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ABSTRACT 

In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation 

                    1 2 0, ,
m

kx t p t x t f t x t x t x t q t t t   


      , , , ,  

on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscilla-
tory solutions for general  p t  and  which means that we allow oscillatory  q t  p t  and . We give some 

examples to illustrate the obtained results. 

 q t
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1. Introduction 

The study of dynamic equations on time scales, which 
has recently received a lot of attention, was introduced 
by Stefan Hilger in his Ph.D. thesis in 1988 in order to 
unify continuous and discrete analysis [1]. Dynamic equ-
ations on time scales have an enormous potential for 
modelling a variety of applications such as in population 
dynamics. Several authors have expounded on various 
aspects of this new theory, see the survey paper by 
Agarwal, Bohner, O’Regan and Peterson [2] and refer-
ences cited therein. A book on the subject of time scales, 
by Bohner and Peterson [3], summarizes and organizes 
much of the time scale calculus. We refer also to the last 
book by Bohner and Peterson [4] for advances in dy-
namic equations on time scales. 

Recently, much attention is concerned with oscillation 
and nonoscillatory solutions for dynamic equations on 
time scales [5-12]. 

In Li and Zhang [6] studied the existence of nonoscil- 
latory solutions to neutral dynamic equation 

      
       1 1 2 2, ,

n

x t p t x t

f t x t f t x t



 


  

  0.



Zhang and Sun [13] studied the existence of nonoscil- 
latory solutions of the forced nonlinear differen e equa- 
tion 

 

Li, Han, Sun and Yang [10] established the existence 
of nonoscillatory solutions to the following second order 
neutral delay dynamic equation 

      
           

0

1 1 2 2 e .

x t p t x t

q t x t q t x t t



 


  
 

 

c

     ,n n nn nx p x f n x q     . 

Zhou and Zhang [14] obtained some sufficient condi- 
tions of nonoscillatory solutions for the higher order de- 
lay difference equation with positive and neg e coeffi- 
cients 

ativ

  0m
n n k n n r n n lx cx p x q x       . 

Lu [15] obtained some necessary and sufficient condi- 
tions for the existence of nonoscillatory solutions for the 
following first order neutral equation 

            j
1 1

,
m n

i i j
i j

x t p t x h t f t x g t Q t
 

    
 

  . 

Motivated by these works, in this paper, we consider 
the higher-order nonlinear neutral dynamic equation 

      
m

           1 2, ,k

x t p t x t

f t x t x t x t q t  
 

 ， ， ，
 (1) 




 

 0 ,t t   , m , sup   . We assume  

  ,  and 

where 

0rdp q , ,C t  allow  p t  q t   and to  

  be oscillatory. 0, ,i rdC t   ,  satisfy  
   im , 1, 2t it t   lim ,t k   ,.  l ,i  

   , , , ,kf t u u u C     is nondecreasing for1 2 k    
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 and 

We recall 

 1 1 2, , ,u f t u u 
 

ju 0ku   for 

1 0, 1, 2, ,ju u j k . 

x  
 

is a solution of Equation ( rovided 
that 

1) p
    x t p t x t  is 

an
m  times differentiable, 

d x  sa A soltis  Equationfies  (1) ution , x  of Equa- 
tio toryn (1) is if  cal nonoscillaled  x  is  on n when  
eventually. 

istence Results f

f nonoscillatory solutions for Equation (1). 
ne a sequence of functions 

of e sig

2. Ex or Nonoscillatory 
Solutions 

In this section, we establish sufficient conditions of the 
existence o
First we defi  ,kg s t , 0k   
as follows: 

      0 , 1, , ,
s

g s t g s t g t1k kt
   .   

For  ,kg s t , we have the following Lemma. 
Lemma 2.1. (Li and Zhang [6]) Assume s  is fixed, 

and let  ,kg s t  be the derivative  k ,g s t  with respec

. 

 de d 
fu

t 
to t . Then 

   1, , , , k
k kg s t g s t k t

    
Let note the Banach space of all boundeBC
nctions   0,x t t t , with the norm  

 
0t t

(i) there exists 

supx x t   . We will use the following as-
sumptions: 

,

0   such that 

  
 

1 2 1 2, , , , , ,

x

k k

i i
k1

ma
i

f t u u u f t v v v

u v

 
 

L t
 



 

nd for 0t t  a , 1, 2, ,j k0 ,i iu v     , where  
L    ,rdt C   ; 

(ii) ; 

(iii) 

    
0

1 ,0mt
g s L s s



   
    

0
1 ,0mt

g s q s s


    ; 

(iv) the  tre exis s 
1

,1
2

p
  
 

 such that 

  0t ; 1 ,p t p t  

ere exists (v) th  1,0p   such th

(vi) there exist 1  such that  

0

 

 

at 

 p p t t t   00, ; 

 1 2, ,p p   

 1 2 ,p p t p t t   ; 

(vii) there exists  such that  0,1p

  00 ,p t p t t   ; 

(viii) there exist such that 1 2, 1,p p    

 1 2 ,p p t p t t0   . 

Theorem 2.1. As t (i), (ii), (iii
(1) has a bounded nonoscillatory 

sume tha ) and (iv) hold, 
then Equation solution 
which is bounded away from zero. 

 such that Proof. Choose 1 1,d c  1d p10 2     
and  1 11d p c p . Let     

 1 1 1min , , 1
2

p
c p c c d p        

 
1 0t t  large enough such that when 1t t , we have 

. There exists a  

    0, , 1, 2, ,it t t i k      and 

      
1

1 ,0mt
g s s s c    .   (2

By condition (i) and the hypotheses on 

L s q 


   ) 

 1, , kf t u u， , 

0 ,0 , 1, 2, ,it t u i k     , for any we have 

   1 k, , ,f t u u L t .            (3)  

We define a set BC   as follows: 

  1 0: ,x BC d x t t t      .       (4) 

Then   is a closed, bounded and conve  
BC . De

x subset of
 a map fine   on  as fol  lows: 

  

     
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First, we shall show that for any  and x 0t t , 
  x t  . For any x  and  (2),  1t t , by (3) and
(4), we get 
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Furthermore, we have 
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
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
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Hence when , we obtain  0t t   1d x t   

ontraction mapping

, so 
  fo

is a c  on 
 In fact for any  and , we have 

  x t 
Next, we 

r any 
show that

x . 
   

 . ,x y 1t t

  

       
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 
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
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
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Since 

f s y s y s y s s   ， ， ，

0 1 1
2

p
   , we conclude that   is a con- 

traction mapping on . By the Banach fixed point 
theorem, has a fi oint . By Lemma 2.1, 

 
xed p

 
  

it is easy to see that 
 x 

x t  is ed nonoscillatory 
solution of the Equation (1). letes the proof of 
Theorem 2.1. 

Theorem 2.2. Assume that (i), (ii), (iii) and (v) hold, 
then Equation (1) has a bounded nonoscillatory solution 
wh bounded away fr

a bound
This comp

ich is om zero. 

Proof. Choose 0   such that ,
 2 1 p

3


  . Ob- 

viously  



1
2

p
    There exists a 1 0t t  suffi-  

ciently large such that when 1t t , we have 

 .

  ,t  
  , 1i t t i  0 

  

, 2, , k  and 

   
1

1 ,0mt
g s L s q s s

2

 


      . 

We define a clo bounded and et sed,  convex subs   
 BC  as follows: of

  , 0:
2

x BC
   . 

Define a map o as follows: 

x t t t
     

 
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      


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,
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1
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1
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,

, .
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


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
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
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

    
 

  

， ，
 



The rest of the roof is similar to that  p of Theorem 2.1 
and hence omitted. The proof is complete. 

Theorem 2.3. Assume that (i), (ii), (iii) and (vi) hold. 
has the inverse  1 ,C      , then Equation (1) has 

a bounded nonoscillatory solution which is bounded 
away from zero. 

Proof. We choose positive constants 1 2, ,M M  , such 
that 2M  ,  1 1 2 1p M p     2M . Let 

 1 1 2
2 2 2

1 2p

1 p
min , 1 , .c p p M

p M
 

  
        

ch that when 


 

There exists a t t  large enough su1 0

1t , we have t   1
0 , 1, 2, ,i t t i k     , and 

       1 1 ,0mt t
g s L s q s s c 



     . 

We define a closed, bounded and co et nvex subs   
of BC  as follows: 

  1 2: , 0x BC M x t M t t      . 

Define a map BC:   as follows: 

  

  
  
  

 
      

  1,
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        
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1
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,
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   0, .

t

g s t
p t p t p t

f s x s x

  



 ，

 
s x s q s s

t t
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  
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

， ，

First, we shall show that . For any

x t t t 

    x  
and , note that 1t t

  

  

          

       

 

1

1
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1

1 1 2
1
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1
,
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x t
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g

1 1
2

1
mt

s t L s q s s
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  



 s
p

p M p
M

p p p




 














 

    

   


   

  

and 

   

    2 22
2

2 2 2

1p MM
x t M

p p p

   
      . 

Thus   x t 
 we show that

 for , this is 
Next,

x    . 
   is a contract ng on ion mappi

 and , we have 1t t In fact for any ,x y .
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x y g s L s x y s
p p

p p
x y x y

p p





 


  


   







 










   



 

     

        
 





 

，

， ， ， ，  s

nce Si 2

2

1
0 1

2

p

p


  , we conclude that   is a con-  

traction mapping on . By the Banach fixed oint 
theorem, has a fi oint . By Lemma 2.1, 
it is easy to see that 

 
xed p

p
   x 

 x t bounded lla is  nonosci tory 
so
Th

Theorem Assume that (i), (ii), (iii) an hold, 
then equation (1) has a bounded nonoscillatory solution 
which is bounded away from zero. 

Proof. Choose 

a 
lution of the Equation ). This completes the proof of 
eorem 2.3. 

 2.4. d (vii) 

(1

0  , such that p    . Let  

min ,
2

p
c

      
 

. There exists a  large  

enough such that when , we have  

, k , 

and 

1 0t t

1t t

    0, , 1, 2,it t t i    

      
1

1 ,0mt
g s L s q s s 



     . c

Easily to know 

  0: ,
2

p
x BC x t t t         

, subset 
follow

 

 

is a closed bounded and convex of BC . Define a 
map : BC   as s: 

  x t

      



is sim  Theorem 2.1 
and hence omitted. The proof is complete. 

Theorem 2.5. Assume that 

  
           
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1 2

1 ,

,

m
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f s x s x s x

  

 




   

   


, , ,  

  
1

1 0 1, .

k s q s s

x t t t t




  

,

,t t


 

The rest of the proof ilar to that of

1  , (i), (ii), (iii) and 
 hold. (viii)   

a
has the inverse , then Equ- 

ation (1) h s a bounded no n which is 
bounded away from zero. 

Proof. We choose 

 , 
ry solutio

1 C  
noscillato

 , such that 11 p  . Let  

1min 1,
p 1

,
2 2

c
     

 
. There exists a   

large enough such that when , we have  

1 0t t

1t t
  1

0 , 1, 2, ,i t t i k     , and 

  



     1 1 ,0mt
g s L s  q s s c

      . 

We define a closed, bounded and convex subset 


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of  as follows: BC

 1 1
0

2 1

: ,
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p p
x BC x t t t
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   
      

 
. 
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     

           

1 11 1

1 2 k

,

, ,

mt

1 1
1

m

x t

x t

  

1

1 0 1, .
1,

g s t
p t p t p
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
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t

x t t t t





  

ar to th eorem 2.3 

Remark 2.1. Theorem 1 t only unify the known 
results for differential and difference equation orre- 
sponding to Equation (1), but also generalize and im-
pr

 sc
e ollowing examples to illustrate our 

mainresults. 
Example 2.1. Consider the forth-order dynamic equa-

tion on the time scale 

t t


 



 

 

The rest of the proof is simil at of Th
and hence omitted. The proof is complete. 

 - 5 no
s c

ove essentially the existing results of [13-15] using the 
time ale theory. 

W will give the f

 : ,nq n q 10    

 
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3
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   
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    
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  (5) 

Here    1
4, ,

t
m p t t

qq
    ,  

 
     2 2 2

10 5

1 1 1 1
2

q q q q q
q t

q t

    
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 

2 2 2

2
1 1 1 1

3
q q q q q

L t 
310 2 3q t t q

    
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
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By the definition of  ,kg s t , we have 

    
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s
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q q q q q
s
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     
    

It is obvious that Equation (5) satisfies all con ns 
of Theorem 2.2. Hence Equation (5) has a bounded nono- 
scillatory solution which is bounded away from zero. In  

fact 

ditio

  1
1x t

t
   is a solution of Equation (5). However,  

to the best of our knowledge, there are no results dealin
with the existence of nonoscillatory solutions for Equa- 
tion (5). 

Example 2.2. Consider the third-order dyna ic equa-
tion on the time scale 

g 

m  
   

      
 
 

3

2

11 2 161
2 1 1

2 8 2
,

t

t t
x t x t x t

 
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   (6) 

Here  ,  

2.t 

   3, 2, 1m p t t t   

     1

1
, 1

2t
f t x t x t    

and  
 
 28 2 t

tions of Theorem 2.3 are satisfied and hence Equation (6) 
has a bounded nonoscillatory solution which is bounded  

11 2 16t

q t


 . It is easy to see that all co

 from zero

ndi- 

away . In fact   1
1x t    is a solution of  

2
Equation (6). 
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