
Journal of Modern Physics, 2012, 3, 1737-1743 
http://dx.doi.org/10.4236/jmp.2012.311215 Published Online November 2012 (http://www.SciRP.org/journal/jmp) 

The Fractional Hydrogen Atom: A Paradigm for 
Astrophysical Phenomena 

A. I. Arbab 
Department of Physics, Faculty of Science, University of Khartoum, Khartoum, Sudan 

Email: aiarbab@uofk.edu 
 

Received July 19, 2012; revised September 10, 2012; accepted September 26, 2012 

ABSTRACT 

We have found that fractional principal quantum numbers are permitted in hydrogen atom which yield the conditions 
for neutron and white dwarf stars evolution. The number densities of neutron and white dwarf stars reveal that these 

systems have the maximal conductivity of 10 1 11.37 10 m .   

n
=n

 They are giant perfect conductors at very high tem- 

perature and magnetic field. 
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1. Introduction 

Bohr put forward the postulates that lead to the emer-
gence of the hydrogen atom. The orbital angular mo-
mentum is quantized and that atomic emission is possible 
only when an electron makes a transition form a higher 
level to a lower one. Moreover, the orbit, velocity and 
energy of the electron are quantized in terms of the prin-
cipal quantum number n that takes integer values. Under 
high pressure the hydrogen atom is transformed in a sys-
tem of degenerate electron gas. This state is identified 
astrophysically as a white dwarf. White dwarfs are stud-
ied by Chandreshekar [1] who set a limit to their exis-
tence as stable stars. Investigation of white dwarfs pro-
vides important constraints on the theory of stellar evolu-
tion. If more pressure is applied on the hydrogen atom, a 
new state of neutrons results in. This new state of hydro-
gen is known as neutron stars. If more pressure is applied 
a final state of black hole is reach that not even light can 
escape from. The electron and neutron gases are described 
statistically by Fermi-Dirac distribution. However, the 
neutron gas provides a large pressure than the electron 
gas. The neutron gas can withstand more gravity than 
electron gas does. 

The state of hydrogen atom under this high compres-
sion has not been provided by Bohr theory. In Bohr the-
ory, the electron can only exist in certain orbits from the 
nucleus. The closest (minimum) one from the nucleus is 
the Bohr orbit. It amounts to a0 = 0.53 Å. Orbit quantiza- 
tion does not permit a lower orbit than this value. The 
question posed is that how can electron exist under high 
pressure? Bohr theory does not provide an answer to this 

question. 
Recently, Arbab [2] has considered the effect of the 

internal magnetic field resulting from the electronic or-
bital current, and shown that this field is equivalent to 
considering a Bohr orbit with a fractional value of . In 
particular, this corresponds to,  , where   is the 
fine structure constant. Fractional values of the quantum 
number may result from existence of other form of inter-
actions that we may not now know. 

This consideration leads to the existence of a new state 
of hydrogen with an electron orbiting close to the proton 
at a distance equals to the electron classical radius. We 
call this electron-proton state a protonium. The physical 
properties of this state is similar to that of the neutron. 
However, the anomalous magnetic moment under this 
consideration is convincingly explained. 

Fractional quantum numbers are observed in the quan-
tum Hall effect (FQHE) by Tsui et al. [3], where the Hall 
conductance of 2D electrons shows precisely quantized 
plateaus at fractional values of  . In this effect the elec-
trons bind magnetic flux lines to make new quasiparticles. 
We argue that such a phenomenon is also reflected by 
hydrogen atom, when subject to external compression. In 
Bohr theory, an electron can’t exist at a distance less than 
Bohr radius. 

We propose here a fractional hydrogen atom whose 
implication will be prominent in astrophysical objects, 
e.g., Neutron stars and White Dwarfs, in which gravita-
tional compression is so immense. The electron in the 
atoms of these objects does not fall into the nucleus, but 
rather jumps into a closer stable orbits to the nucleus 
with =n =n  and , respectively. A strong mag-
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netic field can transform a boson into a fermion or vice 
versa. Hence, we argue that for magnetic white dwarfs 
the magnetic field may alter the statistics of the white 
dwarf’s electrons from fermionic to bosonic. This would 
affect the stars structure, giving it a smaller than ex-
pected radius, and a lower than expected temperature. In 
some extreme cases one could imagine that this effect 
could lead to the collapse of the white dwarf into a neu-
tron star. 

This hypothesis is inspired by our recent model for the 
neutron. In this model, the electron exists in an orbit with 
a principal quantum number n equals to the fine structure 
constant,  . This state is reached when an atom is un-
der a very large compression. Such a state yields very 
huge magnetic field that is of the same order of magni-
tude of the neutron star. Fowler [4] showed that a system 
of many electrons (stars) must be governed by quantum 
statistical physics besides quantum mechanics, since ele- 
ctrons are fermions. Under high pressure electrons be-
have as a condensed matter system. They are governed 
by the laws of many-body system. 

In this paper, we would like to investigate other possi-
ble fractional values of n and seek their astrophysical 
consequences. This paper is structured as follows: we 
study in Section II the implication of our hypothesis for 
the formation and characterization of neutron stars. The 
huge magnetic field observed in neutron stars is a result 
of the current developed by electrons forming our neu-
trons model. The surface area of a neutron star is directly 
proportional to its mass. The pressure of the star is re-
lated to the square of its magnetic field. We provide in 
Section III how one can obtain all white dwarfs stars by 
applying our hypothesis to hydrogen atom where the 
principal quantum number is a fraction. This gives ex-
actly are characterizations (pressure, magnetic field, elec- 
tric field and conductivity) of white dwarfs now known. 
We further apply our hypothesis of the maximal conduc-
tivity and found that white dwarfs as well as neutron 
stars are perfect conductors. We finally provide in Sec-
tion IV the implications of our hypothesis to ordinary 
stars, like our sun. These stars systems exhibit the Hall 
effect observed in conductors under application of elec-
tric and magnetic fields. A table showing the relations 
between different quantities describing neutron stars, 
white dwarfs and ordinary stars is provided. These quan-
tities are shown to be multiples of some powers of the 
fine structure constant,  . This model can be compared 
with that standard model of formation of neutron stars 
and white dwarfs stars where Fermi-Dirac statistics is 
employed. 

2. Neutron Star 

Recall that in Bohr theory, the orbit, velocity and energy 

of the electron are given by  
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where . We have found that when the 
magnetic force inside the atom is considered, a new sta-
ble orbit exists. This stable orbit is equivalent to consid-
ering a fractional quantum number,   in Bohr’s 
model. Hence, Equation (1) yields 
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Interestingly, the radius of this orbit is equal to the 
classical electron radius, . e

One can calculate the current resulting from the mo-
tion of the electron in this state as  

3
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2π 2πq
q

ec mc
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            (3) 

and the resulting magnetic field is that of a current loop, 
viz.,  
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where 
2

0 = .
4π

c
k


 The magnetic field predicted by  

Equation (4) coincides with the magnetic field of neutron 
stars obtained by Wunner [5] & Leiby [6]. Hence, the 
magnetic field observed in neutron stars results from the 
magnetic field produced by the electron motion inside 
the hydrogen atom. The magnetic flux is defined by  
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This can be compared with the quantum of magnetic 
flux that passes through the superconductor that is de-  

fined by 15
0 2.067 10 W

2

h
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e
   

s

. Does this mean  

that the neutron star is a giant superconductor? If we as-
sume that the above magnetic flux is quantized in terms  

of , then one can write 
02

h e
s

e c
   
 

, hence  


2

= 4 = 4
ke

s
c

 . This means the flux of the neutron star  


is quantized in units of  , in the same way as the prin-
cipal quantum numbers. 

The capacitance and inductance of the protonium are 
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defined by  
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Let us now consider the magnetic moment due to the 
electron in the protonium state. This is given by  
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This can be compared with the measured value of the 
neutron and protons magnetic moments, viz.  

279.n   66 10 J T  and 261.41 10 J T  

.

p . We 
can get the exact value by making some linear combina-
tions of Equation (6) and p  Using Equations (4) and 
(6), the Zeeman energy due to the presence of the mag-
netic field  can be written as  qB

21
.

2z q qE B mc

T = 0

   

It is interesting that this Zeeman energy is equal to the 
orbital energy of the protonium. Hence, the total energy 
of the system is zero. Therefore, the system is at  
temperature. This is the case when a Fermi-Dirac statistic 
is considered to describe such a system. One can further 
find the electric field due to protonium state as  
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The electromagnetic energy density (or pressure) in-
side the protonium is  
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If we consider the protonium as a dipole, we can cal-
culate the power radiated due to Larmor dipole radiation 
as shown in Jackson [7]  
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Stars (mainly hydrogen) are affected by their self- 
gravitating energy and the gas energy. At equilibrium 
(balance) the gravity and gas (neutron Fermi gas) pres-
sures are equal. The gravitational pressure is defined as1 

2

4
,g
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R
                 (10) 

where f  is some fixed number related to the equation 
of state of the matter under consideration. According to 
Newtonian gravity, this occurs when the gas radius  R  
is related to the star mass M  as shown by Phillips [8] 
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 where 3 20π .f 
1.5 e

q  Owing to Equations (10) and (11), 
a neutron star of mass M M  will produce a radius 
of  and a pressure of . In our pre- 
sent model, a pressure of ~1033 Pa will produce a mag- 
netic field of . This is also apparent from substi- 
tuting Equations (4) and (8) to yield 
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Using Equations (8) and (10) the radius mass relation 
is  
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This implies that the pressure is constant. It is thus dif-
ferent from the standard relation, i.e., 1 3R M 

327 10  Pa
132.96 10  T

k T

. The 
radius in Equation (13) can be made to give a different 
value if we take into consideration the relativistic mass 
resulting from Equation (2) that can be defined to yield 
the correct value of the magnetic moment of the neutron 
defined in Equation (6). To resolve this, the mass of the 
electron should be replaced by 7 m. This replacement 
changes the pressure (energy density) in Equation (8) to 

, and the magnetic field in Equation (4) to 
. Equations (2), (5) and (9) will also change. 

Hence, the radius in Equation (13) will be reduced by 
1/7. 

Using Equation (1), one can estimate the internal tem-
perature of this state using the energy q B q 

9= 1.28 10 KT 

9= 0.88 10 KT 
T

. This 
yields a value of q . However, if we con-
sider the protonium as a black body, it will radiate at a 
temperature of . This is very close to 

q . This may permit us to assume that fermions in this 
state undergo a Bose-Einstein state of condensation. The 
energy and number densities of a Fermi-Dirac electron/ 
neutron gas are given by  

 
 

4 32

3 2

π 2.4
, .

15 π
B B

k T k T
u n

cc

    
 

, nev.J E J

 

Let us now calculate the electrical conductivity of the 
protonium state as  

               (14)  

Using Equations (2) and (7), one obtains  
4
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This can be set to the maximum conductively,  2 3
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This is a typical number density of nuclear matter. It is 
a number density of perfect conductor. Hence, neutron 
stars are perfect conductor. This supports the recent dis-
covery by Page et al. [10] who have provided the first 
direct evidence for a superconductor state at the core of 
neutron stars. The current inside lasts forever as far as 
electrons keep circulating. The number density in Equa-
tion (16) agrees with the number density found for neu-
tron stars by considering the Fermi statistics of the de-
generate neutrons [4,11]. It is an interesting agreement. 
We conclude here that the above maximal conductivity 
hypothesis due to Arbab [9] is then verified. 

Let us now calculate the impedance of the protonium 
state using Equation (5) 
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This is equal to the impedance of the vacuum. Thus, 
the space inside the protonium behaves as vacuum. 

3. The White Dwarfs 

Let us now consider the case when, 

.n                      (18) 

Apply this in Equation (1) to obtain  
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Such a case will lead to an interesting physical situa-
tion. It is interesting to see that the radius d  in Equa-
tion (19) is equal to the Compton wavelength of the elec-
tron. We, consequently, propose that an electron under 
high pressure jumps to this quantum state. The physical 
properties of this state is described in the subsequent equa- 
tions. 

One can also calculate the electronic current resulting 
from orbital motion of the electron in the quantum state 
described by Equation (19). 

2

1.69 A
mc


2πd

d

ev e
I

r h


            (20) 

and the resulting magnetic field is that of a current-loop, 
i.e.,  

    (21) 

It is interesting to note that the above magnetic field is 
a typical field of white dwarfs (~109 G) as obtained by 
Jordan [11,12]. The magnetic flux is defined by  
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The above equation suggests that the quantum of in-  

ductance is 0h

mc


. This implies that the neutron star has a  

quantum of inductance that is   times that of the white 
dwarf. One can relate this to the maximum conductivity  

by 
4π

L
c

. Moreover, the quantum of resistivity is 

0h
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
. Hence, the quantum of resistivity is equal to   c

times the quantum of inductance. The quantum of con-
ductivity represent the maximum conductivity that a sys-
tem can have. Metals will have a conductivity that is 
equal to   times this quantum. Similarly, the quantum 

of capacitance is 02 h

mc


. These quanta are characteristic  

values of any quantum system. 
We now calculate the electric field of the state defined 

by Equation (4) as  
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The electric energy densities are thus  
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The pressure associated with this energy density 
amounts to . 

Let us now consider the magnetic moment due to the 
electron in the above state. This is given by 
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Because of the magnetic field, as in Equation (21), the 
Zeeman energy is given by 

2 4

12
.

2z d d

mk e
E B E    


          (26) 

Copyright © 2012 SciRes.                                                                                 JMP 



A. I. ARBAB 1741

If we consider the state in Equation (19) as a dipole, 
we can calculate the power radiated due to Larmor dipole 
radiation as explained in Jackson [7]  
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This exceedingly small power may explain the faint-
ness of the white dwarfs. 

Let us now calculate the conductivity of the state de-
fined in Equation (14) using Equations (19) and (23) to 
obtain  
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For a maximum conductivity 
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The above value of d  agrees with the number den-
sity found for white dwarfs by considering the Fermi 
statistics of the degenerate electrons as formulated by 
Fowler [4], Jordan [11] and Fassbinder [12]. Hence, 
white dwarfs can be thought of as perfect conductors. If 
we now equate the conductivity in Equations (15) and 
(28) to Drude conductivity of metals developed by Drude  
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The gravitational pressure of the white dwarfs, at equi-

librium, is balanced by the electrons gas pressure. As 
seen from Equation (24), the gravitational energy of the 
white dwarfs is supported by their electrical energy. The 
magnetic energy of the white dwarf is negligible in 
comparison with the electric energy. Hence, under equi-
librium one must have  
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where  is the radius of the star and M  it’s mass. 
Therefore, the equilibrium radius  is   dR
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It is interesting to that the radius mass relation we have 

obtained, i.e., 1 2R M , that implies the pressure is 
constant, is different from the standard formula, viz., 

1 3

R M


 . Despite this, we obtain similar result. Owing 
to Equation (31) a white dwarf of a mass eM M1.0  
will have a radius of . This agrees with the 
observed radii of white dwarfs. This radius is close to the 
radius of the Earth (6378 km). Hence, we conclude that a 
white dwarf with mass of the Sun will have a radius of 
4155 km and dominated by an electric field of 

4155 km

1610 V m  
as obtained by Leiby [6] and Jordan [11]. These are ty- 
pical values for the observed white dwarfs. Hence, hy-
drogen atom in white dwarfs are in state of a fractional 
quantum number, n  . The electrons comprising the 
white dwarf are at a distance equals to the Compton 
wavelength of the electron in the hydrogen atom. 

One can estimate the internal temperature of the elec-
tron by equating the energy in Equation (19) to B dk T

72.16 10 KdT  

1n 

, 
hence one finds .  

4. Ordinary Stars 

An ordinary star (e.g., the Sun) is the one which is sup-
ported by hydrogen gas (with ) under gravitational 
compression. The ground state of hydrogen atom is de-
fined by 
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The electric field is given by  
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This state is characterized by having an electric energy 
density of 
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This amounts to a value of . We see 
from Equations (7), (23) and (33) that the electric fields 
of the three systems are  

.              (35) 

The balance between the gravitational pressure and the 
internal hydrogen pressure will produce a stable star. 
Equating Equations (10) and (34) yields the radius of a 
stable star as  
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The above formula can be used as a benchmark to 
calculate the radii of stars from their respective masses or 
vice versa. To reproduce the Sun’s radius,  

3

3
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80πsf   . Thus, Equation (36) can be written 
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as 
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We remark here that the physical properties of ordi-
nary metals are similar to ordinary stars (e.g., Sun). It is 
reported by Weir et al. that hydrogen becomes a metal at 
a pressure greater than  [14]. 

Using Equations (14) and (33), the conductivity in this 
state can be written as 

 
3 2

2
0

2
π .

1

n e
a n

h2 2 2s m k e
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
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For neutron and white dwarf stars, one finds  
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Equations (37) and (38) can be combined to give  

 
2

22
π ,q q

e
r n

h

1

                (39) 

where   ,  ,  , correspond to the quantum 
number defining the hydrogen atom in the three states 
defined before (ordinary, neutron and white dwarf stars). 
These forms can be related to Ohm’s law for a conductor 
of length  and cross-sectional area L A , whose resis-
tance is R, by  

21 1
, .

e
a n2

0

1
, 2π

L L

A R A
  

R h
         (40) 

In FQHE the quantum of conductance is 
2e

h
. The  

FQHE is thought to result from many-electron interac-
tions in 2-dimensional systems under low temperature 
and strong magnetic field. Here, the FQHE may take 
place in these systems due to the high compression of 
their matter as shown by Morawicz et al. [15]. 

If we consider the number density in hydrogen as,  

3
0

3

4π
n

a
 30 31.6 10 m, then Equation (37) yields n  

9 10 m 

,  

so that . One can find the relaxa-
tion time for ordinary star medium (atoms) from equating  

6 1 1 = 1.0s

the conductivity in Equation (36) to 
2ne

m

  . This 

yields, 0 .d
s

a

c




 
   

Using Equations (4), (14) and (15), the Hall coefficient 
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E
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JB
  
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 for a neutron is  

1
.HR

ne
                   (41) 

Using Equations (14), (21)
cient for a white dwarf star is 

 and (28), the Hall coeffi-
 

1 1
.HR

ne
                 (42) 

Using Equations (14), (32) an
cient for an ordinary star  

d (37), the Hall coeffi-

2

1 1
.HR                  (43) 

ne
Equations (41), (42) and (43

Hall effect exists in astrophysica
coefficient in powe

) clearly show that the 
l systems with quantized 

rs of  . It is interesting to notice that 
the radii for ordinary, neutron and white dwarf stars can 
be related to each other. Therefore, using Equations (13), 
(31), (35) and (36), one obtains  

, .q d
q d d

d

M M
R R R R

M
         (44) s

sM

Owing to Equations (31) and (44), Sirius 
5846 km  will have a mass of 1.15Me instead of 0. e

as 
H

We have proposed in this paper that fractional quantum 
drogen atom. These are powers of the 

B of radius 
978M  

obtained by Holberg et al. [16] and Liebert et al. [17]. 
owever, Equations (31) and (44) agree with the Lands- 

man et al. [18] findings of the hot white-dwarf compan- 
ions. 

We provide in Table 1 the relation between different 
quantities describing neutron stars, white dwarfs and 
ordinary stars. 

5. Conclusion 

numbers exist in hy
fine structure constant. The first number gives rise to the 
physical properties of the neutron star, and the second 
one to the white dwarf stars. These fractional quantum 
numbers were first shown to exist in quantum Hall effect. 
We propose a quantum of inductance and capacitance in 
addition to the quantum of flux and conductance. We 
have shown in this paper that neutron and white dwarf 
star got the maximum possible conductivity in nature. 
Hence, these stars are examples of giant perfect conduc-
tors at a relatively high temperature and magnetic field. 
 
Table 1. A comparison between neutron, white dwarf and 
ordinary stars physical properties. 

Quantity Neutron star White dwarf Ordinary star

Magnetic field qB  5 2

qB  5

qB  

E  

Magnetic moment q

lectric field qE  2

qE  4

qE  

  1 2

q  1

q  

q

 

Radius R  1

qR  2

q R   

Hall coefficient HqR  1

HR q  2 HqR   
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More ese system exhibit a fractional quantum 
effect. T  of these systems are qua
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over, th s 
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zed in terms of 
n-
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