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ABSTRACT 

The augmented Lagrangian penalty formulation and four different coordination strategies are used to examine the nu- 
merical behavior of Analytical Target Cascading (ATC) for multilevel optimization of hierarchical systems. The coor- 
dination strategies considered include augmented Lagrangian using the method of multipliers and alternating direction 
method of multipliers, diagonal quadratic approximation, and truncated diagonal quadratic approximation. Properties 
examined include computational cost and solution accuracy based on the selected values for the different parameters 
that appear in each formulation. The different strategies are implemented using two- and three-level decomposed exam- 
ple problems. While the results show the interaction between the selected ATC formulation and the values of associated 
parameters, they clearly highlight the impact they could have on both the solution accuracy and computational cost. 
 
Keywords: Analytical Target Cascading; Multilevel Design Optimization; Augmented Lagrangian;  

Method of Multipliers 

1. Introduction 

A complex optimization problem may be decomposed 
into two or more subsystems with partitioned design 
variables and separate objective functions and design 
constraints. The layered architecture of hierarchically 
decomposed multilevel systems is illustrated by the ex- 
ample in Figure 1; the hierarchy can be expanded to in- 
clude several levels with each containing multiple ele- 
ments. Because the number of design variables in each 
element represents a fraction of the total set, dimension- 
ality of each element optimization problem is reduced. 
Decomposed optimization problems require a coordina- 
tion strategy that in the ensuing iterative solution process 
ensures satisfaction of system-level design criteria and 
proper convergence to an optimum design. 

Analytical target cascading (ATC) [1,2] was devel- 
oped for systems such as that shown in Figure 1. In the 
initial formulation of ATC [2-5], deviation tolerances 
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Figure 1. An illustrative model of a hierarchically decom-
posed multilevel system. 

were defined for the responses and targets as well as the 
linking (or shared design) variables. The multilevel op- 
timization problem was solved while minimizing the 
deviation tolerances and satisfying the design constraints. 

ATC solution has been shown to converge to a point 
that satisfies the necessary optimality conditions of the 
original design optimization problem [6]. Using a for- 
mulation of ATC with similarities to that in [3], the ine- 
quality constraints on deviation tolerances were brought 
into the objective function to form an augmented objec-
tive function; this formulation included the addition of 
weight factors to the deviation tolerances. 

The scaled tolerance formulation [3] was used in [7] to 
investigate the numerical behavior of the ATC method- 
ology and the local convergence properties of different 
coordination strategies. They examined the effects of 
linking variables, subproblem solution accuracy, and the 
number of significant digits on numerical stability. 

The commonly used ATC formulations are based on 
quadratic penalty (QP) functions [7-10]. Numerical ex- 
periments with these formulations show significant 
computational effort to obtain accurate solutions. The QP 
functions minimize the consistency constraints (equality 
or inequality) to force targets and responses to match. 
Ideally, these consistency constraints have to be relaxed, 
allowing inconsistencies between targets and responses 
that are gradually eliminated in the iterative solution 
process. For the QP function, in general, large weight 
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factors are required to find accurate solutions [11]. Due 
to lack of a mathematical relationship between weight 
factors and solution accuracy, the weight factors are given 
arbitrarily large values that may cause computational dif- 
ficulties [8,10]. 

An iterative method was presented in [8] for finding 
the minimal penalty weight factors that provide con- 
verged solutions within user-specified inconsistency tol- 
erances, and its effectiveness was demonstrated with 
several examples. This method contains an inner and an 
outer loop. The inner loop solves the decomposed ATC 
problem with a coordination scheme. The outer loop up- 
dates the penalty weight factors based on information 
obtained from the inner loop. The iterative method cal- 
culates the Lagrange multipliers and derivatives of the 
response function to update the weight factors. 

In the separable ordinary Lagrangian (OL) approach, a 
large-scale convex nonlinear programming problem is 
formulated and decomposed using the ATC [12]. By 
combining the classical Lagrangian duality and the aug- 
mented Lagrangian duality, a simple method was pro- 
posedin [13] for decomposition without imposing re- 
strictive conditions to alleviate the difficulty of convexity 
requirement. The modified Lagrangian dual formulation 
and coordination enhances the ATC performance [14] 
over those proposed earlier in the literature. 

ATC problem relaxation with an augmented Lagran- 
gian penalty (ALP) function using the method of multi- 
pliers (AL) and the alternating direction method of mul- 
tipliers (AL-AD) was proposed and investigated in [15]. 
By means of the ALP relaxation, ill-conditioning is re- 
duced for the inner loop because accurate solutions can 
be obtained for smaller weight factors. This formulation 
was later adopted in [16] that used Diagonal Quadratic 
Approximation (DQA) and Truncated DQA (TDQA) for 
parallelization of ATC. Similarly, the ALP formulation 
was also applied in [17], but three different updating 
methods were used in the outer loop. 

In this paper, the (ALP) function using the method of 
multipliers with four different coordination strategies 
(i.e., AL, AL-AD, DQA, and TDQA) is used to study the 
numerical behavior of ATC. Moreover, the role of two 
penalty parameters that can have large influence on solu- 
tion accuracy and computational cost is investigated. The 
effects of the penalty parameter updating coefficient in 
the outer loop and the initial guessed values for the deci- 
sion variables to start the multilevel optimization process 
are examined by solving three example problems. 

2. Overview of ATC 

For a decomposed system with N levels and M elements, 
as shown in Figure 2, the subscripts ij denote the jth 
element in the ith level [15]. The vector of local variables 
is denoted by xij with tij is the vector of target variables 
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Figure 2.Variable allocation in a hierarchical system. 
 
shared by element ij and its parent at level i – 1; Ei is the 
set of lements at level i (e.g., E3 = {4, 5, 6} in Figure 2); e

 1, ,D k k 
ijij D  is the set of children of element ij 

(e.g., D22 = {4, 5}); fij is the local objective; gij is the 
vector of local inequality constraints; and hij is the vector 
of local equality constraints. Hence, an all-in-one (AIO) 
problem of such a system is defined as 

    11 1,
1

min , , , ,
x

x t t t
Dijij ij

i

N

ij ij ij i k i kt
j Ei

f  


   

    11 1. . , , , , 0
Dij

ij ij ij i k i ks t   g x t t t      (1) 

    11 1, , , , 0h x t t t
Dij

ij ij ij i k i k    

, 1, ,ij E i N     

In the ATC formulation adopted from [15], response 
copies rij are introduced to make the objective function 
and constraints separable, which leads to the addition of 
consistency constraints expressed as cij = tij – rij = 0, 
where cij is a measure of inconsistency between the tar-
gets and the corresponding responses in element ij. 
Moreover, the objective function is augmented by the 
addition of a penalty term π that leads to the relaxed form 
of the AIO problem formulated as 

   
11 , ,

1

min
x x

x c
M

i
N

N

ij ij i
i

j
j E

f
 

 
 

 . . 0ij ijs t x g x  

  0h xij ij                  (2) 

0c t rij ij ij    

with           11 1, , , , ,x r t t tx
Dij

ij ij ij ij i k i k 
    

  

, 1, ,ij E i N     

where  22 , ,c c cNM   in the hierarchy. 
Now, the relaxed AIO problem in Equation (2) can be 

decomposed into separate subproblems (e.g., Pij for ele-
ment ij) involving only a subset of decision variables xij  
given by 
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   min
x

cx
ij

ij ij ijf             1 2w w c k k k k     k

k

       (7) 

   1w wk                 (8)  . . 0xgij ijs t   
where the penalty parameter updating coefficient β is 
required to be ≥1 for convex objective functions [15].   0h xij ij                  (3) 

with             11 1, , , ,x r t tx
Dij

ij ij ij i k i k 
 

 


 
The double-loop approach in AL avoids setting arbi- 

trarily large weight factors that can often cause ill-condi- 
tioning in the solution. The weight factors are updated 
using the information obtained from the inner loop. 
Whereas the inner loop is very computationally expensive, 
the outer loop is very inexpensive. It has been shown in 
the literature that the AL method can significantly reduce 
the computational cost of solving a problem with ATC 
without loss of accuracy. 

In QP, OL, and ALP, the penalty term takes the form 

  2

2
c w cQ ij ij ij               (4) 

 c T cL ij ij ij               (5) 

  2

2
c c w cT

AL ij ij ij ij ij           (6) 

2.1. Alternative Coordination Strategies The ALP method contains two loops. In the inner loop, 
the decomposed ATC problem is solved for fixed penalty 
parameters (λ and w) whereas in the outer loop, an 
algorithm is applied to update both λ and w as 

For the ALP formulation, thefour alternative coordinateon 
strategies are described by the algorithms outlined in Fig- 
ures 3 and 4. 

 

(Initialization) 
Define the decomposed problem and the initial design  0x . 

Set the loop iteration number k = 0. 

Define the penalty parameters  0λ and  0w for the first iteration.

(Solution of the ATC problem) 
Solve the decomposed problem in two levels, 

parallel solution of odd/even elements, 

with fixed  λ k  and  w k  to obtain an updated solution  1x k .

End

(Updating the penalty parameters) 

Set k = k + 1 and update the Lagrange multipliers 
         1 2λ λ w w wk k k k k      

   1w wk k   

No 

Yes Convergence? 

(Initialization) 
Define the decomposed problem and the initial design  0x . 

Set the outer loop iteration number k = 0. 

Define the penalty parameters  0λ and  0w for the first iteration.

(Solution of the ATC problem in the inner loop) 
Solve the decomposed problem in hierarchical order 

with fixed  λ k  and  w k  to obtain an updated solution  1x k .

No 

Yes 

End 

(Updating the penalty parameters in the outer loop) 
Set k = k + 1 and update the Lagrange multipliers 

         1 2λ λ w w wk k k k k      
   1w wk k   

Yes 

No 

Outer Loop 
Convergence? 

 Inner Loop Convergence? 

 
                               (a)                                                            (b) 

Figure 3. Flowcharts of (a) AL and (b) AL-AD algorithms. 
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For AL and AL-AD in Figure 3, the outer-loop con- 

vergence criterion is satisfied when the reduction of in- 
consistencies in two successive solutions is sufficiently 
small (i.e.,    1c ck k   , where k denotes the outer 
loop counter and τ is a user-defined termination toler- 
ance). The inner loop convergence criterion is reached 
when the difference in the objective function values in 
two consecutive inner loop iterations is less than 

10ATC  . 
In the DQA and TDQA algorithms in Figure 4, the 

convergence criteria are defined as 

        1, 1 1, 1, 1 1,max ,t t r rk s k s k s k s
inσ

          

       1 1max ,t t r r
kk k k

outσ   


 


 

where σin and σout are the inner and outer loop termination 
tolerances with 10in outσ σ  and σout = τ. 

2.2. Illustrative Example Problems 

The effect of β on the accuracy and computational cost 
has not been addressed in the literature. Although it has 

been mentioned that β can take a wide range of values, it 
is unclear what value must be chosen with respect to the 
desired levels of accuracy and computational cost as well 
as the selected ATC solution methodology and coordination 
strategy. Furthermore, since in ATC the initial values for 
response/target and linking variables are selected at 
random, it is unclear what effects these values would 
have on the ATC results. 

To examine these effects, three different example 
problems are solved using the four different methods of 
ATC described in the previous section. For each method, 
the solution starts from different initial guessed values 
(IGV) that correspond to different randomly selected 
design points relative to the optimum point. The solution 
is repeated for 20 different values of β and every IGV. 

Two performance metrics are considered: the compu- 
tational cost that is captured by the number of function 
evaluations, and the error, which is defined as 

* ATCx xe


              (9) 

where x* is the exact optimum design point and xATC is 
the solution found by ATC. All of the ATC formulations 

 
 

 

 

Yes 

End 

(Updating the penalty parameters in the outer loop) 
Set k = k + 1 and update the Lagrange multipliers 
         1 2λ λ w w ck k k k k      
   1w wk k 

No 

Set         1, 1 1, 1, 1 1,Γx x x xk s k s k s k s        ,  

where Γ is the step size, and set s = s + 1. 

Set    1 1, 1x xk k s    

No 

Yes 

Inner Loop  
Convergence? 

(Solution of the ATC problem in the inner loop) 

Given  x k , the solution of the previous outer loop iteration, 
set s = 0, where s is the inner loop iteration number. 
For all elements, solve for xij

 in parallel and obtain  1, 1x k s  , 

where  1, 1x k s  is the solution of the sth inner loop iteration. 

Outer Loop  
Convergence? 

(Initialization) 

Define the decomposed problem and the initial design  0x . 
Set the outer loop iteration number k = 0. 

Define the penalty parameters  0λ  and  0w  for the first iteration. 

 
(a) 
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 (Initialization) 

Define the decomposed problem and the initial design  0x . 

Set the iteration number k = 0. 

Define the penalty parameters  0λ  and  0w  for the first iteration.. 

(Solution of the ATC problem) 

For all elements, solve for xij  in parallel and obtain  1x k . 

Convergence?

(Updating the penalty parameters) 

Set k = k + 1 and update the Lagrange multipliers 

         1 2λ λ w w ck k k k k      
   1w wk k   

No 

Yes 
End 

Set         1 1Γx x x xk k k k    , 

where Γ is the step size. 

 
(b) 

Figure 4. Flowcharts of (a) DQA and (b) TDQA algorithms. 
 
cited were developed into separate MATLAB codes and 
used to solve the following example problems. 

Problem 1: This is a 7-variable geometric programming 
problem with the AIO formulation expressed as 

1 7

2 2
1 2

, ,
min

x x
f x x 


 

2
3

2
4

1 2
5

. . 1 0
x x

s t g
x

 
    

2 2
5 6

2 2
7

1 0
x x

g
x


    

2 2 2 2
1 1 3 4 5 0h x x x x      

2 2 2 2
2 2 5 6 7 0h x x x x      

1 2 7, , , 0x x x   

where the point of optimum is at x* = [2.15, 2.06, 1.32, 

0.76, 1.07, 1.0, 1.47] with all four constraints active. 
This problem is decomposed into a two-level hierarchy 

[10] with a single element at the top level and another 
element at the bottom level. Local variables in the top 
element are x1, x3 and x4 along with 1

2
1f x  as the ob-

jective function subject to the inequality constraint g1 and 
equality constraint h1. Variables x2, x6 and x7 are the local 
design variables for the bottom element with the objec-
tive function 2

2
2f x  and constraints g2 and h2. The 

response/target variable for the two elements is x5. 
The initial values for the penalty parameters are 

defined as λ(0) = 0 and w(0) = 1. The starting design point 
is x(0) = [3, 3, 3, 3, 3, 3, 3] for all the formulations. The 
ten initial guessed values (IGV), i.e., IGV #1, ··· #10 for 
x5 are chosen as {0, 2, 4, 6, 8, 10, 20, 40, 70, 100}. For 
AL and DQA, β is given different values in the range of 
{1.1, 1.2, 1.3, ···, 3.0}, whereas for AL-AD and TDQA, 
β = 1. The IGV for x5 and β are chosen arbitrarily to 
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simply diversify the iterative solution process. The 
termination tolerance is chosen as τ = {10–2, 10–3, 10–4}. 

Figures 5 and 6 show the plots of function 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Cost trends for AL-based solution of Problem 1 
using (a) τ = 10–2, (b) τ = 10–3, and (c) τ = 10–4. 

evaluations number (cost) versus β for AL and DQA, 
respectively, using different IGV for x5. These figures 
show that the cost is affected by the choice of β. The op- 
timum β value to minimize cost depends on the termina-
tion tolerance used, but it appears to be near 1.5 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Cost trends for DQA-based solution of Problem 1 
using (a) τ = 10–2, (b) τ = 10–3, and (c) τ = 10–4. 
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or 2.3 for most cases. For different IGV, the relationship 
between cost and β is similar, but it is not necessarily 
monotonic. Due to this similarity, only the upper and 
lower bounds are shown for each case using the corre- 
sponding IGV numbers. It appears that the value of β 
also has an influence on the error, especially for larger 
tolerances as shown in Figure 7. The solution error 
trends for different IGV are identical; hence, the plot of 
error from Equation (9) versus β is shown for only one 
case. Figure 8 is used to further highlight the effect of 
IGV on both function evaluations and error under differ- 
ent solution strategies and convergence tolerances. The 
plots are shown only for β = 2 case with three conver- 
gence tolerance values. The dependency of error on IGV 
for AL-AD and TDQA is very high at τ = 10–2, but 
minimal or nonexistent at τ = 10–3 and τ = 10–4. Thus, 
TDQA and AL-AD are much more dependent on IGV 
than DQA and AL. Theefficiency of AL and DQA 

methods changes drastically with tighter termination tol- 
erance, while solution error for AL and DQA does not 
change very much. Hence, for larger τ, AL and DQA are 
less costly, whereas for smaller τ, AL-AD and TDQA are 
more efficient. 

Problem 2: This is a 14-variable geometric program- 
ming problem with the AIO formulation expressed as [5] 

1 2 14

2 2
1 2

, , ,
min

x x x
f x x 


 

2 2
3 4

1 2
5

. . 1
x x

s t g
x

 
   

2 2
5 6

2 2
7

1
x x

g
x


   

2 2
8 9

3 2
11

1
x x

g
x


   

 

 
(a) 

 
(b) 

Figure 7. Error trends for (a) AL and (b) DQA solutions of Problem 1 using x5 = 6 with τ = {10–2, 10–3, 10–4}. 
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2 2

8 10
4 2

11

1
x x

g
x

 
   

2 2
11 12

5 2
13

1
x x

g
x


   

2 2
11 12

6 2
14

1
x x

g
x


   

 2 2 2 2
1 1 3 4 5 0h x x x x      

 2 2 2 2
2 2 5 6 7 0h x x x x      

 2 2 2 2 2
3 3 8 9 10 11 0h x x x x x        

 2 2 2 2 2
4 6 11 12 13 14 0h x x x x x       

1 2 14, , , 0x x x   

The global optimum is located at x* = [2.84, 3.09, 2.36, 
0.76, 0.87, 2.81, 0.94, 0.97, 0.87, 0.80, 1.30, 0.84, 1.76, 
1.55] with f* = 17.6 and all constraints active. 

The decomposition model selected for this problem 
[15] has five elements in three levels: A top-level element 
(1) with two children (2 and 3) at level 2, each with one 
child (4 and 5, respectively) at the bottom level. Local 
variables in elements 2, 3, 4, and 5 are {x4}, {x7}, {x8, x9, 
x10} and {x12, x13, x14} with design constraints being {x4}, 
{g1, h1}, {g2, h2}, {g3, g4, h3} and {g5, g6, h4}, respectively. 
The parameters x1, x2, x3 and x6 are the responses/targets 
between elements 1 - 2, 1 - 3, 2 - 4, and 3 - 5, 
 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Costand error trends from different solutions of 
Problem 1 using β = 2 for AL and DQA with (a) τ = 10–2, (b) 
τ = 10–3, and (c) τ = 10–4. 
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respectively, whereas x5 and x11 are the linking variables 
between elements 2 - 3 and 4 - 5, respectively, both of 
which are coordinated in element 1. 

The initial values for the penalty parameters in all the 
formulations are taken as λ(0) = 0 and w(0) = 1. The initial 
design point is x(0) = [5, 5, 2.76, 0.25, 1.26, 4.64,1.39, 
0.67, 0.76, 1.7, 2.26, 1.41, 2.71, 2.66] for all the formula- 
tions, which is the same as that used in the previous 
studies cited. The IGV for x1, x2, x3, x4, x5, x6 and x11 are 
randomly selected in the design domain with a relative 
distance of {0, 2, 4, 6, 8, 10, 20, 40, 70, 100} from the 
optimum point with the corresponding values shown in 
Table 1. These variables need to have predefined values 
to start the ATC solution sequence. For example in AL, it 
is necessary to guess values for response/linking vari- 
ables x1, x2, x5 and x11 from the lower level elements to 
solve element 1, response value for x3 from element 4 to 
solve element 2 and response value for x6 from element 5 
to solve element 3. 

For AL and DQA, β = {1.1, 1.2, 1.3, …, 2.9, 3}, 
whereas for AL-AD and TDQA, β = 1. The termination 
tolerances were set to τ = {10–2, 10–3, 10–4}. Computa- 
tional cost in AL and DQA is affected by β values but it 
follows a non-monotonic manner. It has the minimum 
computational cost near β = 2 and it generally increases 
with higher β values as shown in Figures 9 and 10. 

The plots in Figure 11 show that error in both AL and 
DQA depends on the β value, especially with τ = 10–2, 
and this is very critical for the DQA method. The error in 
AL is nearly uniform for β > 1.5 while in DQA it has an 
ascending mode. 

Figure 12 indicates that the dependency of error on 
IGV for AL-AD and DQA is observable at τ = 10–2, di- 
minishes slightly for TDQA at τ = 10–3, and vanishes at τ = 
10–4. It can be concluded that TDQA and, to some ex- 
tent, AL-AD are much more dependent on the IGV than 
DQA and AL. The computational costs of AL and DQA 
 
Table 1. List of IGV for response/target and linking va- 
riables in Problem 2. 

IGV [x1, x2, x3, x5, x6, x11] 

1 [2.835, 3.090, 2.355, 0.870, 2.812, 1.301] 

2 [2.979, 4.094, 1.417, 2.231, 2.886, 0.895] 

3 [5.764, 2.848, 0.412, 1.748, 1.222, 0.777] 

4 [0.125, 0.835, 3.382, 5.370, 1.457, 1.080] 

5 [6.731, 3.675, 3.192, 7.602, 3.964, 2.437] 

6 [7.444, 10.626, 2.843, 3.127, 6.366, 3.160] 

7 [2.740, 4.545, 7.056, 18.179, 10.027, 5.410] 

8 [1.582, 23.522, 19.805, 7.305, 8.027, 29.399] 

9 [15.582, 53.774, 12.037, 6.821, 37.460, 29.94] 

10 [0.141, 46.214, 8.356, 81.508, 19.002, 36.692] 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Cost trends for AL-based solution of Problem 2 
using (a) τ = 10–2, (b) τ = 10–3, and (c) τ = 10–4. 
 
drastically change with tighter termination tolerance, 
while solution errors in AL and DQA do not change very 
much. In contrast to AL and DQA, the error in AL-AD 
and TDQA changes with different τ values while the 
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(a) 

 
(b) 

 
(c) 

Figure 10. Cost trends for DQA-based solution of Problem 
2 using (a) τ = 10–2, (b) τ = 10–3, and (c) τ = 10–4. 
 
computational costs are nearly similar. Hence, for larger 
τ, AL and DQA are better choices, whereas for tighter τ, 
AL-AD and TDQA are more efficient. 

Problem 3: This is a seven-variable geometric pro- 
gramming problem with only inequality constraints. The 
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Figure 11. Error trends for (a) AL and (b) DQA solutions of 
Problem 2 using IGV #4 with τ = {10–2, 10–3, 10–4}. 
 
corresponding AIO problem is expressed as 

    2 2 4
1 2 3 4

6 2 4
5 6 7 6 7 6 7

min  10 5 12 3 11

10 7 4 10 8

f x x x x

x x x x x x x

      

     

2

5 0

 

2 4 2
1 1 2 3 4. . 127 2 3 4 5s t g x x x x x         

2
2 1 2 3 4282 7 3 10 0g x x x x x5         

2 2
3 1 2 6196 23 6 8 0g x x x 7x        

2 2 2
4 1 2 1 2 3 6 74 3 2 5 11g x x x x x x x 0        

10 10, 1, ,7ix i      

where x* = [2.3305, 1.9513, −0.4775, 4.3657, −0.6245, 
1.0371, 1.5942] is the unique optimal solution. 

The problem is decomposed into three elements in two 
levels: A top-level element with elements 2 and 3 at level 
2. There is no local variable or constraint at the top level. 
Local variables of element 2 are x4 and x5 along with 
constraints g1 and g2. Local variables of element 3 are x6 
and x7 with inequality constraints g3 and g4. There is no 
target variable in this decomposed structure. The linking 
variables x1, x2 and x3 are shared between elements 2 and 
3 and coordinated in element 1. 

The starting design point is x(0) = [0, 0, 0, 0, 0, 0, 0] for 
all the formulations. The IGV for x1, x2 and x3 are ran- 
domly selected in design domain at a distance nearly 
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equal to {0, 2, 4, 6, 8, 10} from the optimum point with 
the corresponding values shown in Table 2. 

For AL and DQA, β = {1.1, 1.2, 1.3, ···, 2.9, 3}, 
 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Cost and error trends from different solutions of 
Problem 2 using β = 2 for AL and DQA with (a) τ = 10–2, (b) 
τ = 10–3, and (c) τ = 10–4. 
 

Table 2. List of IGV for linking variables in Problem 3. 

IGV [x1, x2, x3] 

1 [2.3305, 1.9514, –0.4775] 

2 [0.3635, 1.9144, –0.8961] 

3 [–0.0929, 0.0739, 2.1134] 

4 [5.0429, –2.6988, –3.2525] 

5 [1.3226, 1.4993, 7.4720] 

6 [8.1345, –3.6255, 5.3449] 

 
whereas for AL-AD and TDQA, β = 1. The termination 
tolerances were set to τ = {10–2, 10–3, 10–4}. 

Figures 13 and 14 show that the computational cost 
changes greatly with variations in β value and that the 
fluctuations are more pronounced for the smaller τ values. 
Figure 15 shows that error in AL is slightly dependent 
on β just for τ = 10–2 and it nearly disappears for τ = 10–3 
and τ = 10–4. The error in DQA is more dependent on β 
than AL. 

Figure 16 indicates that the computational cost de- 
pendency on IGV is negligible; the changes in computa- 
tional cost are lower than 5% for all the methods. The 
computational cost for AL and DQA, especially for DQA, 
changes significantly while the error is nearly identical 

Copyright © 2012 SciRes.                                                                                  AM 



S. DORMOHAMMADI, M. RAIS-ROHANI 1459

 
(a) 

 
(b) 

 
(c) 

Figure 13. Cost trends for AL-based solution of Problem 3 
using (a) τ = 10–2, (b) τ = 10–3, and (c) τ = 10–4. 
 
for tighter tolerances. Also, dependency of the error on 
IGV in AL-AD and TDQA is observable at τ = 10–2 and 
vanishes for tighter tolerances. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Cost trends for DQA-based solution of Problem 
3 using (a) τ = 10–2, (b) τ = 10–3, and (c) τ = 10–4. 

3. Conclusions 

The numerical behavior of the analytical target cascading 
(ATC) method was investigated for multilevel optimiza- 
tion of hierarchical systems based on different solution 
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(a) 

 
(b) 

Figure 15. Error trends for (a) AL and (b) DQA solutions of Problem 3 using IGV #3 with τ = {10–2, 10–3, 10–4}. 
 
strategies. The strategies considered included Augmented 
Lagrangian with method of multipliers (AL), Augmented 
Lagrangian with Alternating Direction method of multi- 
pliers (AL-AD), Diagonal Quadratic Approximation 
(DQA), and Truncated Diagonal Quadratic Approxima- 
tion (TDQA). Three example problems were used to exa- 
mine the effects of penalty parameter updating coeffi-
cient β and convergence tolerance τ on the computational 
cost and solution accuracy. In addition, the effect of ini-
tial guessed values (IGV) for the response/target and 
linking variables was also investigated. 

The results showed that although the computational 
cost in the AL and DQA methods is influenced by the 
value of β, it does not follow a specific ascending/de- 
scending pattern. The computational cost dependency on 
β is generally higher with increasing the convergence 
tolerance. Although previous studies recommend β > 1 
and 2 < β < 3, the results found here indicate that 1 < β < 
2 is also acceptable and that no single value of β can be 
suggested to reduce the computational cost in all the 

ATC-based optimization problems and solution strategies. 
The results also showed that the relationship between the 
computational cost and β is not dependent on the IGV as 
best noted in the results of the DQA method. 

In terms of solution accuracy, AL and DQA results 
depend on the β value irrespective of the selected IGV. 
With higher β values, better accuracy is obtained with 
AL while the behavior is different for DQA. The de- 
pendency of solution accuracy on β is reduced with 
tighter tolerance values. Comparison of the DQA and AL 
results indicate that AL is more stable in terms of accu- 
racy whereas DQA needs to have a tighter tolerance to 
obtain reasonable accuracy, although a tighter tolerance 
causes significant changes in the computational cost. In 
the absence of optimum β for computational cost and 
accuracy, the AL method appears to be more reliable 
than DQA. 

By moving the IGV farther away from the corre- 
sponding values at the point of optimum, all methods 
required more function calls, as expected. While the so 
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(a) 

 
(b) 

 
(c) 

Figure 16. Cost and error trends from different solutions of 
Problem 3 using β = 2 for AL and DQA with (a) τ = 10–2, (b) 
τ = 10–3, and (c) τ = 10–4. 
 
lution accuracy in AL and DQA was not influenced by 
the choice of IGV, the trend was quite the opposite for 
AL-AD and TDQA as they both had great dependency 
on IGV. The inner loop convergence requirement is more 
costly for AL and DQA than TDQA and AL-AD. Fur- 
thermore, the increase in computational cost for AL-AD 
and TDQA is much greater than AL and DQA when IGV 
is farther away from the optimum, but TDQA and AL- 
AD still show better performance. AL-AD and TDQA 
need tighter termination tolerances to have better accu- 
racy. 

In summary, the τ and β values have greater effect on 
AL and DQA solutions than the other two coordination 
strategies and they are not influenced by IGV. Hence, in 
using AL and DQA, appropriate values for these two 
parameters can enhance both solution accuracy and 
computational cost. In contrast, the computational cost 
and accuracy of AL-AD and TDQA are greatly depend- 
ent on the IGV. 

As part of the future work, the computational charac- 
teristics of a newly developed approach based on the 
exponential method of multipliers within the framework 
of ATC will be investigated. 
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