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ABSTRACT

In this paper, we consider the following forced higher-order nonlinear neutral dynamic equation

[x(t)+ p(t)x(z’(t))]Am +f(t,x(r, (t)) x(z-2 (t)) x(rk (t))) = q(t), te [to,oo)T

on time scales. By using Banach contraction principle, we obtain sufficient conditions for the existence of nonoscilla-
tory solutions for general p(z) and ¢(r) which means that we allow oscillatory p(7) and ¢(t). We give some

examples to illustrate the obtained results.
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1. Introduction

The study of dynamic equations on time scales, which
has recently received a lot of attention, was introduced
by Stefan Hilger in his Ph.D. thesis in 1988 in order to
unify continuous and discrete analysis [1]. Dynamic equ-
ations on time scales have an enormous potential for
modelling a variety of applications such as in population
dynamics. Several authors have expounded on various
aspects of this new theory, see the survey paper by
Agarwal, Bohner, O’Regan and Peterson [2] and refer-
ences cited therein. A book on the subject of time scales,
by Bohner and Peterson [3], summarizes and organizes
much of the time scale calculus. We refer also to the last
book by Bohner and Peterson [4] for advances in dy-
namic equations on time scales.

Recently, much attention is concerned with oscillation
and nonoscillatory solutions for dynamic equations on
time scales [5-12].

In Li and Zhang [6] studied the existence of nonoscil-
latory solutions to neutral dynamic equation

[x(t) + p(l‘)x(z'(t))]An
e )l () =0,

Li, Han, Sun and Yang [10] established the existence
of nonoscillatory solutions to the following second order
neutral delay dynamic equation

[x())+ p(1)x(z(1))]
+4,(1)x(7, (1)) = 42 (1) x(z (1)) = ().
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Zhang and Sun [13] studied the existence of nonoscil-
latory solutions of the forced nonlinear difference equa-
tion

A(x” —pnxr("))+f(n,xa(n)): q,.

Zhou and Zhang [14] obtained some sufficient condi-
tions of nonoscillatory solutions for the higher order de-
lay difference equation with positive and negative coeffi-
cients

A’" (xn +cxn—k ) + pn'xn—r _q’1xn—l = O .

Lu [15] obtained some necessary and sufficient condi-
tions for the existence of nonoscillatory solutions for the
following first order neutral equation

(O£ 0200 0) | + £, (e () =000

Motivated by these works, in this paper, we consider
the higher-order nonlinear neutral dynamic equation

K
[x(0)+p(1)x(z(1))]
+f (6x(n (1)), x(72(0))o x(7 (1)) = a(0),
where ¢ e [to,oo),Jr , meN, supT =o0. We assume
p,qeC, ([to,oo)T ,R) and allow p(7) and ¢(r) to
be oscillatory. 7,7, € C,, ([to,oo)T ,’]I‘) satisfy
lim, ,, 7(¢)=lim,_, 7, (t)=+0,i =12,k ,.

t—oo Vi

f(t,ul,uz,muk)eC(']I‘XR",R) is nondecreasing for

(M
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u, and wu,f(t,u,uy,--u, )20 for
uu; 20,j=L2,--,k.

We recall x is a solution of Equation (1) provided
that x(¢)+ p(t)x(z'(t)) is m times differentiable,
and x satisfies Equation (1), A solution x of Equa-
tion (1) is called nonoscillatory if x is of one sign when
eventually.

2. Existence Results for Nonoscillatory
Solutions

In this section, we establish sufficient conditions of the
existence of nonoscillatory solutions for Equation (1).
First we define a sequence of functions g, (s,7), keN,
as follows:

e (5:0)=Lew ()= [ g, (o ()t

For g, (s,t), we have the following Lemma.

Lemma 2.1. (Li and Zhang [6]) Assume s is fixed,
and let g (s,7) be the derivative g, (s,¢) with respect
to . Then

g (s,t)=-g,_ (s.1),keN,teT".

Let BC denote the Banach space of all bounded
functions x(7),# > ¢, , with the norm
|x]| = sup,.,, - x(t)| <oo. We will use the following as-
sumptions:

(i) there exists « >0 such that

|f(t ula”l)"'uk)_f(ta‘}lavZa'“Vk)|
<L(t Ilglal)kqu —v|
for t>2¢, and O0<u,v,<a,j=12,-,
L(t)eC,(T,T);

(ii) J:gwl (o(s
(iii) [ g..(c

k , where

),0 L(S)As <o
(s),0)|q(s)|As <o

(iv) there exists p €| —,1| such that

lp(t)<1-p.t21,;
(v) there exists p (—1,0] such that
p<p(t)<0,6>1y;
(vi) there exist p,, p, € (—o0,—1) such that
p<p(t)<pyt>ty;
(vii) there exists p e(0,1) such that

0<p(t)<p.t=ty;

(viii) there exist p,, p, €(1,+o) such that
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12 Sp(t)sz,tZtO.

Theorem 2.1. Assume that (i), (ii), (iii) and (iv) hold,
then Equation (1) has a bounded nonoscillatory solution
which is bounded away from zero.

Proof. Choose d,,c; such that 0<d, <(2p-1)a
and d,+(1-p)a<c < pa . Let

c= min{%a,p(){—cl,c1 —d, —(l—p)a}. There exists a

t, >t, large enough such that when ¢>¢, we have
v(t),7,(t)=4,,i=1,2,---,k and

[ gni(o(s).0)aL(s)+la(s)]as<c. @
By condition (i) and the hypotheses on f(t,ul,--~,uk) s

forany t21,,0<u, <a,i=12,---,k,we have
f(t,ul,m,uk)SaL(t). 3)
We defineaset Q c BC as follows:
Q={xeBC:d <x(1)<a.t>1}. (4)

Then Q is a closed, bounded and convex subset of
BC .Defineamap I' on Q as follows:

(T)(1)
a-p(O)x(c()+(-1)"" ["g.i(o
= ~[f(s,x(q(s)),(TQ(s)),...,

1>1,
(Tx)(#,).1, <t <.

(5).1)
(s (s))-a(s)] s

First, we shall show that for any xe€Q and t2>¢,,
(Cx)(t)eQ.Forany xeQ and 7>1,by(2),(3)and
(4), we get

(r+)(1)
26— p(t)x(c(1)) =] g1 (o (5).1)
[£(s:x(m(5)) 2(z(5))e0 x(5(5)) +a(s)]Jas
> —|p(t) |x(z'(t))
[ g, (o (5),0)[aL(s)

ch_ _P _[Cl_

(s)+[a(s)]Jas
~(1-p)a]=d,.
Furthermore, we have

() (2)

<o -|p () ¥ (2 (1)) -] gu (o

[/ (s:x(72(9))sx(z (5)) -
<¢+(1-p)a

+L gm_1 0' s ,0)[aL(s)+|q(s)HAs

Scl+(l—p)05+pa—c1 =a.

x(z’k (S))) +|q(s)|] As
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Hence when ¢>17,, we obtain d, <(I'x)(¢f)<a, so
(Tx)(r)e Q2 forany xeQ.

Next, we show that " is a contraction mapping on
Q . Infactforany x,ye€Q and t=>¢, wehave

(T)(2)

£ (5.5 (5))s (52 () or(m (s)) As

<(1=p)lr=sl+ [ gur (@(5),0) L (s)fx - yas

p p
<[ 1=p+Z |lx—y] =] 1-Z |[x—y].
<(1-p2)pe-si=(1-5 e

Since 0<1—§<1, we conclude that I is a con-

traction mapping on Q. By the Banach fixed point
theorem, I' has a fixed point x" € Q. By Lemma 2.1,
it is easy to see that x* (t) is a bounded nonoscillatory
solution of the Equation (1). This completes the proof of
Theorem 2.1.

Theorem 2.2. Assume that (i), (ii), (iii) and (v) hold,
then Equation (1) has a bounded nonoscillatory solution
which is bounded away from zero.

2(1+p)
Proof. Choose S >0, such that f< -

a
. Ob-

B

2

ciently large such that when r>¢ , we have 7(7),

7, (t)21,,i=1,2,---,k and

J.:OgW1 (G(S),O)[aL(s)+|q(s)”As < g

We define a closed, bounded and convex subset Q
of BC as follows:

viously (1+p)a—f>~. There exists a #, >1, suffi-

Q:{xeBngﬁx(t)Sa,tZto}.

Defineamap I' on Q as follows:

(F)(7)
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The rest of the proof is similar to that of Theorem 2.1
and hence omitted. The proof is complete.

Theorem 2.3. Assume that (i), (ii), (iii) and (vi) hold.
7 has the inverse 7' € C(T,T), then Equation (1) has
a bounded nonoscillatory solution which is bounded
away from zero.

Proof. We choose positive constants M,,M,, 8, such
that M, <a, -pM,<pB<(-p,—1)M, . Let
c :min{wpz,(—p2 -1)M, - _1+2p2 a}.

s
1

There exists a ¢ >1¢, large enough such that when
t >t , we have T"(‘[i(t))Zto,i:I,z,-..,k,and

j::(,)gm_l (O'(S),O)[(ZL(S)+|q(S)|:|A§' <c.

We define a closed, bounded and convex subset Q
of BC as follows:

Q:{xeBC:MlSx(t)SMz,tZto}.

Defineamap I':Q — BC as follows:

(Fx)(t) =

-[f(s,x(r,(s)), x(r2 (s)),---, x(z’k (S)))—(](S)]As,
1>t
(Ix)(2),8, <t <t,.

First, we shall show that TQc Q. For any xeQ
and ¢ >¢,, note that

(T)(1)

—£+ (B+pM,)p,
b PPy

:M1

Thus (Tx)(r)eQ for xeQ,thisis TQc Q.
Next, we show that I'" is a contraction mapping on
Q . Infactforany x,yeQ and t>t¢, wehave

OJDM
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---,x(z’k (s)))—f(s,y(z'1 (s)),y(r2 (s)),-~-,y(rk (s)))‘ As

1 1
<——|x—y|-— o —y|As
et R CIOK 0T
LN L >0 [ pz—l
A B e ey S
Since 0<p2—_1<1, we conclude that I is a con-
2p,

traction mapping on Q. By the Banach fixed point
theorem, I' has a fixed point x* € Q. By Lemma 2.1,
it is casy to see that x"(¢) is a bounded nonoscillatory
solution of the Equation (1). This completes the proof of
Theorem 2.3.

Theorem 2.4. Assume that (i), (ii), (iii) and (vii) hold,
then equation (1) has a bounded nonoscillatory solution
which is bounded away from zero.

Proof. Choose [ >0,suchthat pa< f<a.Let

c:min{a—ﬂ,’g—pa
2
enough such that when ¢ >, we have

(),7,(t) 2 ty,i = 1,2,k

}. There exists a ¢t >t, large

and

:Cgm—l (O‘(s),O)[aL(s)+|q(s)|]As <ec.

Easily to know

Qz{xeBC:ﬁ_zpa

Sx(t)ﬁa,tZto}

is a closed, bounded and convex subset of BC . Define a
map [':Q — BC as follows:

(x)(2)
B=p(0)x(z()+(=1)"" [ g, (c(s).1)
_ ~[f(s,x(z'l (s)),x(r2 (s)),---,x(z’k (s)))—q(s)} As,

t=t,
(Tx)(1,), 8, <t <1,

The rest of the proof is similar to that of Theorem 2.1
and hence omitted. The proof is complete.

Theorem 2.5. Assume that o >1, (i), (ii), (iii) and
(viii) hold. 7 has the inverse 7' € C(T,T), then Equ-
ation (1) has a bounded nonoscillatory solution which is
bounded away from zero.

Proof. We choose f,suchthat 1< < p,.Let

Copyright © 2012 SciRes.

c:min{ﬁ—l,pl—_ﬂ,ﬂa}. There exists a t >t,
2 2

large enough such that when ¢ >¢ , we have
7! (Z'l. (t)) >t,i=1,2,--,k , and

.Lo:(,)gm—l( ( ) 0)|:0!L

We define a closed, bounded and convex subset Q
of BC as follows:
L’B’ > to} )

Qz{xeBC:pl_ﬂﬁx(t)Spl
2p, 2p,

|q ”ASSC.

Defineamap I':Q — BC as follows:

(Tx)(1) =

<l> e 1)
-[f(s,x@(S)),x(rz(s)>,...,x(fk(s)))_q(sﬂm,

121,
(Tx)(1,),t, <t <t,.

The rest of the proof is similar to that of Theorem 2.3
and hence omitted. The proof is complete.

Remark 2.1. Theorem 1 - 5 not only unify the known
results for differential and difference equations corre-
sponding to Equation (1), but also generalize and im-
prove essentially the existing results of [13-15] using the
time scale theory.

We will give the following examples to illustrate our
mainresults.

Example 2.1. Consider the forth-order dynamic equa-
tion on the time scale T = {q” :neNg,q> 1}

[x(t)—ﬁx[énﬁ Ve )(qqfol)z(qQ +1)
)
10

(iva)

2(1 Ja)(g+1)

q"t

)(q2 +q+1)

5

Here m=4,p(1)=-

ﬁ,f(t)ﬁ,
2(1—\/5)(q—i-1)2 (q2 +1)(q2 +q+1)

q(t)= 7°F ’

(1=-a)(a+1)' ("

+1)(q2 +q+1)‘ |

L(t)=3a’

OJDM
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By the definition of g, (s,7), we have
g4_1(0'(s),0)L(s)
a4 1)

q s? (s+q3)
2 _ 2( 2 2

e (Va-1)(g+1)"(¢*+1)(¢* +q+1)

- 10 2 ’

q's
g11(0(5).0)|a(s)|
(ﬁ—l)(q +1)2 (qz +1)(q2 +q +1)

<s’2 05
qs
)@ (@ (e +a+)
quSZ :
Then
L3a’ \/g—l (q+1)2 > +1)(g> +q+1
et e t CATEL P

roz(\/g—l)(q+l)2 (q2 +1)(q2 +q+1)

It is obvious that Equation (5) satisfies all conditions
of Theorem 2.2. Hence Equation (5) has a bounded nono-
scillatory solution which is bounded away from zero. In

As < 0,

10 2
q S

1 . . .
fact x(z)=1+- is a solution of Equation (5). However,
t

to the best of our knowledge, there are no results dealing
with the existence of nonoscillatory solutions for Equa-
tion (5).

Example 2.2. Consider the third-order dynamic equa-
tion on the time scale T =N

(x(t)—Zx(t—l))A3+%x(t—l):%, ©

t>2.

Here m=3,p(t)=-2,7(¢t)=1-1,

7 (6, (t))):%x(t—l)
11(2')+16

3 (221 )
tions of Theorem 2.3 are satisfied and hence Equation (6)
has a bounded nonoscillatory solution which is bounded

and ¢(t)= . It is easy to see that all condi-

1 . .
away from zero. In fact x(t)=1+? is a solution of

Equation (6).

Copyright © 2012 SciRes.
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