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ABSTRACT 

Electromagnetism-like (EML) algorithm is a new evolutionary algorithm that bases on the electromagnetic attraction 
and repulsion among particles. It was originally proposed to solve optimization problems with bounded variables. Since 
its inception, many variants of the EML algorithm have been proposed in the literature. However, it remains unclear 
how to simulate the electromagnetic heuristics in an EML algorithm effectively to achieve the best performance. This 
study surveys and compares the EML algorithms in the literature. Furthermore, local search and perturbed point are two 
techniques commonly used in an EML algorithm to fine tune the solution and to help escaping from local optimums, 
respectively. Performance study is conducted to understand their impact on an EML algorithm. 
 
Keywords: Electromagnetism-Like Algorithm; Meta-Heuristics; Evolutionary Algorithm; Optimization 

1. Introduction 

This paper studied the performance of a new class of 
evolutionary algorithms called electromagnetism-like 
(EML) algorithm, recently proposed by Birbil and Fang 
[1], for optimization problems with bounded variables in 
the form of: 

 min ,  s.t.f x x L U         (1) 

where f(x) is the objective function to be minimized, 

1 2,( , , ) n
nx x x x R    is the variable vector, and L = (l1, 

l2, ···, ln) and U = (u1, u2, ···, un) are the lower bound and 
upper bound of x, respectively. That is, li ≤ xi ≤ ui for i = 
1 to n. 

EML algorithm simulates the interaction caused by 
electromagnetic force between electrically charged parti- 
cles. Due to its effectiveness, EML algorithm has been 
applied to various optimization problems, such as sched- 
uling [2-4], vehicle routing problems [5], feature selec- 
tion [6], fuzzy neural system [7], and engineering design 
problems [8] since its inception. 

The general scheme of an ELM algorithm [1] is shown 
in Figure 1. It consists of four phases: initialize a popu- 
lation of particles (step 1 in Figure 1), local search to 
exploit local optimums (step 3 in Figure 1), calculate the 
force exerted on each particle (step 4 in Figure 1), and 
move each particle along the direction of the force (step 
5 in Figure 1). 

Because of the simplicity of the EML scheme, many 
EML or EML-hybrid algorithms have been proposed in 

the literature. These algorithms mainly differ in the last 
three phases of the above general EML scheme. That is, 
different local search method can be used, and the force 
exerted on each particle and the new position of each 
particle can be calculated differently in different EML 
algorithms. Many of these EML algorithms have persua- 
sive experimental results showing their superior per- 
formance over the original EML algorithm of Birbil and 
Fang [1]. However, due to the lack of comparison among 
these algorithms, the best way to design an EML algo- 
rithm remains unclear. Further, most of the experimental 
results are for optimization problems in a lower dimen- 
sional space, and it is unclear whether these EML algo- 
rithms scale well with high dimensionality. Birbil et al. 
[9] pointed out the premature convergence problem of 
the original EML algorithm, however, it also remains 
unclear whether these new EML algorithms can escape 
from local optimums effectively and efficiently. 

The objectives of this study are threefold. Firstly, it 
surveys the literature for the alternatives for force calcu- 
lation in the EML algorithms. Secondly, it uses an artifi-  
 

1. InitializeParticles( ); 

2. while the termination criteria are not satisfied do

3. LocalSearch( ); 

4. CalcForce( ); 

5. MoveParticles( ); 

6. end while  

Figure 1. The general EML scheme.  
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cial problem instance together with non-uniformly dis- 
tributed particles to provide a sanity check of these EML 
algorithms on their ability to escape from local optimums. 
Thirdly, it compares the performance of these EML algo- 
rithms using a set of well-known benchmark functions, 
ranging from low to high dimensionality. The results not 
only provide better understanding of these EML algo- 
rithms, but also guide the development of new EML al- 
gorithms. 

2. Survey of EML Algorithms 

This section reviews various local search methods (step 3 
in Figure 1), force calculation methods (step 4 in Figure 
1) and particle moving methods (step 5 in Figure 1) that 
have been adopted in the EML algorithms in the 
literature. 

2.1. Local Search Methods 

The purpose of local search is to move a particle to its 
nearby local optimums. Birbil and Fang [1] indicated that 
local search can be either omitted or applied to all parti- 
cles or only the current best particle in the population. 
Omitting local search, an EML algorithm relies solely on 
the EML heuristics to find the optimal solution. However, 
applying local search to all particles is time consuming 
and offers slight improvement over applying local search 
only to the current best particle [1]. Therefore, in this 
study, local search is either omitted or applied only to the 
current best particle. 

Various local search methods have been used in EML 
algorithms. Theoretically, any local search method can 
be adopted in ELM algorithms. Complex local search 
methods (e.g. chaos optimization [10] and pattern search 
[11]) help converge to and escape from local optimums. 
The original EML algorithm [1] uses a simple local 
search, called random line search, so that the benefit of 
the electromagnetism heuristics can be better appreciated. 
Therefore, random line search is also adopted in this 
study to allow fair comparison among various imple- 
mentations of the electromagnetic heuristics in ELM al- 
gorithms. 

Random line search requires two parameters: δ and 
LsIter. First, the maximum feasible step length rk at each 
dimension k is calculated as the product of δ and the 
range of dimension k (i.e. uk − lk). Then, for each particle 
i, this method searches along each dimension k for im- 
provement of particle i for no more than LsIter times, as 
shown in Figure 2. Notably, this local search method is 
simple but has weak capability of escaping from local 
optimums. 

2.2. Calculate Force and Move Particles 

Various EML algorithms employ the electromagnetic 

1. For each dimension k do 

2.  k k kr u l   

3. counter 1  
4. While counter ≤ LsIter do 
5. Do 

6. iy x  

7.  1,1U    

8. k k ky y r   

9. while ( ork k k ky u y l  ) 

10. If    if y f x  then 

11. ix y  

12. counter LsIter  
13. End if 
14. counter counter+1  
15. End while 
16. End for  

Figure 2. Random line search (for particle i at xi). 
 
heuristics somewhat differently. For example, to move a 
particle, some algorithms consider the force exerting 
from all other particles to this particle, while some algo- 
rithms only consider the force exerting from an another 
particle. Furthermore, in some EML algorithms, the 
magnitude of the force between two particles is not in- 
versely proportional to the square of their distance. The 
rest of this section surveys how the electromagnetism 
heuristics are interpreted in various EML algorithms. 

2.2.1. Original Method 
The original EML algorithm of Birbil and Fang [1] uses 
an electromagnetism-like attraction-repulsion mechanism 
to move particles as follows. 

First, calculate the charge qi of each particle i using 
Equation (2): 

   
    

best

best
1

exp ,
i

i

m k
k

f x f x
q n

f x f x


   i  
  

    (2) 

where xbest denotes the particle with the best objective 
value in current population (i.e. xbest = argmin{f(x),  i}), 
m is the number of particles, and n is the number of di- 
mensions. All particles have charge between 0 and 1, and 
particles with better objective values have higher 
charges. 

Then, the force i
jF  exerted on particle i from another 

particle j is calculated using Equation (3): 

     

     

if 

, ,

if  

j i i j
j i

j i j i

i
j i j i j

j i

j i j i

x x q q
f x f x

x x x x
F i j

x x q q
f x f x

x x x x

 
 
     

 
 

   

 (3) 
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where j ix x  denote the distance between ix  
and jx . Notably,  j i j ix x x x   and  
 i j ix x x xj   in Equation (3) are unit vectors, and 
thus the force i

jF  is inversely proportional to j ix x , 
which contradicts the electromagnetic heuristics that the 
force between two particles should be inversely propor- 
tional to the square of their distance. The total force iF  
exerted on particle i from all other particles in the popu- 
lation is calculated using Equation (4): 

mi i
jj i

F F


                 (4) 

Finally, all particles except xbest are moved using Equa- 
tion (5): 

 

 

if 0

, be

if 0

i
i i ik
k k k ki

i
k i

i i ik
k k k ki

F
x u x F

F
x

F
x x l F

F





 
  


 
   


sti



 





 (5) 

where k = 1, ···, n, and λ is a random value uniformly 
distributed between 0 and 1. One advantage of Equation 
(5) is that it does not move particles outside the feasible 
space. However, Equation (5) does not move each parti- 
cle exactly in the direction of the force exerted on them, 
and thus does not closely follow the electromagnetic 
heuristics. Also notably, the best particle is not moved. 

2.2.2. Original Method with a Perturbed Point 
Birbil et al. [9] indicated that the original EML method 
could converge prematurely, and thus they modified the 
original method by introducing the idea of a perturbed 
point. The perturbed point, xp is the farthest particle from the 
current best particle xbest in the current population, i.e. 

 bestarg max , 1,2, ,p ix x x i m        (6) 

Their new method works exactly the same as the 
original EML method [1] does except that the calculation 
of the force exerted on xp is modified as follows. First, 
the force p

jF  exerted on xp from particle xj is perturbed 
by multiplying a random value λ ~ U (0, 1), as shown in 
Equation (7). 

     

     

if 

,

if 

j p p j
j p

j p j p

p
j p j p j

j p

j p j p

x x q q
f x f x

x x x x
F j

x x q q
f x f x

x x x x





 
 
   




  



 




  (7) 

Then, the force p
jF  reverses its direction if λ < ν 

where ν is a parameter between 0 and 1. Finally, the total 
force exerted on particle p is calculated using Equation (4). 

2.2.3. Debels’s Method 
In the original EML method, either with or without using 

rticle xi, another 
pa



a perturbed point, all particles in a population exert a 
force on all other particles. Debels et al. [2] proposed a 
simplified EML method by considering only the force 
from a randomly chosen particle. This method is adopted 
as the mutation operation in the hybrid algorithms by 
Kaelo and Ali [12] and Chang et al. [3]. 

To calculate the force exerted on a pa
rticle xj is selected randomly from the current popula- 

tion. Then, the force exerted on xi from xj is calculated 
using Equation (8): 

     
  worst best

i j

i j i
j

f x f x
F x x

f x f x


 


 

best

     (8) 

where xworst and x  are the worst particle and the best 
particle in current population, respectively.  

Next, particle xi is moved to i i
jx F . Notably, if f(xi) 

< f(xj), then it is possible to mo ut of the feasible 
space of problem (1). An extra step is taken here to re- 
strict xi inside the feasible space using Equation (9). 

ve xi o

  max min , , , 1, ,i i
k k k kx x u l k n         (9) 

Strictly speaking, this method is not electrom
lik

agnetism- 
e because the magnitude of the force i

jF  is linear 
proportional to the distance between xi and j, not in- 
versely proportional to the square of their distance. 

 x

2.2.4. Rocha’s Method of Shrinking Population 
eedup 

e 
of

Rocha and Fernandes proposed a method to sp
EML algorithms by shrinking the size of a population 
whenever the spread of the objective values reduces by a 
predefined percentage [11]. Essentially, this idea can be 
applied to any population-based evolutionary methods. 

The spread of the objective values w.r.t. the best valu
 a population is defined as follows. 

    
1

2 2best
1

m i
i

f x f x
SPR

m


    
 
 


       (10) 

Initially, SPRref is set as the SPR of the initial popula- 
tio

2.2.5. Rocha’s Method of Modified Force 
ML method 

The total force F  exerted on particle i in the current it- 

n. Then, every time after local search in an EML algo- 
rithm, if the remaining population size is greater than 
twice the number of dimensions, then the SPR of the 
current population is calculated. If the current SPR is less 
than εSPRref, then half of the population is discarded and 
SPRref is set to current SPR. Here, ε is a used-defined 
threshold. 

Rocha and Fernandes proposed another E
which only differs from the original EML method on the 
calculation of the total force exerted on each particle [13]. 
This method takes the change of the force into account. 

i
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eration is calculated as follows. First, Fi is calculated 
using Equations (2)-(4), as did in the original EML 
method. Then, the change Δi of the force is set to 0 for 
the first iteration, and is set to ,i i prevF F  for the rest 
iterations of the algorithm, where ,i prevF  denotes the 
total force exerted on particle i in ous iteration. 
Finally, Fi is adjusted as Fi + βΔi, whe is a parameter 
in the interval [0, 1). Notably, if β = 0, this method is the 
same as the original EML method. The suggested value 
for β is 0.1. 

2.2.6. Rocha

 the previ
re β 

’s Method of Modified Charge 
Rocha and Fernandes proposed two methods that intend 

cy of EML to improve the efficiency and solution accura
algorithms [14]. Both methods differ from the original 
EML method on how the charge of a particle is 
calculated. Their first and second methods replace 
Equation (2) of the original EML with Equations (11) 
and (12), respectively. 

   
   

best

exp
i

i
f x f x

q n
 
 
 worst best

, i
f x f x

 
 

     (11) 

   
   

1
best

worst best
1 ,

i

i
f x f x

q n
f x f x


 
  
  

 i    (12) 

Both Equations (11) and (12) still yield qi b
and 1. Furthermore, both methods replace Equation (3) 
of

etween 0 

 the original EML with Equation (13) such that the 
magnitude of the force i

jF  exerted on particle xi from 
particle xj is inversely proportional to the square of the 
distance between xi and x o be consistent with the elec- 
tromagnetism heuristics. 

 

j t

   

     

2

2

if 

, ,

if 

ij i jx x q j i

j i j i

i
j

i j i j
j i

j i j i

q
f x f x

x x x x
F i j

x x q q
f x f x

x x x x


     

 
 

  

 

(13) 

2.2.7. Yurtkuran’s Method of Reducing Movemen
Yurtkuran and Emel [5] propose an EML method that 

 

 

t 

differs from Debels’s method [2] only on how the elec-
tromagnetic force moves a particle. Their method re- 
duces the effect of the force as the number of iterations 
increases. Let iter denote the current number of iterations. 
After calculating the force i

jF  exerted on particle xi 
from particle xj using equation (8) as did in Debels’s 
method, xi is moved to i i

jx F iter  instead of xi + i
jF . 

Consequently, this method has the effect of reducing the 
range of movement as th f iterations increases. 
As in Debels’s method, this method could move particles 

out of the feasible space, and thus Equation (9) should be 
applied to confine particles inside the feasible space. 

2.2.8. Shang’s Method of High Charged Particles 

e number o

Shang et al. proposed an EML method that ignores the 
s to force exerted from those particles with small charge

improve efficiency [15]. First, the charge of each particle 
is calculated using Equation (2), as did in the original 
EML method. Those particles with charges lower than 
half of the average charge of all particles cannot exert 
force on other particle. This can be done by introducing a 
modified charge i

q  of particle xi as follows. 

1if 
m k

i i k
q

q 
 

 

1

2 , ,

0 if 
2

i

m k
i k

q
mq i j

q
q

m


 
   
 

  


      (14) 

Then, Equation (15) is used to calculate the force i
jF  

exerted on particle xi from particle xj. 

     

     

1

1

if 

exp

if 

exp

j i ji
j i

j i

m k i

ki
j i j ji

j i

j i

j i j i

m k i

k

x x q q
f x f x

x x x x

x x
F

x x q q
f x f x

x x x x

x x






   
 
     




        





 

(15) 

Equation (15) does not closely follow the electrom
netic heuristics. The rest of this method is the same a
ori

e 

 


ag- 
s the 

ginal EML method. The composite force Fi exerted on 
particle xi is calculated using Equation (4), and the new 
position of particle xi is calculated using Equation (5). 

3. A Sanity Test for Premature Convergenc

Birbil and et al. [9] used a simple example to show the 
premature convergence problem of the original EML 
algorithm of Birbil and Fang [1], described in Section 
2.2.1. In this section, we adopt the same example and 
show that all the EML variants described in Sections 
2.2.3 - 2.2.8 suffer from the same problem. 

Consider the objective function f(x), shown in Figure 3,  
 

x

f(x)

 

Figure 3. Premature convergence of EML alogorthms. 
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for a one dimensional minimization problem. Supposed 
that all of the particles (shown as solid circles) in the 
current population are located on the right of the position 
marked with a star. Let xi and xj be two particles in the 
population. No matter xj is on the left or on the right of xi, 
the direction of the force exerted on xi from xj is toward 
the right, according to Equation (3), (8), (13) or (15  
Co s 

erturbed particle is the leftmost 
pa

 on the right of 
th

est 
pa

).
nsequently, the electromagnetic force will alway

move all particles, excluding the best particle, in the cur- 
rent population to the right, and miss the global optimum 
on the left at the origin. 

Birbil and et al. [9] proved that their perturbed EML 
method, described in Section 2.2.2, terminates with an 
“ε-optimal” solution when the number of iterations is 
large enough. This is achieved by stochastically revers- 
ing the direction of the electromagnetic force exerted on 
the particle (called the perturbed particle) that is farthest 
from the current best particle. For the example in Figure 
3, it is obvious that the p

rticle in the population, and it could be moved to the 
left of the star sign, and consequently converges to the 
origin, using the perturbed EML method. 

Consider another example in Figure 4, where the per- 
turbed particle is the rightmost particle in the population, 
and the current best particle is the second leftmost parti- 
cle. In this case, the reversed electromagnetic force does 
not help because if the perturbed particle is moved by its 
reversed electromagnetic force, it will be moved to the 
right, and consequently further away from the origin. 

If the perturbed particle (or any particle
e current best particle) in Figure 4 is moved by its 

electromagnetic force, it will be moved to the left. How- 
ever, this movement is beneficial only if the particle can 
be moved pass the star sign. In other words, the electro- 
magnetic force provides the direction of movement, but 
the distance of the movement should not be restricted to 
the distance between the particle and the current b

rticle. For example, Equation (5) provides the greatest 
freedom by allowing the movement up to the boundary 
of the feasible space. However, such freedom also 
reduces the convergence speed to the global optimum, 
and makes the direction of the movement somewhat 
different from the direction of the electromagnetic force. 
On the other hand, Debel’s method, described in Section 
2.2.3, provides less freedom by restricting the distance of  
 

 

x

f(x) 

 

Figure 4. Example of a useless perturbed particle. 

the movement up to the distance between the two 
particles under consideration. Therefore, it is more likely 
to trap in a local optimum. 

4. Performance Study 

4.1. Experimental Setting 

Sinc  the 

. The shrinking population 
method is not included because its idea is applicable to 

onary algorithm. For ease of 
ethods are listed in 

 without local search; method 2L refers to 
D

e our interest is on the various interpretations of
electromagnetic heuristics, all methods, described in Sec- 
tion 2, except the shrinking population method are im- 
plemented for this study

any population-based evoluti
exposition, the seven implemented m
Table 1. 

Furthermore, the idea of the perturbed point method 
[9], described in Section 2.2.2, is extended to and im- 
plemented as an option for all seven methods in Table 1. 
Local search for the current best particle is also imple- 
mented as an option. Therefore, method 2 refers to De- 
bel’s method without perturbed point and local search; 
method 2P refers to Debel’s method with perturbed 
point but

ebel’s method with local search but without perturbed 
point. 

A set of six well-known benchmark functions, listed in 
Table 2, was used in this experiment. The number n of 
dimensions ranges from 10 to 50. The first benchmark 
function is unimodal, while the remaining five are 
multimodal. The number of particles and the maximum 
number of iteration are set to 2n and 25n, respectively. 

For each setting, 30 runs were conducted, and their 
average performance was obtained. Each run stops until 
the maximum number of iterations is reached. For the 
same run, the same set of initial particles was generated 
for all methods. This performance study is divided into 
three parts, which are described in the subsequent three 
sections. 

4.2. Heuristic Test 

This section focuses on the effectiveness of various  
 

Table 1. ELM methods. 

Method No. Description 

1 Original EML algorithm [1] 

2 Debel’s metho

3 Rocha’s method of 

d [2] 

modified force [13] 

5 Rocha’ ] using Equation (12)

ethod [5] 

7 Shang’s method [15] 

4 Rocha’s method of modified charge [14] using Equation (11)

s method of modified charge [14

6 Yurtkuran’s m

Copyright © 2012 SciRes.                                                                                  AM 



J.-L. LIN  ET  AL. 

Copyright © 2012 SciRes.                                                                                  AM 

1270 

simu ions heuristics, and ignores 
the i act rbed point and local search. 
Specifically, we compare the EML methods with both 
pertu ed ctivated, i.e. 
meth s 1

Fi re 
conv es ods for the first run of 
benchmark f  = 10. Method 6 quickly 
stuck  a p . Recall from Section 2 that 

an the other five methods did. Similar 
re

 

since its results are very far from that of t  
methods. Overall, method 4 achieved the b lts 
among the seven methods. However, the results are still 
far from the known best objective values, show e 
third column of Table 2. According to this performance 

he other
est resu

n in th

lat  of the electromagnetic 
mp  of using a pertu

rb point and local search dea
od -7. 

gu 5 shows how the best objective value 
erg for all seven meth

unction f  with n6

oor local optimum in
methods 2 and 6 consider the force exerted on a particle 
only from another randomly chosen particle, while the 
rest five methods consider the force from all other 
particles. This explains why method 2 converges at a 
slower pace th

sults can be observed on the other benchmark functions 
and different number of dimensions. 

Tables 3-7 show the average of the best objective 
values over 30 runs. Method 6 is the worst performer, 
 

Table 2. Benchmark functions. 

Function Range 

  2
1 1

n
ii

f x x


  [−100, 100]

     
21 22

2 11
100 1

n
i i ii

f x x x x




 
     

study, EML algorithms with both perturbed point and 
local search deactivated perform poorly for most 
benchmark functions, and thus are not recommended. 
Previous work has shown that local search and perturbed 
point help improving the performance of EML methods. 
 

Table 3. Average of best objective values (n = 10). 

Method f1 f2 f3 f4 f5 f6 

1 10.92 5.6E+03 32.88 1.07 2.87 −7.202

2 873.7 2.0E+07 37.92 7.96 8.457 −6.786

3 86

4.  2.6E+03 1  0.  1. −8. 2

10.82 6.5E+03 32.47 1.07 2.751 −7.2

4 025 3.71 948 439 47

5 5.1 3.1E+03 15.46 0.994 1.873 −7.655

6 11,100 2.1E+09 157.3 107.2 18.01 −3.438

7 15.69 8.8E+03 33.89 1.132 3.285 −6.991

 
Table ver es ti e 2

M od

 4. A age of b t objec ve valu s (n = 0). 

eth f1 f2 f3 f4 f5 f6 

1 10.6 3423 48.59 1.094 2.029 −11.78

 

    2
3 1

10 10cos 2
n

i ii
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f x n x x
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7 13.55 5558 60.65 1.127 2.444 −11.21
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Figure 5. Convergence of EML methods for f6 with n = 10. 
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Table 5. Average of best objective values (n = 30). 

Method f1 f2 f3 f4 f5 f6 

Subsequent two sections study their impact on the 
performance. 

4.3. Local Search Test 

Birbil and Fang [1] suggested that applying local search 
on the current best particle improves the performance of 
their EML method without incurring much overhead. 
This section evaluates the performance of the seven EML 
methods with local search on the best particle. We 
adopted the same local search method as Birbil and Fang 
[1] did, i.e. random line search, described in Figure 2. 

The two parameters for random line search are set as 
follows: δ = 1E−3 or 1E−4 and LsIter = 150. No attempt 
is made to fine tune these two parameters to fit different 
benchmark functions. Notably, for an EML method 
without local search, the objective function needs to be 
calculated m − 1 times in each iteration, where m is the 

a population. With local search 
umber becomes m − 1 + n × 

LsI , wh  is t f i h
LsIter >   s n se u  
that on the electrom etic h istics. 

F ure ho ow  o e  
converges for all seven methods for the first run of 
benchmark function f6 with n = 10 and δ = 1E−3. 
methods 6L, 7L and 2L converged slower than the other 
methods did. 
 
Table 8. Average of best objective values (n = 10, δ = 
1E−3). 

Method f1 f2 f3 f4 f5 f6 

1 8.322 2046 30.11 1.079 1.505 −15.93

2 1332 3.1E+07 138.4 14.16 8.317 −16.07

3 8.604 2357 31.03 1.077 1.509 −15.99

4 2.800 1047 64.42 1.013 0.7174 −20.39

5 3.138 1260 57.95 1.021 0.7779 −19.27

6 38,510 1.073E+10 600.1 343.3 18.91 −8.269

7 10.85 3814 45.24 1.093 1.656 −15 

 
Table 6. Average of best objective values (n = 40). 

Method f1 f2 f3 f4 f5 f6 

1 7.066 1752 25.03 1.062 1.134 −19.72

2 .44

7  1622 24. 1.060 1.157 −19.97

8 1 0. 0

8 0 0

1. 8

2830 3

 1693 3.4E+07 200.4 16.45 8.444 −17

3 .085 94

4 2.270 64.1 09.9 9788 .5137 −25.73

5 2.455 863 3.08 .9942 .5263 −24.98

6 51,850 6E+10 51.4 462.5 19 −10.21

7 8.521 8.55 1.08 1.22 −18.49

 
l era est i e 0

Me 1 2 3 4 5 6

Tab e 7. Av ge of b  object ve valu s (n = 5 ). 

thod f  f  f  f  f  f  

1 5.261 1400 2 0 −1.54 1.047 .8917 23.34

2

3 5.720 1347 20.80 1.051 0.8957 −22.88

1.  6 140 0. 8 0. −2

 1903 5.6E+07 263.1 18.4 8.054 −20 

4 879 83.5 886 3154 9.46

5 2.074 764 97.81 0.9206 0.4278 −28.58

6 66,470 2.1E+10 1113 607.1 19.05 −12.24

7 7.382 2337 38.57 1.071 0.8624 −21.89

number of p rticles in the 
on the best particle, this n

ter ere n he number o dimens ons. W en n × 
m − 1, the time pent o  local arch s rpasses

agn
ws h

eur
 theig  6 s best bjectiv  value

1L 5.691E−3 32.32 11.89 0.5938 2.215 −8.427

2L 0.7051 2.5E+5 31.77 4.113 8.618 −8.186

3L 5.870E−3 32.32 12.53 0.6692 2.409 −8.370

4L 6.170E−3 124 9.229 0.5563 1.312 −9.045

5L 3.645E−3 106.2 15.77 0.5882 2.163 −8.384

6L 2866 1.8E+8 137.7 64.62 17.58 −6.187

7L 6.825E−3 70.91 12.62 0.6323 2.255 −8.625

 

 

Figure 6. C e thods with local search for f6 with n = 10. onverg nce of EML me
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Table 9. Average of best objective values (n = 20, δ = 
1E−3). 

Method f1 f2 f3 f4 f5 f6 

1L 4.337E−2 57.13 20.65 0.419 2.033 –16.45

2L 1.287E−2 513.3 73.04 1.738 9.102 −14.62

3L 4.376E−2 57.13 20.65 0.4191 2.052 −16.44

4L 3.710E−2 45.12 13.47 0.2677 1.315 −18.27

5L 4.239E−2 62.6 23.45 0.2709 1.354 −16.61

6L 818.1 3.1E+7 343.4 33.34 18.49 −13.15

7L 3.629E−2 78.86 19.29 0.4496 2.285 −15.49

 
Table 10. Average of best objective values (n = 30, δ = 
1E−3). 

Method f1 f2 f3 f4 f5 f6 

1L 0.142 123.2 23.59 0.466 0.996 −23.37

2L 0.027 277.1 125.5 1.480 8.527 −22.46

3L 0.144 123.2 23.59 0.466 0.891 −23.25

4L 0.103 81.27 18.33 0.383 1.227 −25.9

5L 0.119 122.9 28.58 0.385 0.252 −24.04

6L 70.03 3.7E+5 500 26.54 18.72 −18.48

7L 0.127 131 28.56 0.486 1.468 −23.21

 
Table 11. Average of best objective values (n = 40, δ = 
1E−3). 

Method f1 f2 f3 f4 f5 f6 

1L 0.2384 165.4 27.73 0.4911 0.214 −28.9

2L 3.724E−2 446.9 176.8 1.302 9.058 −26.43

3L 0.2373 165

135.9 39.49 0.4665 0.1159 −29.82

0  756.1 715.9 21.92 18.75 −25.05

0

.4 27.73 0.4911 0.2619 −28.99

4L 0.2521 151.9 30.13 0.4737 1.233 −32.38

5L 0.1979 

6L .249

7L 0.2447 151.8 35.36 .5769 0.6629 −28.36

 
Table 12. Average of best objectiv s   
1E−

m  

e value  (n = 50, δ =
3). 

ethod f1 f2 f3 f4 f5 f6 

1L 0.3521 215.7 3 0. 06.56 5982 .2164 −33.37

2L 6.768E−02 362.5 2 0

3L 0.3525 215.7 36.6 0.5982 0.185 −33.83

5L 0.3499 197.4 55.4 0.503 7.15E−2 −33.54

0.3464 979.5 914.5 16.37 18.83 −28.59

35.37 0.6467 0.3426

19.2 .5261 8.599 −30.97

4L 0.331 213.5 32.35 0.4423 1.226 −39.09

6L 

7L 0.3261 228.1 −33.06

Tables 8-12 show the average of the best objective 
values over 30 runs when δ = 1E−3. Similar to the pre- 
vi

nt in Tables 8-12. We reduced the 

−4, almost all methods with local search yield  
 
Table 13. Average of best objectiv s   
1E−

M

ous test, method 6L is the worst performer. Compar- 
ing the results in Tables 8-12 to their counterparts in 
Tables 3-7, local search on the best particles improves 
the results in most cases but with some exceptions shown 
in italicized fo
parameter δ from 1E−3 to1E−4, and repeated the same 
experiment. The results are shown in Tables 13-17. With 
δ = 1E

e value  (n = 10, δ =
4). 

ethod f1 f2 f3 f4 f5 f6 

1L 0.8366 375.6 10.16 0.312 1.812 −7.784

2L 482.8 1.9E+7 24.8 8 9.237 −7.233

3L 0.728 305.3 10.15 0.312 1.812 −7.895

4L 3.073E−2 350.9 6.411 0.2346 0.7673 −8.855

5L 9.776E−2 161.1 9.904 0.2009 1.251 −8.205

6L 1.056E+4 1.7E+9 140 92.67 17.43 −4.592

7L 1.525 604.6 9.253 0.3928 2.018 −7.676

 
Table 14. Average of best objective values (n = 20, δ = 
1E−4). 

Method f1 f2 f3 f4 f5 f6 

1L 4.08E−4 23.55 10.85 0.1026 1.352 −15.71

2L 291 9.6E+6 46.74 3.191 9.181 −14.87

3L 4.21E−4 23.6 10.82 0.1026 −15.81

578E−2 0.4712 −17.59

4 1 2

1 4

3. 1 0.1236 

1.352

4L 4.14E−4 14.89 9.699 5.

5L .43E−4 25.2 5.03 5. 44E−2 0.6467 −15.60

6L .92E+4 .6E+9 305 175.3 18.11 −10.87

7L 34E−4 41.4 1.28 1.587 −15.39

 
Table 15. Average of best objectiv e   
1E

ethod f1 f2 f3 f4 f5 f6 

e valu s (n = 30, δ =
−4). 

M

1L 1.14E−3 23.65 3.452 6.907E−2 0.6621 −23.87

2L 87.21 9.5E 74.92 1.933 8.354 −22.57

1 2 3 6

1 3.

1 2 2 4

6 5

8. 7 7

+6

3L .15E−3 3.74 .485 .907E−2 0.7306 −23.94

4L 1.16E−3 28.1 3.12 329E−2 0.1476 −26.11

5L .07E−3 8.91 1.56 .811E−2 0.1288 −23.93

6L 2.7E+4 .3E+9 34.2 215.1 18.56 −17.45

7L 78E−4 27.9 .862 .322E−2 1.309 −23.75
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Table 16. Average of best objectiv es   
1E−

ethod f1 f2 f3 f4 f5 f6 

e valu  (n = 40, δ =
4). 

M

1L 1.95E−3 44.19 1.629 5.55E−2 2.18E−2 −32.01

2L 35.87 5.2E+6 114.3 1.561 8.508 −30.02

1.92  44. 1.6 5.55 2 9.6 2 −31.85

1. 3 2 3. 8

3 8.

3 7. 7

2 4 4

3L E−3 13 29 E− 3E−

4L 87E−3 4.92 2.48 26E−2 .84E−2 −34.93

5L 2.29E−3 39.14 28.3 .83E−2 35E−3 −31.78

6L .1E+4 4E+9 05.6 288.4 18.76 −24.3

7L .1E−3 0.52 3.22 .97E−2 0.4307 −31.80

 
Ta 17. e t ti ue  5  
1E−

ble 
4). 

Averag of bes  objec ve val s (n = 0, δ =

method f1 f2 f3 f4 f5 f6 

1L 3.22E−3 47.1 0.139 4.76E−2 1.1E−2 −40.31

2L 16.27 4.4E+6 157.6 0.671 8.056 −36.14

3L 3.28E−3 47.08 0.139 4.75E−2 6.91E−2 −40.56

4L 4.33E−3 49.4 26 3.58E−2 4.48E−2 −43.13

5L 3.52E−3 58.88 37.14 3.43E−2 1.08E−2 −39.75

6L 3.66E+4 7.7E+9 825.3 324.4 18.89 −30.24

7L 3.62E−3 47.39 0.67 4.42E−2 0.3323 −39.23

 
better results than their counterparts without local search, 
with few exceptions of method 2L on f5 for n = 10 to 50 
a  for = 10. 

According to Tables 8-17, method 6L remains the 
wo  an od e s y a
stances. Al h n e od p form  
all instances,  a  ap r  
tw erfo  m  1 o  w n  
ins es

4.4. Perturbed Point Test 

As described in Section 2.2.2, Birbil et al. [9] proposed a 
ne ML od m e o al EML 

ethod using a perturbed point. Since the original EML 

 is denoted as method 1P herein. Both methods 
d ly  how e fo  exer  on th rtu ed 
p lated.

ed a a ho  a d  
us e per d , the tin h  
denoted as methods 2P-7P. Notably, these perturbed 
me ds te  tiv ti e  
nu r o s n r r

The param ν ned  Sect 2. or t  
pe s  t i s  
show the performance results of these perturbed methods. 

Ta 18 e ob ve (n  

M d

nd on f4 n 

rst, d meth  2L p rform poorl on m ny in- 
thoug o singl meth er s the best on

methods
rmers.

 4L
ethod

nd 5L
L als

pea
 does

to be t
ell o

he top
 someo p

tanc . 

w E  meth  that odifi s the rigin
m
method is denoted as method 1 in Table 1, the new 
method

iffer on
article is calcu

on  th
 

rce ted e pe rb

Bas  on the s me ide , met ds 2-7 re mo ified to
e th turbe particle  and  resul g met ods are

tho calcula s the objec e func on th  same
mbe f times a  their on-pe turbed counterpa ts do. 

eter 
 method

, defi
is set

 in
o 0.5 

ion 
n this test

2.2, f
. Table

hese
 18-22rturbed

ble . Averag of best jecti values = 10, perturb).

etho f1 f2 f3 f4 f5 f6 

1P 10.89 4.9E+3 34.59 1.11 2.922 −7.014

2P 712.8 1.9E+7 47.841 6.568 8.855 −6.643

3P 11.14 6602 31.497 1.098 2.885 −7.075

2.2E

1.0E

4P 4.185 2534 12.431 0.961 1.199 −8.604

5P 5.53 3279 18.105 1.017 1.703 −7.765

6P 1.1E+4 +9 157.73 108.449 18.052 −3.377

7P 15.18 +4 34.93 1.101 3.251 −6.778

 
Ta 19 e o  o e  

M d

ble . Averag f best bjective values (n = 20, p rturb).

etho f1 f2 f3 f4 f5 f6 

1P 11.33 3 2843 47.11 1.097 .127 −11.87

2P 1611 9.34E+7 142.22 16.274 9.210 −11.63

3P 10.75 3961 45.624 1.098 2.147 −11.931

−

  

6  

 

4P 3.149 1487 33.88 1.024 0.898 14.947

5P 4.444 1989 35.002 1.034 1.205 −14.621

6P 23,442 .1E+9 373.42 230.95 18.675 −6.161

7P 13.77 5388 56.742 1.120 2.434 −11.321

 
Table 20. Avera  objective va  

M d

ge of best lues (n = 30, perturb).

etho f1 f2 f3 f4 f5 f6 

1P 8.634 2477 29.79 1.078 1.509 −15.77

2P 3015.6 1.4E+8 249.925 30.663 8.547 −14.46

3P 8.645 2316.8 30.842 1.073 1.516 −15.93

1043. 67.331 

3.151 1099.9 62.754 1.022 

1 6

4 45  

4P 2.633 1 1.003 0.858 −20.61

5P 0.783 −19.64

6P 38,769 E+10 01.736 349.424 18.904 −8.29

7P 10.49 038 .664 1.105 1.697 −15.23

 
Ta 21  o  o e  

M d

ble . Average f best bjective values (n = 40, p rturb).

etho f1 f2 f3 f4 f5 f6 

1P 6.861 1657 26.45 1.064 1.113 −19.67

2P 0.00195 44.188 1.6287 0.056 0.022 −32.01

3P 0.00223 42.143 2.3595 0.072 0.212 −32.154

4P 35.8705 5,234,622 114.29 1.561 8.508 −30.017

5P 0.00192 44.128 1.6288 0.056 0.096 −31.847

6P 0.00187 34.920 22.4778 0.033 0.088 −34.934

7P 0.00229 39.141 28.2972 0.038 0.008 −31.782
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Table 22. Average of best objective values (n = 50, perturb). 

f4 f5 f6 Method f1 f2 f3 

1P 5.72 1355 22.64 1.047 0.8617 −23.47

2P 0.0032 47.099 0.139 0.048 0.0110 −40.305

3P 0.0031 52.434 0.338 0.037 0.0109 −39.668

4P 16.27 4,366,733 157.607 0.671 8.0557 −36.135

5P 0.0033 47.078 0.139 0.048 0.0691 −40.565

6P 0.0043 49.402 26.001 0.036 0.0448 −43.134

7P 0.0035 58.879 37.136 0.034 0.0108 −39.753

 
Among them, method 4P appears to perform the best 

for n ≤ 30, while methods 5P-7P perform the best for n > 
30. 

However, when comparing to their non-perturbed 
counterparts in Tables 3-7, these perturbed methods 
often yield no improvement (shown in italicized font in 
Tables 18-22), especially for n ≤ 30. Although these 
p d m ds  b er ch o escape f  
local optimums, they often require much more iterations 
to reach t ba u nce ma  n  
of iteratio re  t m  
dim ons, t ese pe ur et t 
expe ence nefi of a be i
no ge e

5. Conclusions 

This paper studies various interpretations of the elec- 
tro netic heur   al m r  

ow that EML methods without local search and 

methods 2 and 6. Notably, methods 2 and iffer om 
o ethods in two aspects. Firstly, they con er 
the elect ne rc  ra  
chosen pa  h ti e , 
they move er th h r 
me ds eci y, e ,  p  
ex to  p e d e  
movement ri  to han the dista  
be  es j. t o  
is n  e . ri s 
ne  to  th pr o o . 

e, e n her be nt ca , 

n ran  bett perfo ance. Actually si le 
interpretation of the electromagnetic heuristics con- 
sis ly ms er oth  
not e e h p o 
best ethod th rt  po , 
its u v  d b s quite 
unstable. Overall, these perturbed methods often yield 

po  re th ir tu o a . 
Therefore, i pr ur e que a  
int tin io L od fu research 
top  
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