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ABSTRACT 

In this paper, a new augmented Lagrangian function with 4-piecewise linear NCP function is introduced for solving 
nonlinear programming problems with equality constrained and inequality constrained. It is proved that a solution of the 
original constrained problem and corresponding values of Lagrange multipliers can be found by solving an uncon-
strained minimization of the augmented Lagrange function. Meanwhile, a new Lagrangian multiplier method corre-
sponding with new augmented Lagrangian function is proposed. And this method is implementable and convergent. 
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1. Introduction 

Considering the following nonlinear inequality constrained 
optimization Problem (NLP): 
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the feasible set of the problem (NLP). 
The Lagrangian function associated with the problem 

(NLP) is the function 

       , , + ,T TL x f x H x G x      
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are the multiplier vectors, For simplicity, we use 
 , ,x    to denote the column vector   , ,

TT T Tx  

Defintion 1.1. A point  , , n p mx R R R      is 
called a Karush-Kuhn-Tucker (KKT) point or a KKT 
pair of Problem (NLP), if it satisfies the following condi-
tions: 
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where  1I i m   , we also say x  is a KKT point if 
there exists a  ,   such that  , ,x    satisfies (2). 

For the nonlinear inequality constrained optimization 
problem (NLP), there are many practical methods to 
solve it, such as augmented Lagrangian function method 
[1-6], Trust-region filter method [7,8], QP-free feasible 
method [9,10], Newton iterative method [11,12], etc. As 
we know, Lagrange multiplier method is one of the effi-
cient methods to solve problem (NLP). Pillo and Grippo 
in [1-3] proposed a class of augmented Lagrange func-
tion methods which have nice equivalence between the 
unconstrained optimization and the primal constrained 
problem and get good convergence properties of the re-
lated algorithm. However, a max function is used for 
these methods which may be not differentiable at infinite 
numbers of points. To overcome this shortcoming, Pu in 
[4] proposed a augmented Lagrange function with Fischer- 
Burmeister nonlinear NCP function and Lagrange multi-
plier methods. Pu and Ding in [6] proposed a Lagrange 
multiplier methods with 3-piecewise linear NCP function. 
In this paper, a new class augmented Lagrange function 
with 4-piecewise linear NCP function and some La-
grange multiplier methods are proposed for the minimi-
zation of a smooth function subject to smooth inequality 
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constraints and equality constrains. 
The paper is organized as follows: In the next section 

we give some definitions and properties about NCP func-
tion, and then define a new augmented Lagrange function 
with 4-piecewise NCP function. In Section three, we give 
the algorithm. In Section four, we prove convergence of 
the algorithm. Some conclusions are given in Section five. 

2. Preliminaries 

In this section, we recall some definitions and define a 
new Lagrange multiplier function with 4-piecewise NCP 
function. 

Definition 2.1 (NCP pair and SNCP pair). We call a 
pair (a, b) to be an NCP pair if  and ab = 0; 
and call (a, b) to be an SNCP pair if (a, b) is a pair and 
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Definition 2.2 (NCP function). A function  
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It is easy to check the following propositions: 
1) ;  , 0 0, 0,a b a b ab     
2) The square of   is continuously differentiable; 
3)   is twice continuously differentiable everywhere 

except at the origin but it is strongly semi-smooth at the 
origin. 

Let 
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Clearly, the KKT point condition (2) is equivalently 
reformulate as the condition: 
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where  is the ith column of 
the unit matrix, its jth element is 1, and other elements 
are 0, in this paper take k = 1. 

 0, ,0,1, ,0
T m

ie    R

If     , 0,ig x   0
i

, and then  , ,i x C   is 
strongly semi-smooth and direction differentiable at 
  n mR,x   . We have 
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For Problem (NLP), we define a Di Pillo and Grippo 
type Lagrange multiplier function with 4-piecewise lin-
ear NCP function is as following: 
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where 
   1 1, , , ,

T Tm p
m PR R        ,   are the 

Lagrange multiplier, C and D are positive parameters. 
In this section, we gave some assumptions as follows: 
Assumpion 1 f, ,  jh x 1, ,j p  ,  ig x  

1, ,i   m  are twice Lipschitz continuously differen-
tiable. 

Define index set 0I  and 1I  as follows: 
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The gradient of  is  , , , ,S x C D 
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The Henssian matrix of  , ,S x KKT point , ,C D   
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2) if  i i
C g x   , then 
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The Henssian matrix of  at KKT point  , , , ,S x C D 
 , ,x    is 
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Definition 2.3 A point  , ,x    is said to satisfy the 
strong second-order sufficiency condition for problem 
(NLP) if it satisfies the first-order KKT condition and if 
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and . 0d 
Assumption 2 At any KKT point  , ,x    satisfied 

strong second-order sufficiency condition. 
Lemma If n nA 

Ad 
 is a positive semi-definite matrix, for 

any , , matrix  satisfied , 
then exist 1 , for any ,  is positive 
definite matrix (see [4]). 
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3. Lagrange Multiplier Algorithm 

Step 0 Choose parameters , , 0 0C  0 0D  0 1  , 
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Step 4 Let k = k + 1, go to Step 1. 

4. Convergence of the Algorithm 

In this section, we make a assumption follow as: 
Assumption 3 For any k , k , , , kC kD
 1, , , ,k k k k kS x C D   exists a minimizer point 1kx  . 
Theorem 4.1 Assume feasible set of problem (NLP) is 

non-empty set and  f x  is bounded, then algorithm is 
bound to stop after finite steps iteration. 

Proof: Assume that the algorithm can not stop after 
finite steps iteration, by the sack of convenience, we de-
fine index set as following 
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from above assumption, we obtain that for any a k  
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difficult to see that 
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for   0ig x  , 0i  , according to definition of  
 , ,Ф x C , we can obtain, that 
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First part of the theorem holds， 1kx   is solution of 
problem (NLP). 

On the other hand, if the algorithm is not stop at , 
for any accumulation point 
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Clearly, second part of the theorem holds. *x  is solu-
tion of problem (NLP). 

5. Conclusion 

A new Lagrange multiplier function with 4-piecewise 
linear NCP function is proposed in this paper which has a 
nice equivalence between its solution and solution of 
original problem. We can solve it to obtain solution of 
original constrained problem, the algorithm correspond-
ing with it be endowed with convergence. 
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