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ABSTRACT 

This paper presents an enhanced Particle Swarm Optimization (PSO) algorithm applied to the reactive power compen-
sation (RPC) problem. It is based on the combination of Genetic Algorithm (GA) and PSO. Our approach integrates the 
merits of both genetic algorithms (GAs) and particle swarm optimization (PSO) and it has two characteristic features. 
Firstly, the algorithm is initialized by a set of a random particle which traveling through the search space, during this 
travel an evolution of these particles is performed by a hybrid PSO with GA to get approximate no dominated solution. 
Secondly, to improve the solution quality, dynamic version of pattern search technique is implemented as neighborhood 
search engine where it intends to explore the less-crowded area in the current archive to possibly obtain more nondo-
minated solutions. The proposed approach is carried out on the standard IEEE 30-bus 6-generator test system. The re-
sults demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondo-
minated solutions of the multiobjective RPC. 
 
Keywords: Multiobjective Optimization; Particle Swarm Optimization; Local Search 

1. Introduction 

Reactive Power Compensation (RPC) in power systems 
is a very important issue in the expansion planning and 
operation of power systems because it leads to increased 
transmission capability, reduced losses and improved 
power factor using shunt capacitors that have been very 
commonly installed in transmission and distribution net- 
works [1,2]. By applying capacitors adjacent to loads, 
several advantages are obtained some of them are [3-5]: 
1) Improved power factor, 
2) Reduced transmission losses, 
3) Increased transmission capability, 
4) Improved voltage control, 
5) Improved power quality. 

Achievement of these items depends mainly on an 
adequate allocation of shunt capacitor banks. Thus, this 
problem can be stated as the determination of the loca- 
tions and the capacities of new sources of reactive power, 
searching simultaneously to accomplish the following 
goals: 
1) A good bus tension profile: The quality of service is 

directly related to the difference between the effective 
and the nominal bus voltage; 

2) Minimization of transmission losses: Active power 
transmission losses can be directly translated into 
monetary losses since they are the main component in 

the difference between the generated power and the 
consumed power; 

3) Minimization of the amount of reactive compensation 
installed: Although shunt capacitor compensation ge- 
nerally provides the most economical reactive power 
source for voltage control, heavy use of these devices 
could lead to the reduction of stability margins and 
poor voltage regulation [6,7]. 

Traditionally, this problem is addressed as a Single 
Objective Optimization Problem (SOP) [8-14]. A Single- 
Objective Optimization Algorithms (SOA) usually pro-
vides a unique optimal solution. Typically, the object- 
tive function is formulated as a linear combination of 
several factors such as investment or transmission losses, 
that are subject to operational constrains such as reliabil- 
ity and voltage profile. These factors that are considered 
as the optimization objectives usually are contradictory, 
making very difficult to find the right linear combination. 
Practically most problems have more than one objective 
to be optimized, e.g. RPC problem requires the optimiza- 
tion of investment, power losses, and voltage profile. The 
objectives are usually contradictory. Accordingly a single 
objective optimization algorithm will not be preferable to 
solve the RPC problem. Considering this situation, Mul-
tiobjective Optimization Algorithms (MOA) were pro-
posed to optimize independent and simultaneously sev-
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eral objectives [15-17]. Therefore, a MOA usually pro-
vides a whole set of optimal tradeoff solutions known as 
Pareto set. The Pareto set gives the engineer the opportu-
nity to consider more options before making a final deci-
sion. 

Local search techniques have long been used to attack 
many optimization problems [18,19]. The basic idea is to 
start from an initial solution and to search for successive 
improvements by examining neighboring solutions. The 
local search used in this paper is based on a dynamic 
version of pattern search technique. Pattern search tech- 
nique is a popular paradigm in Direct Search (DS) 
methods [20]. DS methods are evolutionary algorithms 
used to solve constrained optimization problems. DS 
methods, as opposed to more standard optimization me- 
thods, are often called derivative-free as they do not re-
quire any information about the gradient or higher de- 
rivatives of the objective function to search for an opti- 
mal solution. Therefore direct search methods may very 
well be used to solve non-continuous, no differentiable 
and multimodal (i.e. multiple local optima) optimization 
problems. 

To solve the RPC problem, this paper presents a new 
approach local search based on hybrid particle swarm 
optimization PSO. It combines two heuristic optimization 
techniques GA and PSO. Our approach integrates the 
merits of the two optimization techniques. In order to 
improve the solution quality, we implement modified 
local search algorithm. Finally, the standard IEEE 30- 
bus 6-genrator test system then used to verify the va- 
lidity of the proposed approach. 

This paper is organized as follows. In section 2, MOO 
is described. Section 3, provides a Multi-objective For- 
mulation of RPC Problem. In section 5, the proposed 
algorithm is presented. Implementation of the proposed 
approach is presented in section 6. Results are given in 
section 6. Finally, section 7 gives a brief conclusion about 
this study. 

2. Multiobjective Optimization 

A Multi-objective Optimization Problem (MOP) can be 
defined as determining a vector of design variables 
within a feasible region to minimize a vector of objective 
functions that usually conflict with each other. Such a 
problem takes the form: 

     
 

1 2Minimize      , , ,

subject to      g 0,

m f X f X f X

X 


 

where X is vector of decision variables; fi(X) is the ith 
objective function; and g(X) is constraint vector. A 
decision vector X is said to dominate a decision vector Y 
(also written as X Y ) if:    i if X f Y  for all 

 1,2, ,i m   and   i i f X f Y  for at least one 
 1,2, ,i 

1

F P

m

max

. All decision vectors that are not dominated 
by any other decision vector are called no dominated or 
Pareto-optimal. These are solutions for which no objective 
can be improved without detracting from at least one 
other objective. 

3. Multiobjective Formulation of RPC 

The following assumptions are considered in the formu- 
lation of the problem: 
1) A shunt-capacitor bank cost per MVAr is the same 

for all busbars of the power system; 
2) Power system is considered only at peak load. 

Based on these considerations [20,21], three objective 
functions fi(·), f1(·) f2(·) (to be minimized) have been 
identified for the present work: fi(·) and f2(·) are related 
to investment and transmission losses, while f3(·) are 
related to quality of service. 

The objective functions to be considered are: 

3.1. F1: Investment in Reactive Compensation 
Devices 

10
. .

0i iF B s t
 

  

2 m0 . .  gP s t P

1max

1 max

n

i i i

F F

B B

   

where for simplicity the cost per MVAr is taken as unity 
(α = 1), n is the number of buses in the power system; F1 
is the total required compensation; F1max is the maximum 
amount available for investment; Bi is the compensation 
at busbar i measured in MVAr and Bimax is the maximum 
compensation allowed at a particular bus of the system. 

3.2. F2: Active Power Losses 

ing l g gP P      

where: F2 is the total transmission active losses of the 
power system in MW; Pg is the total active power gener- 
ated in MW and Pl is the total load of the system in MW. 

3.3. F3: Average Voltage Deviation 

*

1
3 min max. .  

n

i i

i i i

V V
F s t V V V

n



  

i  

where: F3 is the per unit (pu) average voltage difference; 
V is the actual voltage at busbar i (pu) and  is the 
desired voltage at busbar i (pu). 

*
iV

In summary, the optimization problem to be solved is 
the following: 

 1 2 3Minimize     F F F F  

where 
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*

1

1 1

    

n

i in
i

i g l
i

V V
F B P P

n




  
  
 
  


  

subject to 

1 1max max0 ,0 i iF F B B    ,  

min max min max,g g g i i iP P P V V V     

and the load flow equations [22]: 

 
1

cos
BN

p Gp cp p q pq p q pq
q

P P P V V Y   


       


1

sin
BN

p Gp cp p q pq p q pq
q

Q Q Q V V Y   


       

where, PGp, QGp are the real and reactive power genera- 
tions at bus P; Pcp, Qcp the real and reactive power de- 
mands at bus P ; Vp, the voltage magnitude at bus P; Vq, 
the voltage magnitude at bus q; δp, the voltage angle at 
bus p; δq; the voltage angle at bus q; Ypq, the admittance 
magnitude; θpq, the admittance angle; NB, the total num- 
ber of buses; P = 1, 2, ···, NB and q = 1, 2, ···, NB. 

The load flow equations reflect the physics of the 
power system as well as the desired voltage set points 
throughout the system. The physics of the power system 
are enforced through the power flow equations which 
require that the net injection of real and reactive power at 
each bus sum to zero. 

To represent the amount of reactive compensation to 
be allocated at each busbar i, a decision vector B [23], is 
used to indicate the size of each reactive bank in the 
power system, i.e.: 

 1 2 max, ,...., , ,n i i iB B B B B R B B    

Thus RPC is a complex combinatorial optimization 
problem involving multiple nonlinear functions having 
multiple local minima, which may be ill-defined and 
nonlinear with discontinuous constraint, which lead to 
non-convex Pareto-optimal front [23,24]. 

3.4. Formulation of MORPC 

The multiobjective reactive power compensation optimi- 
zation problem is therefore formulated as: 

1
1

2

*
3

1

minimize 0

 

n

i
i

g l

n

i i
i

F B

F P P

F V V n









   



 






 

S.t. 

 

1 1max

max

min max

min max

1

0                          

0 1, ,

1, ,             

1, ,

cos 1,2, ,

        sin

B

i i B

gi g gi B

i i i B

p Gp cp

N

p q pq p q pq B
q

p Gp cp

p q pq p q p

F F

B B i N

P P P i N

V V V i N

P P P

V V Y P N

Q Q Q

V V Y

  
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

 

   

   

   

  

    

  
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








 
1

1,2, ,
BN

q B
q

P N
















  

 

. 

4. The Proposed Approach 

In this section we present a novel optimization algorithm 
to solve the RPC problem formulated in the previous 
section. The proposed methodology introduces a hybrid 
approach combining GAs and PSO to improve the per- 
formance of each algorithm. Also, to improve the solu- 
tion quality we implement LS technique as neighborhood 
search engine where it intends to explore the less- 
crowded area in the current archive to possibly obtain 
more nondominated solutions nearby (i.e. that we search 
near every solution by LS technique to obtain a new so- 
lution best than current one or nondominated with it and 
therefore the less-crowded area will be discovered auto- 
matically). The description diagram of the proposed al- 
gorithm is shown in Figure 1, and it is described as fol- 
lows: 

4.1. PSO Stage 

In this stage, we implement PSO as follows: 
Step 1: Initialize parameters for PSO, initialize ran-

domly N particles with position 0t
iX   with velocities 

0t
iV   where t is the time counter and i = 1, ···, N. 
Step 2: Identify the local set i  for each particle 

as 
 0tL 

 0 0 1, ,t t
i iL X i N    . Also, identify the local 

preferred element  0t
i
0t

iLP L   of the i-th particle as 
 0 0t t

i iX particle i LP  . 
Step 3: Collect all local sets  in a 

pool C such that  
 0t

i
 1, ,L i   N

0

0

N
t
i

i

C L 



 . 

Step 4: Define a global set , where we 
assume that the function ND(·) can get all nondominated 
solutions. 

 0t
iG ND C 

Step 5: In the objective space, The distance between 
0 1, ,t

iX i    N  and the members in Gt=0 are meas- 
ured using the Euclidean distance, where the distance 
between any two d-dimensional points  and ix jx  is 
given by 
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Figure 1. The description diagram of the proposed algorithm. 
 

 

   2

, ,2
1

d ,
d

i p j p
p

x x


   i j i jx x x x  

The nearest member in Gt to the i-th particle set as the 
global preferred element . t

iGP
Step 6: Set the external set Et=0 equal to Gt=0. 
In an example, let we have 6 particles initially located 

as shown in Figure 2. 
 Define the local set  

 0 0set particle 1, ,t t
i ii L X i N      

     0 0 0
1 1 2 2 3 3, , ,t t tL x L x L x    

 

    0 0 0
4 4 5 5 6 6, , t t tL x L x L x       

 Define the local preferred element  

 0 0particle t t
i ii LP X     Figure 2. Location of initially 6 particles. 

 

     0 0 0
1 1 2 2 3 3, , ,t t tLP x LP x LP x           0 0 0

4 1 5 2 6, , t t tGP x GP x GP x     3  

    0 0 0
4 4 5 5 6 6, , t t tLP x LP x LP x        Define External set 0 0t tE G   

 0 0
1 2 3, ,t tE G x x x     Construct a pool C such that  

0

1

N
t
i

i

C L 



  

 
6

0
1 2 3 4 5 6

1

, , , , ,t
i

i

C L x x x x x x



 
0t

 

Step 7: Update particles: Update the velocity  and 
position 

t
iv

t
ix  of each particle to get new velocity 1t

iv   
and position 1t

ix   according to the following equations: 

   1
1 1 2 2i

t t t t t
i i i iv wv c r LP x c r GP x      t

i  

 Define a global set   , G ND C 1 1t t t
i i ix x v    

   0
1 2 3, ,tG ND C x x x   where i = 1, 2, ···, N, and N is the size of the population; 

w is the inertia weight; c1 and c2 are two positive con-
stants, called the cognitive and social parameter respec-
tively; r1 and r2 are random numbers uniformly distrib-
uted within the range [0,1]. 

 Identify the global preferred element 
par  ticlet

iGP i

     0 0 0
1 1 2 2 3 3, , ,t t tGP x GP x GP x      



A. A. MOUSA, M. A. EL-SHORBAGY 1280 

Step 8: Evolution of particles: To restrict velocity and 
control it, We present a modified constriction factor (i.e., 
dynamic constriction factor) to keep the feasibility of the 
particles. e.g., Figure 3 shows the movement of the par-
ticle i through the search space with and without modi-
fied constriction factor. Where the particle i start at posi-
tion t

ix  with velocity  in the feasible space, the new 
position 

t
iv

1t
ix   depends on velocity . Then, 1t

iv  1t
iv   

makes the particle to lose its feasibility, so we introduce 
a modified factor x such that: 

2

2

2
x

  

   

 

where, τ is the age of the infeasible particle (i.e., How 
long it’s still unfeasible) and it is increased with the 
number of failed trial to keep the feasibility of the parti-
cle. The new modified position of the particle is com-
puted as: 

1 1t t y
i i ix x xv    

For each particle we check its feasibility, if it is infea- 
sible, we implement x parameter to control its position 
and velocity according to Algorithm 1. 

Step 9: Update local set  to get : 
The new position of each particle 

t
iL 1 1, ,t

iL i N   
1t

iX   is added to  
to form  which is updated according to Algorithm 
2. 

t
iL

1t
iL 

 

 

Figure 3. The movement of the particle i through search 
space. 
 

Algorithm 1. Evolution of particles. 

 

 

t t 1 t 1
i i i

t 1
i

t 1 t t 1
i i i

t 1 t 1
i i

t 1 t 1
i i

input x , v , x

while

       x  is unfeasible  number of  trial not satisfied

       generate x x  v

       x x

end

output v , x

 



 

 

 

  



 

Step 10: Update global set G: 

1 1

1

N
t t

i
i

G ND L 



 
  

 
   

which contain all nondominated solution of 1

1

N
t
i

i

L 


 . 

Step 11: Update external set Et: Copy the members of 
Gt+1 to Et and apply dominance criteria to remove all 
dominated solution from Et (i.e., each member of Gt+1 
has three probabilities as in Algorithm 3). 

Step 12: Update local preferred element 1t
iLP  and 

global preferred element for each particle: In the 
objective space, The distance between 

1t
iGP 

1t
i 1, ,X i N     

and members in 1t
iLP   are measured using Euclidean 

distance. The nearest member in  to the i-th parti- 
cle set as 

1t
iLP 

1t
iLP  . Also, The distance between 

1t
i 1, ,X i  N    and the members in Gt + 1 are measured 

using Euclidean distance. The nearest member in Gt + 1 to 
the i-th particle set as the global preferred 1t

iGP  . 

4.2. GA Stage 

In this subsection, we describe the procedure of GA. 
Step 1: Initialize parameters for GA. 
Step 2: Evaluation & Ranking: A way to transform 

the values of objective functions to the fitness function of 
 

Algorithm 2. Update local set . t
iL

 

   

 

i i

i i

i i

i i

i i i

i i

i i i

t t 1

t t 1

t 1 t

t t 1

t 1 t t 1

t t 1

t 1 t t 1

Input L ,X  ?

       If   X L  X X  then?

           L L

      Else if    X L   X X then

           L L X / X

      Else if  X L  X X  then

           L L X

      









 



 

 



  



 













 
i

t 1

 End

Output L 

 

 

Algorithm 3. Update external set tE . 

 

   

 

 

t t 1

t

t t

t

t t

t

t t

t

Input E , X G ?

       If   Y E  Y X then?

           E E

      Else if    Y E   X Y then

           E E X / Y

      Else if  Y E  Y X then

          E E X

       End

Output E



 



  



 











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each string in the genotype world is to combine the m 
objective functions into a scalar function as follows: 

      1 1 2 2 m m f x w f x w f x w f x     

where f(x) is the fitness function of x and w1, ···, wm are 
non-negative weights which determined as follows: 

1

random random , 1, ,
m

i i i
j

w


  i m  

where random1, random2, ···, randomm, are non-negative 
random integers. 

Then rank them on the basis of the fitness values. 
Step 3: Selection: Selection is an operator to select 

two parent strings for generating new strings (i.e., off-
spring). In the selection, a selection probability Ps(xi) of 
each string x based on the linear scaling is defined by the 
roulette wheel selection as follows: 

 
   
    

min

min
1

,  1, 2, ,
i

s i N

j
j

f x f x
P x i N

f x f x







 


  

where fmin(xψ) is the minimum fitness value (i.e., the 
worst fitness value) in the current population ψ. Accord-
ing to this selection probability, a pair of parent strings 
are selected from the current population ψ. 

Step 4: Crossover: Crossover is an operator to gener- 
ate new strings (i.e., offspring) from parent strings ac- 
cording to the crossover probability (Pc). Various cross- 
over operators have been proposed for GAs [25,26]. In 
the proposed approach we implement single point cross- 
over. 

Step 5: Mutation: Mutation is an operator to change 
elements in a string which is generated by a crossover 
operator. Such a mutation operator can be viewed as a 
transition from a current solution to its neighborhood 
solution in local search algorithms [27] according to the 
mutation probability (Pm). In the proposed approach, we 
mutate each variable in a string  ,i i ix a b  with Pm by 
addition of small random values according to the equa- 
tions below: 

 
 

, if

, if

i i i

i

i i i

x t b x
x

x t x a





     
   

0

1
 

   max1, 1 t tt y y r
     

 

where r is a random number  0,1r , tmax is the maxi- 
mum number of generations, and β is a positive constant 
chosen arbitrarily. 

Step 6: Elitist strategy (Replacing): Randomly re- 
move a string from the current population and add the 
best string in the previous population to the current one. 

Step 7: Repairing: Repair the infeasible individuals of 
the population to be feasible. The idea of this technique 

is to separate any feasible individuals in a population 
from those that are infeasible by repairing infeasible in-
dividuals. This approach co-evolves the population of 
infeasible individuals until they become feasible, the 
reader is referred to [28]. 

4.3. The Local Search 

The local search phase is implemented as a dynamic ver- 
sion of pattern search technique. Pattern search technique 
is a popular paradigm in Direct Search (DS) methods. DS 
methods are evolutionary algorithms used to solve con- 
strained optimization problems. DS methods, as opposed 
to more standard optimization methods, are often called 
derivative-free as they do not require any information 
about the gradient or higher derivatives of the objective 
function to search for an optimal solution. Therefore di- 
rect search methods may very well be used to solve non- 
continuous, nondifferentiable and multimodal (i.e. multi-
ple local optima) optimization problems. This study ex-
amines the usefulness of a dynamic version of pattern 
search technique to improve the solution quality of 
MOPs. The search procedure looks for the best solution 
“near” another solution by repeatedly making small 
changes to a starting solution until no further improved 
solutions can be found. 

The local search is started by loading the Pareto solu-
tions for a given MOPs. At iteration t, we have an iterate 

Paretotx  , where the changes on the values for each 
dimension (i = 1, 2, ···, n) can be implemented as 

   (1 )1 t Tt R r     

where r is the random number in the range [0, 1]; T is the 
maximum number of iterations; R is the search radius. 

Let ei, (i = 1, 2, ···, n), denote the standard unit basis 
vectors. We successively look at the points x+ = xt ± 
Δ(t)ei (i = 1, 2, ···, n), until we find x+ for which 

   j j tf x f x   for at least one objective ,jf j Q . If 
we find no x+ such that    j j tf x f x  , then x+ = xt. 
Then we update the Pareto solutions by non dominated 
ones and the dominated ones are removed. This situation 
is represented in Figure 4 for the case in R2. Without loss 
of generality, the elements discussed above are synthe- 
sized to evolve the proposed approach. The flow chart of 
MACO and the local search phase is shown in Figure 5. 

This local search scheme is implemented on all non- 
dominated solutions in Et to get the true Pareto optimal 
solution and to explore the less-crowded area in the ex- 
ternal archive. 

5. Implementation of the Proposed  
Approach 

The described methodology is applied to the standard 
IEEE 30-bus 6-generator test system to investigate the  
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Figure 4. Mechanism of dynamic pattern search in 2R . 
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 

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iGP   
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While travel not completed. 

PSO algorithm. 
While sub-travel not completed. 

Generate and 1t
iv  1t
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Evolve the unfeasible particles until they can  
be feasible. 
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iL i N    and  1tG 

Identify 1t
iLP  and  1t

iGP 

Update . tE
End while. 
GA algorithm. 
While evolution not completed. 

Evaluation. 
Keep the best. 
GA operators. 
Repair. 

End while. 
End travel. 
Local search phase by adaptive pattern search 
t = 0,  load the Pareto solutions  

while do t T
for do 1:j n

     1
Pareto , Pareto ,i j i j t         {generate new 

search point} 

If  do    1
? Pareto ,: Pareto ,:i i

   1? Pareto ,: Pareto ,: ;break whilei i  {re-

place old solution} 
               end if              

end for,  1t t 
end while 
Output Pareto  

End 

Figure 5. The pseudo code of the proposed algorithm. 

effectiveness of the proposed approach. The detailed data 
for this system are given in [29]. Table 1 lists the pa- 
rameter setting used in the algorithm for all runs. 

6. Results and Discussions 

Figure 6, shows well distributed Pareto-optimal nondo- 
minated solutions obtained by the proposed algorithm 
after 200 generations. 

It is clear from the figure that Pareto-optimal set is 
well distributed and has satisfactory diversity character- 
istics. This is useful in giving a reasonable freedom in 
choosing compensation devices from the available com- 
mercial devices. 

Out of the Pareto-optimal set Table 2 shows the values 
of f1(·), f2(·) and f3(·) in the three cases 1, 2, and 3 corres- 
ponding to minimum amount of: reactive compensation 
devices, active power losses and average voltage devia- 
tion respectively obtained by proposed algorithm. 

Offered in this section that the proposed approach is 
able to obtain the approximate Pareto set. The proposed 
approach has been used to increase the solution quality 
by combing the two merits of two heuristic algorithms. 
However, the goal is not only to increase the solution 
quality, but also to generate a representative subset, 
which maintains the characteristics of the general set and 
take the solution diversity into consideration. 

On the other hand, classical techniques aim to give 
single point at each iteration of problem solving by con- 
verting the multiobjective problem to a single objective 
problem by linear combination of different objectives as 
 

Table 1. The proposed approach parameter. 

Cognitive parameter 2.8 

Social parameter 1.3 

Inertia weight 0.6 

Crossover probability 0.95 

Mutation probability 0.01 

Selection operator roulette wheel selection 

Crossover operator Single point crossover 

Mutation operator Real-value mutation 

PSO iteration 5 

GA generation 5 

 
Table 2. Values of f1(·), f2(·), and f3(·) in three cases. 

 Cases 1 (min f1) Cases 2 (min f2) Cases 3 (min f3)

f1(·) 1.0928 1.7667 1.1257 

f2(·) 2.6577 0.019393 2.03 

f3(·) 0.015345 0.026343 0.014349 
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Figure 6. Pareto optimal front of the proposed approach. 
 
a weighted sum. On the contrary, the proposed approach 
is a heuristics-based multiobjective optimization tech- 
nique where, it uses a population of solutions in their 
search, multiple Pareto-optimal solutions can, in princi- 
ple, be found in one single run. 

Another advantage is the reality of using the proposed 
approach to handle complex problems of realistic dimen- 
sions has been approved due to procedure simplicity. 

7. Conclusion 

The reactive power compensation problem formulated as 
multiobjective optimization problem with competing 
amount of reactive compensation devices, active power 
losses and average voltage deviation is solved in this 
paper using a combination of GA and PSO. Our ap- 
proach integrates the merits of both GA and PSO. In or-
der to improve the solution quality, we implement LS 
technique as neighborhood search engine where it in-
tends to explore the less-crowded area in the current ar-
chive to possibly obtain more nondominated solutions. 
The algorihm have an external archive to keep track of 
all the feasible solutions found during the optimization 
and therefore do not have any restrictions on the number 
of the Pareto-optimal solutions found. The proposed ap-
proach is carried out on the standard IEEE 30-bus 
6-generator test system. The results demonstrate the ca-
pabilities of the proposed approach to generate true and 
well-distributed Pareto-optimal nondominated solutions 
of the multiobjective RPC. The result also confirms the 
proposed approach potential to solve the multiobjective 
RPC problem. 
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