C C
. 

Also, 

     
   

1 1 1 1 1
LUB LUB vs

1 1 1
vs cw vs cw

I, I, I,

I, I,





 

 

R

R

 



C C C

C C

. 

Proof. By Theorem 2.18,    1
LUB I, I, C R C  .  

Everything else is straight forward or follows in a man-
ner similar to the proof of Theorem 2.4. ■  

We show that if    ×
CTBS 0I ,   K M R  and  

   LUB I,   Rn C , then     d , ; I,   K Rf n C . We  

use the local uniform boundedness of  K  and  n . 
Let 

 
   

   

1
cw

1

1
cw

I ,

, I , :

for fixed , , C I,










   

  

R

= R

R







C

f

n f n

F  

and 

 
   

   

1 1
cw

1

1 1
cw

I ,

, I , :

for fixed , , C I,







    

  

R

 



 

C

f

n f n

F  

Then  1
cw I , 

  RC  and  1 1
cw I , C    are vec- 

tor spaces and 

   
   

1 1 1 1
vs cw

1 1 1
vs cw vs cw

I , I ,

I , I , 
 

  

    R

   

  

C C

C C
 

Theorem 2.20. Let 

      ×
i, j CTBS 0i, j 1

K I ,
  


   K M R . For iN , and 

  1t, I n ,  d
if t, ;Kn  exists (converges absolutely) 

and    d 1
cw, ; I , 

   K Rf C . If  

   LUB I,   Rn C , then     d
cw, ; I,   K Rf n C . 

Proof. Let       ×
i, j CTBS 0i, j 1

K I ,
  


   K M R . 

Then 1 0t I  , and    c 1 KmaxJ Int t , I , M J   such that 

for all i, jN  and    i, j Kmaxt J, K t M J .     Let 
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iN  and   1t, J n  where  i i 1
n




n . Then 

     d
i i, j j i, j j

j 1 j 1

f t, ; K t  n K t  n
 

 

  Kn  

   Kmax j Kmax 1
j 1

M J  n M J




    n       (18) 

     

   

d
i i, j j i, j j

j 1 j 1

Kmax j Kmax 1
j 1

f t, ; K t  n  K t n

M J  n M J

 

 





 

   

 



Kn

n

 

so that  d t, ;Kf n  exists (converges absolutely for  

  1t, J n ). Since t1 was arbitrary  d
if t, ;Kn  exists 

for   1t, I n . Also, since 

 i, j j Kmax jK t  n M n  and  

Kmax j Kmax j Kmax 1
j 1 j 1

M n M n M
 

 

     n , by Theo- 

rem 2.17 we have that i N  and fixed 1 n , 
   d

if , ; C I, K Rn . Hence 

   d 1
cw, ; I , 

   K Rf C . However, we do not have 

   d 1
cw, ; I , 

   K Rf C . We may (or may not) be  

able to prove this with a further extension of the Weir-
strauss M-test. Instead we let 

     j LUBj 1
n ( ) I,

 


    Rn C . Then for 1t I  and J  

 c 1Int t , I ,  not only do we have  KmaxM J  such that  

for all i, jN  and    i, j Kmaxt J, K t M J .     but 

also   nmax j 1
M j, J




 such that  

   j nmaxt J, n t M j, J    and  

   nmax nmax
j 1

M j, J M J




   . Then 

           
   

i, j j i, j j Kmax j

Kmax nmax

K t  n t K t  n t M J n t

M J M j, J

 


 

and 

       

   

Kmax nmax Kmax nmax
j 1 j 1

Kmax nmax

M J M j, J M J M j, J

M J M J

 

 



  

 
 

Hence by Theorem 2.17,     d
if , ; C I,  K Rn . 

Hence     d
cw, ; I,   K Rf n C . ■ 

Thus if    ×
CTBS 0I ,   K M R  and we choose a 

subspace of  LUB I, RC  as our Σ space, we obviate the 

need to explicitly require     d
cw, ; I,   K Rf n C  as  

a condition for  n  to be a solution (except to interpret 
(1.1)) or as a specific condition for the Σ space.  

2.5. Equivalent Vector Problems 

Recall that if  d
if t, ;Kn  converges   0t, I   Rn  

the functions  1
if t, ;Kn ,  2

if t, ;Kn , and  if t, ;Kn  
all map 0I to R R  and that  

    d d
i i 1

t, ; f t, ;



K Kf n n  maps 0I to R R . Now 

let     1 1
i i 1

t, ; f t, ;



K Kf n n ,  

    2 2
i i 1

t, ; f t, ;



K Kf n n , and 

    i i 1
t, ; f t, ;




K Kf n n . These three functions map  

0I to R R . As with  d t, ;Kf n , the only explicit de-  

pendence on t is through K(t). If    cw 0I ,  K RC  

and    d 1
cw, ; I ,    K Rf C , then  1 , ;  Kf ,  

 2 , ;  Kf , and  , ;  Kf  are all in  1
cw I ,  RC  

(see Theorem 2.1). Now let    ×
CTB I,   K M R  

Then by Theorem 2.16,    d 1
cw, ; I ,    K Rf C . 

If we can show that   1
0t, I n  implies  1 t, ;Kf n , 

 2 t, ;Kf n , and  t, ;Kf n  are in 1 , then these func-

tions can be thought of as functions from 1
0I   to 1  

instead of from 0I to R R . We indeed show that if 

we restrict  d t, ;Kf n  to 1
0I   , then the restrictions 

of  1 t, ;Kf n ,  2 t, ;Kf n , and  t, ;Kf n  to 1
0I    

all map to 1  so these functions are all in  

 1 1
cw I , C . Let 

 
   
   

1 1
cw+

1 1 1
cw

1

I ,

, I , : for fixed ,

, C I,



    

  R

 

  

C

f C n

f n

 

Then  1 1
cw I , C  is a vector space. We show that if 

   1
cw, ; I ,    K Rf C , then  1 , ;  Kf ,  2 , ;  Kf , 

and  , ;  Kf  are all in  1 1
cw + I ,C   . We have 

     
   

1 1 1 1 1 1
vs cw + vs cw

1 1 1
vs cw- vs cw

I , I , I ,

I , I , 


    

    R

     

  

C C C

C C
 

Theorem 2.21. Let    CTBS 0I ,  K RC . Then, for  

  1
0t, I n   the images  1 t, ;Kf n ,  2 t, ;Kf n , 
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and  t, ;Kf n  are all in 1 . Also, 

   d 1
cw 0, ; I , 

   K Rf C , 

   1 1 1
cw + 0, ; I ,   K  f C , and  

     2 1 1
cw 0, ; , , ; I ,     K K  f f C . If  

   ×
CTB I,   K M R , the  

   d 1
cw 0, ; I ,    K Rf C , and  1 , ;  Kf ,  

 2 , ;  Kf , and  , ;  Kf  are all in  1 1
cw+ 0I ,  C . 

Proof. Let 1 0t I  and    ×
CTBS 0I ,   K M R . Then 

   c 1 0 KmaxJ Int t , I , M J    such that  

 i, j Kmaxi, j K M J  . Hence for   1t, J n  where 

 i i 1
n




n , from (2.12) we have  

   d
i Kmax 1

f t, ; M J  Kn n  so that  

      12 d
i i i i Kmaxf t, ; n f t, ; n M J K Kn n n  

and 

 

   

   

  

2

1

2 d
i i i

i 1 i 1

i Kmax Kmax i1
i 1 i 1

2

Kmax 1

t, ;

f t, ; n f t, ;

n M J M J n

M J

 

 

 

 

 

 

  

 

 

K

K K

f n

n n

n n

n

 

Since t1 was arbitrary,   1
0t, I  n ,  2 t, ;Kf n is 

in 1 . Furthermore, since 

     2 d
i i i i Kmax 1

f t, ; n f t, ; n M J K Kn n n  and 

    2

i Kmax Kmax1 1
i 1

n M J M J




   n n , by Theo-

rem 2.17, for fixed   1
i i 1

n



  n ,  

   

   

2 2
i1

i 1

d 1
i i 0

i 1

, ; f , ;

n f , ; C I ,









  

  





K K

K 

f n n

n

. 

Hence    2 1 1
cw 0, ;K C I ,    f . 

By Theorem 2.1,    2 1 1
cw- 0, ; I ,   K  f C . Also, 

since 

   

 

i 1
1
i i j, j j i j

j i

i 1

i j, j j i j
j i

1
f t, ; K t n n

2

1
K t n n

2



 




 










Kn

 

we have 

   

 

 

 

 

  

1 1
i1

i 1

i 1

i j, j j i j
i 1 j i

i, j j i
i 1 j i

Kmax i j
i 1 j i

Kmax i j
i 1 j i

2

Kmax 1

t, ; f t, ;

1
K t n n

2

1
K t n n

2

1
M J n n

2

1
M J n n

2

1
M J

2





 

 
 

 

 

 

 

 

 











  









 

K Kf n n

n

 

where we have used (7). Hence 

   1 1 1
cw 0, ; I ,   K  f C . Since 

   

 

i 1
1
i i j, j j i j

j i

i 1

i j, j j i j
j i

1
f t, ; K t n n

2

1
K t n n

2



 




 










Kn

 

and  

   

 

 

 

 

  

1 1
i1

i 1

i 1

i j, j j i j
i 1 j i

i j, j j i
i 1 j i

Kmax i j
i 1 j i

Kmax i j
i 1 j i

2

Kmax 1

t, ; f t, ;

1
K t n n

2

1
K t n n

2

1
M J n n

2

1
M J n n

2

1
M J

2





 

 
 

 


 

 

 

 

 











  









 

K Kf n n

n

 

we have for fixed n ,  

     1 1 1
i 01

i 1

, ; f , ; C I ,




   K K f n n . Hence  

   1 1 1
cw+ 0, ; I ,   K  f C . Since  1 1

cw I ,  C  is a  

vector space (note  

     

  

1 2

1 1 1

2

Kmax 1

t, ; t, ; t, ;

3
M J

2

 

  

K K Kf n f n f n

n
), 

we have that    1 1
cw 0, ; I ,   K  f C .  

Now let    CTB 0I ,  K RC . Then by Theorem 
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2.16,    d 1
cw 0, ; I ,    K Rf C . By using Theorem 

2.1 and above,  1 , ;  Kf ,  2 , ;  Kf  and  , ;  Kf  

are in  1 1
cw+ 0I ,  C  

Unfortunately, we have not proved that 

   1 1
0, ; I ,   K  f C . However, assuming  

   1 1
0, ; I ,   K  f C  we consider the Vector Prob- 

lem (VP): 
Vector ODE,  

   0 0 0 0+

d
t, ;   , t I t , t , t

dt   K
n

f n   (19) 

IVP IC 

     0
0 0 i 0 0 0 0+i 1

t n , t I t , t , t



   n n  (20) 

where the derivative and equality are in 1 . That is, we 
now require the derivative to be defined with respect to 
the norm topology,  

        i i 1h 0
d t dt lim t + h t h dn t dt




    n n n  in  

1 , and equality as equality in 1 . For VP, we take our  

Σ space as    1 1 1
vsI, I, C C . 

For    1 1
0, ; I ,   K  f C  we now show that VP is 

equivalent to  

    
0

t

0
t

t + s, s ; ds  Kn n f n      (21) 

where for     1 1
i 1

n t I,
i




  n C  (the Σ space) to be a  

solution of (21), we require i N , that (12) holds; that 
is, integration is componentwise. Equality is in 1 . We 
refer to this problem as the Integral Vector Problem 
(IVP) 

Theorem 2.22. The distribution     i 1
t n t

i




n  is a  

solution of VP in  1 1I,C  if and only if it is a solution 
of IVP in  1 1I,C . 

Proof. For both problems we have chosen the Σ space  

to be  1 1I,C . Now assume that     i 1
t n t

i




n  is a  

solution of VP so that (19) and (20) are satisfied, and the  

right hand side of (19) is in  1I,C . We may integrate  

from t0to t using (17) to obtain the vector equation 

     

  

0

0

s t

0 s t

t

t

d s
t t ds

ds

s, s ; ds




 

 



 K

n
n n

c f n
       (19) 

Applying the initial condition we obtain (21). Now 
assume that  n  is a solution of (21). Then substitute 

0t t  to obtain (20). Since 

      CWt, t ; C I, C I,  K R Rf n , and 

      
0

t
1

0
t

t + s, s ; ds I,  K n n f n C , differentiating  

(componentwise) we have that   i i 1
d dt dn t dt




n  

and that (19) holds. ■ 

Theorem 2.23. If    CTB 0M I ,  K R , then  

   d 1
cw, ; I ,    K Rf C  and  

   1 1
cw+, ; I ,   K  f C . If    1I,  n C , then  

    d
cw, ; I,   K Rf n C  and  

    1
CW, ; C I,  K f n . On the other hand, if  

 ×
CTBS 0M I ,  K R , then  

   d 1
cw, ; I , 

   K Rf C  and  

   1 1
cw, ; I ,   K  f C . If, in addition,  

   1
LUB I,  n C , then     d

cw, ; C I,   K Rf n  

and     1
CW, ; I,  K f n C . 

Proof. If  ×
CTB 0M I ,  K R , then by Theorem 2.16, 

   d 1
cw, ; I ,    K Rf C . By Theorem 2.21,  

   1 1
cw+, ; I ,   K  f C . If    1I,  n C , then  

    d
i cwf , ; C I,   K Rn  and  

    1
cw, ; I,  K f n C . Now let  

   ×
CTBS 0M I ,   K R . Then by Theorem 2.21,  

   d 1
cw, ; I , 

   K Rf C  and  

   1 1
cw, ; I ,   K  f C . If, in addition,  

   1
LUB I,  n C , then     d

cw, ; I,   K Rf n C  

and     1
CW, ; I,  K f n C . 

To define VDAP in the continuous context, we would 

like    d 1
cw, ; C I ,    K Rf  and  

   1 1, ; I ,   K  f C . Then for    1I,  n C , we 

would have     d
cw, ; I,   K Rf n C  and  

    1, ; I,  K f n C . When    CTB 0I ,  K M R , 

we do have    d 1
cw, ; I ,    K Rf C , but have only 

shown that    1 1
cw+, ; I ,   K  f C  so that for  

   1C I,  n , we have     d
cw, ; C I,   K Rf n  

and     1
cw, ; I,  K f n C . We refer to this problem 

with Σ space  1 1I,C  as VDAP1. When  
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   CTB 0I ,  K M R , we settle for  

   d 1
cw, ; I , 

   K Rf C  and  

   1 1
cw, ; I ,   K  f C  so that if    1

LUB I,  n C , 

then     d
cw, ; I,   K Rf n C  and  

    1
cw, ; I,  K f n C . We refer to this problem with 

Σ space  1 1
LUB I,C  as VDAP2. As  

     1 1 1 1 1
LUB LUB vsI, I, I,  R  C C C  

   1 1 1
vs cw vs cwI, I,   RC C , if we take  

   1 1 1
LUB LUBI, I, R C C  as our Σ space for SDAP,  

ISDAP, and VDAP1or VDAP2, then they are all equiva-
lent if they have the same problem parameters  

  0 0 0I , t , , tKn . 

3. Summary and Future Work 

For the time-varying kernel (    i, jK t A t ) in the ana-
lytic context, the problem parameters are  

    1
0 0 0 o 0 0I , t , n , A t Int I I ,    R A . For this pro- 

blem, Moseley [14] used the following problem solving 
procedure. He first established local uniqueness in  

 cw 0I , RA . However, he chose the smaller Σ space 

 LUB I, RA  containing only distributions where (for a 

time-varying kernel) if  tn  is in  LUB I, RA , then 

the depletion coefficients     d d
i i 1

t, ; f t, ;



K Kf n n  

are in  cw 0I , RA , He then obtained the explicit for- 

mula (6) for the (analytic) solution. He did not rigorously 
isolate the unknown so he established global existence by 
showing that the solution given by the formula (6) was in 
the Σ space, checking the initial conditions, and then 
substituting the formula into (1). Since global existence 
holds, local uniqueness in the analytic context implies 
global uniqueness. 

If we choose  1
LUB I, RC  as our Σ space, then  

SDAP, ISDAP, VDAP1, and IVDAP2 are all equivalent 
in the continuous context if they have the same problem  

parameters   0 0 0I , t , , tKn . If  

   ×
CTBS 0I ,   K M R  and    LUB I,   Rn C ,  we 

have     d
cw, ; I,   K Rf n C , so that we need not 

specify this condition separately. For the time varying 

kernel, the solution given by (6) is in  1
LUB I, RC ,  

where    A t C I, R  in the continuous context. How-
ever, we have not shown (local) uniqueness in the con-

tinuous context. To do this we have (at least) four 
choices: 

1) Provide a rigorous derivation of (6) that provides 
(existence and) uniqueness. 

2) Develop and use a Lipschitz condition for: 
 if t, ;Kn  in the scalar problems SDAP and ISDAP. 
3) Extend the (existence and) uniqueness results for 

FAP in the continuous context to obtain a unique sequen-
tial solution to DAP. 

4) Develop and use a Lipschitz condition for  
 t, ;Kf n  in the vector problems VDAP1 and VDAP2. 
We have provided preliminaries for the development 

of a Lipschitz condition for VDAP1 and VDAP2. How-
ever, all four alternatives appear to be worthwhile. 
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