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ABSTRACT

Electromagnetism-like (EML) algorithm is a new evolutionary algorithm that bases on the electromagnetic attraction
and repulsion among particles. It was originally proposed to solve optimization problems with bounded variables. Since
its inception, many variants of the EML algorithm have been proposed in the literature. However, it remains unclear
how to simulate the electromagnetic heuristics in an EML algorithm effectively to achieve the best performance. This
study surveys and compares the EML algorithms in the literature. Furthermore, local search and perturbed point are two
techniques commonly used in an EML algorithm to fine tune the solution and to help escaping from local optimums,
respectively. Performance study is conducted to understand their impact on an EML algorithm.
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1. Introduction

This paper studied the performance of a new class of
evolutionary algorithms called electromagnetism-like
(EML) algorithm, recently proposed by Birbil and Fang
[1], for optimization problems with bounded variables in
the form of:

minf(x), st.L<x<U 1)

where f{x) is the objective function to be minimized,
x=(x,x, -*+,x,) € R" is the variable vector, and L = (/,
b, -+, ) and U = (uy, uy, ‘-, u,) are the lower bound and
upper bound of x, respectively. That is, /; <x; < u; for i =
1 ton.

EML algorithm simulates the interaction caused by
electromagnetic force between electrically charged parti-
cles. Due to its effectiveness, EML algorithm has been
applied to various optimization problems, such as sched-
uling [2-4], vehicle routing problems [5], feature selec-
tion [6], fuzzy neural system [7], and engineering design
problems [8] since its inception.

The general scheme of an ELM algorithm [1] is shown
in Figure 1. It consists of four phases: initialize a popu-
lation of particles (step 1 in Figure 1), local search to
exploit local optimums (step 3 in Figure 1), calculate the
force exerted on each particle (step 4 in Figure 1), and
move each particle along the direction of the force (step
5 in Figure 1).

Because of the simplicity of the EML scheme, many
EML or EML-hybrid algorithms have been proposed in
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the literature. These algorithms mainly differ in the last
three phases of the above general EML scheme. That is,
different local search method can be used, and the force
exerted on each particle and the new position of each
particle can be calculated differently in different EML
algorithms. Many of these EML algorithms have persua-
sive experimental results showing their superior per-
formance over the original EML algorithm of Birbil and
Fang [1]. However, due to the lack of comparison among
these algorithms, the best way to design an EML algo-
rithm remains unclear. Further, most of the experimental
results are for optimization problems in a lower dimen-
sional space, and it is unclear whether these EML algo-
rithms scale well with high dimensionality. Birbil et al.
[9] pointed out the premature convergence problem of
the original EML algorithm, however, it also remains
unclear whether these new EML algorithms can escape
from local optimums effectively and efficiently.

The objectives of this study are threefold. Firstly, it
surveys the literature for the alternatives for force calcu-
lation in the EML algorithms. Secondly, it uses an artifi-

1. InitializeParticles( );

2. while the termination criteria are not satisfied do
3. LocalSearch( );

4. CalcForce( );

5. MoveParticles( );

6. end while

Figure 1. The general EML scheme.

AM



1266 J-L.LIN ET AL.

cial problem instance together with non-uniformly dis-
tributed particles to provide a sanity check of these EML
algorithms on their ability to escape from local optimums.
Thirdly, it compares the performance of these EML algo-
rithms using a set of well-known benchmark functions,
ranging from low to high dimensionality. The results not
only provide better understanding of these EML algo-
rithms, but also guide the development of new EML al-
gorithms.

2. Survey of EML Algorithms

This section reviews various local search methods (step 3
in Figure 1), force calculation methods (step 4 in Figure
1) and particle moving methods (step 5 in Figure 1) that
have been adopted in the EML algorithms in the
literature.

2.1. Local Search Methods

The purpose of local search is to move a particle to its
nearby local optimums. Birbil and Fang [1] indicated that
local search can be either omitted or applied to all parti-
cles or only the current best particle in the population.
Omitting local search, an EML algorithm relies solely on
the EML heuristics to find the optimal solution. However,
applying local search to all particles is time consuming
and offers slight improvement over applying local search
only to the current best particle [1]. Therefore, in this
study, local search is either omitted or applied only to the
current best particle.

Various local search methods have been used in EML
algorithms. Theoretically, any local search method can
be adopted in ELM algorithms. Complex local search
methods (e.g. chaos optimization [10] and pattern search
[11]) help converge to and escape from local optimums.
The original EML algorithm [1] uses a simple local
search, called random line search, so that the benefit of
the electromagnetism heuristics can be better appreciated.
Therefore, random line search is also adopted in this
study to allow fair comparison among various imple-
mentations of the electromagnetic heuristics in ELM al-
gorithms.

Random line search requires two parameters: J and
Lslter. First, the maximum feasible step length 7, at each
dimension k is calculated as the product of 0 and the
range of dimension & (i.e. u; — I;). Then, for each particle
i, this method searches along each dimension & for im-
provement of particle i for no more than Lslter times, as
shown in Figure 2. Notably, this local search method is
simple but has weak capability of escaping from local
optimums.

2.2. Calculate Force and Move Particles

Various EML algorithms employ the electromagnetic
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1. For each dimension & do

2. 7 <—§(uk—lk)

3. counter <« 1

4, While counter < LslIter do

5. Do

6. yex

7. A«U (—1,1)

8. Vi Y+ A

9. while ( y, >u; or y, <[;)
10. If f(y)<f(x") then
11. Xy

12. counter < Lslter
13. End if

14. counter < counter+1
15. End while

16.  End for

Figure 2. Random line search (for particle i at x).

heuristics somewhat differently. For example, to move a
particle, some algorithms consider the force exerting
from all other particles to this particle, while some algo-
rithms only consider the force exerting from an another
particle. Furthermore, in some EML algorithms, the
magnitude of the force between two particles is not in-
versely proportional to the square of their distance. The
rest of this section surveys how the electromagnetism
heuristics are interpreted in various EML algorithms.

2.2.1. Original Method
The original EML algorithm of Birbil and Fang [1] uses
an electromagnetism-like attraction-repulsion mechanism
to move particles as follows.

First, calculate the charge ¢' of each particle i using
Equation (2):

q =exp|-n f(x’)—f(x CS‘) Vi )

()= ()

where x**' denotes the particle with the best objective
value in current population (i.e. X" = argmin {f{x), V i}),
m is the number of particles, and 7 is the number of di-
mensions. All particles have charge between 0 and 1, and
particles with better objective values have higher
charges.

Then, the force Fj’ exerted on particle i from another
particle j is calculated using Equation (3):

(x/—xi) qiqj . j i
| )
) o Vi) (3)
X —X L
79 T it £(x')2 7 (x')

S |
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denote the distance between x'
x' —x")/"x' —xi|| and

§1 / x —x] in Equation (3) are unit vectors, and

us the force F is inversely proportional to |x” —x'

which contradlcts the electromagnetic heuristics that the
force between two particles should be inversely propor-
tional to the square of their distance. The total force F'
exerted on particle i from all other particles in the popu-
lation is calculated using Equation (4):

Ry @

best

where ]\Lx X ”
and x’ otably,

Finally, all particles except x
tion (5):

are moved using Equa-

xi+l%<uk—x,i) if F/ >0
X, = " ," ,Vi#best (5)

F -
xk+/1||F||(xk lk) if /<0

where k = 1, -+, n, and 4 is a random value uniformly
distributed between 0 and 1. One advantage of Equation
(5) is that it does not move particles outside the feasible
space. However, Equation (5) does not move each parti-
cle exactly in the direction of the force exerted on them,
and thus does not closely follow the electromagnetic
heuristics. Also notably, the best particle is not moved.

2.2.2. Original Method with a Perturbed Point

Birbil et al. [9] indicated that the original EML method
could converge prematurely, and thus they modified the
original method by introducing the idea of a perturbed
point. The perturbed point, x” is the farthest particle from the
current best particle x™* in the current population, i.e.

x? = arg max {"xbeSt —x' ",i = 1,2,-~,m} )

Their new method works exactly the same as the
original EML method [1] does except that the calculation
of the force exerted on x” is modified as follows. First,
the force F/ exerted on x” from particle ¥ is perturbed
by multiplying a random value 4 ~ U (0, 1), as shown in
Equation (7).

(xj—x”) Aa”a’ ) _

-
(" =¥') 2q7¢’
el

F!= /Y

" iff (x/)> f(x")
Then, the force F; reverses its direction if 4 < v
where v is a parameter between 0 and 1. Finally, the total

force exerted on particle p is calculated using Equation (4).

2.2.3. Debels’s Method
In the original EML method, either with or without using
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a perturbed point, all particles in a population exert a
force on all other particles. Debels et al. [2] proposed a
simplified EML method by considering only the force
from a randomly chosen particle. This method is adopted
as the mutation operation in the hybrid algorithms by
Kaelo and Ali [12] and Chang et al. [3].

To calculate the force exerted on a particle x', another
particle X’ is selected randomly from the current popula-
tion. Then, the force exerted on x' from ¥’ is calculated
using Equation (8):

f(x)-1 ()

A7)
where x**' and x"*' are the worst particle and the best
particle in current population respectively

Next, particle x' is moved to x' +F;. " Notably, if f{x)
< fiw’), then it is possible to move x’ out of the feasible

space of problem (1). An extra step is taken here to re-
strict x' inside the feasible space using Equation (9).

x,i:max{min{x,’;,uk},lk},k:1,---,n 9

Strictly speaking, this method is not electromagnetism-
like because the magnitude of the force F; is linear
proportional to the distance between x' and x’ not in-
versely proportional to the square of their distance.

F=(x/ =x') (8)

worst

2.2.4. Rocha’s Method of Shrinking Population
Rocha and Fernandes proposed a method to speedup
EML algorithms by shrinking the size of a population
whenever the spread of the objective values reduces by a
predefined percentage [11]. Essentially, this idea can be
applied to any population-based evolutionary methods.
The spread of the objective values w.r.t. the best value
of a population is defined as follows.

5 () r ()

m

SPR =

(10)

Initially, SPR™ is set as the SPR of the initial popula-
tion. Then, every time after local search in an EML algo-
rithm, if the remaining population size is greater than
twice the number of dimensions, then the SPR of the
current population is calculated. If the current SPR is less
than eSPR'?, then half of the population is discarded and
SPR™ is set to current SPR. Here, ¢ is a used-defined
threshold.

2.2.5. Rocha’s Method of Modified Force

Rocha and Fernandes proposed another EML method

which only differs from the original EML method on the

calculation of the total force exerted on each particle [13].

This method takes the change of the force into account.
The total force F' exerted on particle 7 in the current it-
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eration is calculated as follows. First, F* is calculated
using Equations (2)-(4), as did in the original EML
method. Then, the change Ai of the force is set to 0 for
the first iteration, and is set to F' —F"” for the rest
iterations of the algorithm, where F"”"* denotes the
total force exerted on particle i in the previous iteration.
Finally, F is adjusted as F' + SAi, where f8 is a parameter
in the interval [0, 1). Notably, if § = 0, this method is the
same as the original EML method. The suggested value
for fis 0.1.

2.2.6. Rocha’s Method of Modified Charge

Rocha and Fernandes proposed two methods that intend
to improve the efficiency and solution accuracy of EML
algorithms [14]. Both methods differ from the original
EML method on how the charge of a particle is
calculated. Their first and second methods replace
Equation (2) of the original EML with Equations (11)
and (12), respectively.

) 1)
1)

()
f (xworst ) _ f(xbcst )

Both Equations (11) and (12) still yield ¢’ between 0
and 1. Furthermore, both methods replace Equation (3)
of the original EML with Equation (13) such that the
magnitude of the force F /’ exerted on particle x' from
particle X' is inversely proportional to the square of the
distance between x’ and ¥’ to be consistent with the elec-
tromagnetism heuristics.

q' =exp| -n

Vi (11)

-1

Vi (12)

(+ - x)[ qq’
[y
(=) g¢’

j i . 112
[« =] | -

- iff(x) < f(x)

iff (x')> £ (x')

(13)

2.2.7. Yurtkuran’s Method of Reducing Movement

Yurtkuran and Emel [5] propose an EML method that
differs from Debels’s method [2] only on how the elec-
tromagnetic force moves a particle. Their method re-
duces the effect of the force as the number of iterations

increases. Let iter denote the current number of iterations.

After calculating the force Fj." exerted on particle x’
from particle x' using equation (8) as did in Debels’s
method, x' is moved to x' + F} / iter instead of x' + F7.
Consequently, this method has the effect of reducing the
range of movement as the number of iterations increases.
As in Debels’s method, this method could move particles
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out of the feasible space, and thus Equation (9) should be
applied to confine particles inside the feasible space.

2.2.8. Shang’s Method of High Charged Particles
Shang et al. proposed an EML method that ignores the
force exerted from those particles with small charges to
improve efficiency [15]. First, the charge of each particle
is calculated using Equation (2), as did in the original
EML method. Those particles with charges lower than
half of the average charge of all particles cannot exert
force on other particle. This can be done by introducing a
modified charge ¢' of particle x' as follows.

mo
qi lfql > Zk:lq
i 2m ..
q = . ,Vi, j (14)
e 44
0 ifqg’ <k;1
1 2m

Then, Equation (15) is used to calculate the force Fj’
exerted on particle x' from particle x’.

(x’—xi) q9q _ _ :
— = iff(x) )< fx
A=) )

p mo|\| ki

| > -]

Ff: (xi—xj) qiqj

— S iff ()= £ (x
e [ g ) R

p m k i

o
(15)

Equation (15) does not closely follow the electromag-
netic heuristics. The rest of this method is the same as the
original EML method. The composite force F* exerted on
particle x' is calculated using Equation (4), and the new
position of particle x' is calculated using Equation (5).

3. A Sanity Test for Premature Convergence

Birbil and ef al. [9] used a simple example to show the
premature convergence problem of the original EML
algorithm of Birbil and Fang [1], described in Section
2.2.1. In this section, we adopt the same example and
show that all the EML variants described in Sections
2.2.3 - 2.2.8 suffer from the same problem.

Consider the objective function f{x), shown in Figure 3,

Sx) A

—4&—0—0——0—0—0—0—0—»)6

Figure 3. Premature convergence of EML alogorthms.
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for a one dimensional minimization problem. Supposed
that all of the particles (shown as solid circles) in the
current population are located on the right of the position
marked with a star. Let x' and x’ be two particles in the
population. No matter ¥’ is on the left or on the right of x/,
the direction of the force exerted on x' from ¥’ is toward
the right, according to Equation (3), (8), (13) or (15).
Consequently, the electromagnetic force will always
move all particles, excluding the best particle, in the cur-
rent population to the right, and miss the global optimum
on the left at the origin.

Birbil and et al. [9] proved that their perturbed EML
method, described in Section 2.2.2, terminates with an
“e-optimal” solution when the number of iterations is
large enough. This is achieved by stochastically revers-
ing the direction of the electromagnetic force exerted on
the particle (called the perturbed particle) that is farthest
from the current best particle. For the example in Figure
3, it is obvious that the perturbed particle is the leftmost
particle in the population, and it could be moved to the
left of the star sign, and consequently converges to the
origin, using the perturbed EML method.

Consider another example in Figure 4, where the per-
turbed particle is the rightmost particle in the population,
and the current best particle is the second leftmost parti-
cle. In this case, the reversed electromagnetic force does
not help because if the perturbed particle is moved by its
reversed electromagnetic force, it will be moved to the
right, and consequently further away from the origin.

If the perturbed particle (or any particle on the right of
the current best particle) in Figure 4 is moved by its
electromagnetic force, it will be moved to the left. How-
ever, this movement is beneficial only if the particle can
be moved pass the star sign. In other words, the electro-
magnetic force provides the direction of movement, but
the distance of the movement should not be restricted to
the distance between the particle and the current best
particle. For example, Equation (5) provides the greatest
freedom by allowing the movement up to the boundary
of the feasible space. However, such freedom also
reduces the convergence speed to the global optimum,
and makes the direction of the movement somewhat
different from the direction of the electromagnetic force.
On the other hand, Debel’s method, described in Section
2.2.3, provides less freedom by restricting the distance of

S

Figure 4. Example of a useless perturbed particle.
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the movement up to the distance between the two
particles under consideration. Therefore, it is more likely
to trap in a local optimum.

4. Performance Study
4.1. Experimental Setting

Since our interest is on the various interpretations of the
electromagnetic heuristics, all methods, described in Sec-
tion 2, except the shrinking population method are im-
plemented for this study. The shrinking population
method is not included because its idea is applicable to
any population-based evolutionary algorithm. For ease of
exposition, the seven implemented methods are listed in
Table 1.

Furthermore, the idea of the perturbed point method
[9], described in Section 2.2.2, is extended to and im-
plemented as an option for all seven methods in Table 1.
Local search for the current best particle is also imple-
mented as an option. Therefore, method 2 refers to De-
bel’s method without perturbed point and local search;
method 2P refers to Debel’s method with perturbed
point but without local search; method 2L refers to
Debel’s method with local search but without perturbed
point.

A set of six well-known benchmark functions, listed in
Table 2, was used in this experiment. The number n of
dimensions ranges from 10 to 50. The first benchmark
function is unimodal, while the remaining five are
multimodal. The number of particles and the maximum
number of iteration are set to 2z and 25n, respectively.

For each setting, 30 runs were conducted, and their
average performance was obtained. Each run stops until
the maximum number of iterations is reached. For the
same run, the same set of initial particles was generated
for all methods. This performance study is divided into
three parts, which are described in the subsequent three
sections.

4.2. Heuristic Test

This section focuses on the effectiveness of various

Table 1. ELM methods.

Method No. Description

1 Original EML algorithm [1]

2 Debel’s method [2]

3 Rocha’s method of modified force [13]

4 Rocha’s method of modified charge [14] using Equation (11)

W

Rocha’s method of modified charge [14] using Equation (12)
6 Yurtkuran’s method [5]

7 Shang’s method [15]
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simulations of the electromagnetic heuristics, and ignores
the impact of using a perturbed point and local search.
Specifically, we compare the EML methods with both
perturbed point and local search deactivated,
methods 1-7.

Figure 5 shows how the best objective value
converges for all seven methods for the first run of
benchmark function f; with » = 10. Method 6 quickly
stuck in a poor local optimum. Recall from Section 2 that
methods 2 and 6 consider the force exerted on a particle
only from another randomly chosen particle, while the
rest five methods consider the force from all other

ie.

ET AL.

since its results are very far from that of the other
methods. Overall, method 4 achieved the best results
among the seven methods. However, the results are still
far from the known best objective values, shown in the
third column of Table 2. According to this performance
study, EML algorithms with both perturbed point and
local search deactivated perform poorly for most
benchmark functions, and thus are not recommended.
Previous work has shown that local search and perturbed
point help improving the performance of EML methods.

Table 3. Average of best objective values (n = 10).

particles. This explains why method 2 converges at a Method  fi S S Ja S5 Js
slower pace than the other five methods did. Similar 1 1092 5.6E403 3288 107  2.87 —7.202
results can be observed on the other benchmark functions
. . . 2 873.7 2.0E+07  37.92 7.96 8.457 —6.786
and different number of dimensions.
Tables 3-7 show the average of the best objective 3 1082 6.5E+03 3247 107 2751 -7.286
values over 30 runs. Method 6 is the worst performer, 4 4.025  2.6E+03 13.71 0.948 1439 —8.472
A 5 5.1 3.1E+03 15.46 0.994 1.873 -7.655
Table 2. Benchmark functions.
6 11,100 2.1E+09 157.3 107.2 18.01 —3.438
Function Range 7 1569  8.8E+03 3389 1132 3285 —6.991
h(x) =" [~100, 100]
Table 4. Average of best objective values (n = 20).
f(x)= Z'f’l IOOX(xM g )2 +(x-1)° [-100, 100]
=l Method fi S U Ja Js Je
f3(x)=10n+27 l(fo—lOCOS(ZTCxi)) [,10’ 10] 1 10.6 3423 48.59 1.094 2.029 -11.78
i=
| 2 1127 3E+07 86.41 10.59 8452 —12.56
- " 2-TT i _
Ja(x)=1+ o hIR Hi:lcos[ \/,TJ [-600, 600] 3 1061 3073 4562 1.09 2121 —12.02
. 4 3.252 1612 3436  1.024 1.081 -15.28
204020 -0»%/&21:1*3 %ZELICOS(ZM) [-32,32]
f5(x)=20+e-20e —e 5 4.594 1661 3683 1.036 1.138 —13.71
20
ix2 6 2.29E+4 5.7E+09 3744 2264 18.67 —6.052
fo(x)=->"" sin(x,.){sinﬂ} [0, ]
i=1 pis
7 13.55 5558 60.65 1.127 2444 —11.21
Figure 5. Convergence of EML methods for f; with n = 10.
Copyright © 2012 SciRes. AM
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Table 5. Average of best objective values (r = 30).

Method fi )2 5 Ja s Jo

1 8.322 2046 30.11  1.079 1.505 -15.93
2 1332 3.1E+07 1384 14.16 8317 -16.07
3 8.604 2357 31.03 1.077 1.509 -15.99
4 2.800 1047 6442 1.013 0.7174 -20.39
5 3.138 1260 5795 1.021 0.7779 -19.27
6 38,510 1.073E+10 600.1 3433 1891 —8.269
7 10.85 3814 4524 1.093 1.656 -15

Table 6. Average of best objective values (r = 40).

1271

Subsequent two sections study their impact on the
performance.

4.3. Local Search Test

Birbil and Fang [1] suggested that applying local search
on the current best particle improves the performance of
their EML method without incurring much overhead.
This section evaluates the performance of the seven EML
methods with local search on the best particle. We
adopted the same local search method as Birbil and Fang
[1] did, i.e. random line search, described in Figure 2.
The two parameters for random line search are set as
follows: 6 = 1E—3 or 1E—4 and Lslter = 150. No attempt
is made to fine tune these two parameters to fit different
benchmark functions. Notably, for an EML method
without local search, the objective function needs to be

Method £ p2! /i fa fs Js calculated m — 1 times in each iteration, where m is the
| 7066 1752 2503 1062 1134 —19.72 number of panlgles in .the population. With local search
on the best particle, this number becomes m — 1 + n x
2 1693 3.4E+07 2004 1645 8444 1744 Lslter, where 7 is the number of dimensions. When n x
3 7085 1622 2494 1060 1157 —-19.97 Lslter > m — 1, the time.spent gn.local search surpasses
that on the electromagnetic heuristics.
4 2270 8641 1099 09788 05137 -25.73 Figure 6 shows how the best objective value
5 2.455 863 83.08 0.9942 0.5263 —24.98 converges for all seven methods for the first run of
benchmark function fg with » = 10 and 6 = 1E-3.
6 51,850 1.6E+10 8514 4625 19 1021 methods 6L, 7L and 2L converged slower than the other
7 8.521 2830 3855  1.08 122 —18.49 methods did.
Table 7. Average of best objective values (1 = 50). f]f:‘blse) 8. Average of best objective values (n = 10, 6 =
Method
A S S Ja Ve Js Method ; % 4 4 % P
I 5260 1400 2154 1047 0.8917  -23.34 IL  5.691E-3 3232 1189 05938 2215 -8427
2 1903 5.6E+07 2631 184 8054  -20 2L 07051 25E+5 3177 4113 8618 —8.186
3 5720 1347 2080 1051 0.8957 -22.88 3L 5.870E-3 3232 1253 0.6692 2409 —8.370
4 1.879 6835 140  0.8868 0.3154 -29.46 4L 6.I70E-3 124 9229 05563 1312 —9.045
5 2.074 764 97.81 09206 0.4278 —28.58 5L 3.645E-3 1062 1577 0.5882 2.163 —8.384
6 66,470 2.1E+10 1113 607.1 19.05 -12.24 6L 2866 1.8E+8 137.7 64.62 17.58 —6.187
7 7.382 2337 38.57 1.071  0.8624 -21.89 7L 6.825E-3  70.91 12.62  0.6323  2.255 —8.625
Figure 6. Convergence of EML methods with local search for fg with n = 10.
Copyright © 2012 SciRes. AM
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Table 9. Average of best objective values (n = 20, 6 = Tables 8-12 show the average of the best objective
1E-3). values over 30 runs when ¢ = 1E—3. Similar to the pre-
Method 7 5 7 P P % vious test, methlod 6L is the worst pe.rformer. Compa.r-
ing the results in Tables 8-12 to their counterparts in
I 4337E=2 5713 2065 0419 2.033 ~16435 Tables 3-7, local search on the best particles improves
2L 1287E-2 5133 73.04 1.738  9.102 -14.62 the results in most cases but with some exceptions shown
3L 4376E—2 5713 2065 04191 2052 —16.44 in italicized font in Tables 8-12. We reduced the
AL 3T10E2 4512 1347 026 L 1827 parameter 0 from 1E-3 tolE—4, and repeated the same
: - AT 02677 1315 ) experiment. The results are shown in Tables 13-17. With
5L 4239E-2 626 2345 02709 1354 -16.61 0 = 1E—4, almost all methods with local search yield
6L 818.1 3.1E+7 3434 3334 1849 -13.15
Table 13. Average of best objective values (n = 10, 6 =
TL 3.629E-2  78.86 1929 04496 2.285 —15.49 1E-4).
Table 10. Average of best objective values (n = 30, 6 = Method S 12 £ i fs Js
1E-3). 1L 0.8366 375.6 10.16 0312 1.812 —-7.784
Method ~ fi S S5 Ja S5 Js 2L 4828  19E+7 248 8 9.237 -7.233
1L 0.142 123.2 23.59 0466 0996 —23.37 3L 0.728 305.3 10.15 0312 1812 —7.895
Lo 007 2771255 1AR0 8527 2246 AL 3.073E-2 3509 6411 02346 07673 -8.855
3L 0.144 123.2 23.59 0466 0.891 —23.25
5L 9.776E—2 161.1 9.904 0.2009 1.251 —8.205
4L 0.103 81.27 18.33  0.383 1.227 259
6L 1.056E+4  1.7E+9 140 92.67 17.43  —4.592
SL 0.119 122.9 28.58 0385 0.252 —24.04
7L 1.525 604.6 9.253 0.3928 2.018 —7.676
6L 70.03 3.7E+5 500 26.54 18.72 —18.48
L 0.127 131 28.56 0486 1468 2321 Table 14. Average of best objective values (n = 20, § =
1E-4).
Table 11. Average of best objective values (n = 40, 0 =
1E-3). Method Ji e E Ja f5 Js
Method £ f 7 fi £ £ 1L 4.08E-4 2355 10.85  0.1026 1352 —-15.71
1L 0.2384 1654 2773 04911 0214 -289 2L 291 9.6E+6 4674  3.191  9.181 -14.87
2L 3.724E-2 4469 176.8  1.302 9.058 —26.43 3L 421E-4 236 10.82  0.1026 1.352  —15.81
3L 0.2373 1654 27.73 04911 0.2619 -28.99 4L 4.14E-4 14.89 9.699 S5.578E-2 0.4712 -17.59
aL 02521 1519 3013 04737 1.233 —32.38 5L 443E-4 252 1503 5.244E-2 0.6467 —15.60
SL 0.1979 1359 39.49 0.4665 0.1159 —29.82 6L 1.92E+4 4.6E+9 305 1753 1811 -10.87
6L 0.249 756.1 7159 2192 18.75  —25.05
7L 334E-4 414 11.28  0.1236 1.587 —-15.39
7L 0.2447 151.8 3536 0.5769 0.6629 —28.36
Table 15. Average of best objective values (n = 30, 6 =
Table 12. Average of best objective values (n = 50, 0 = 1E-4).
1E-3).
Method fi S S Ja Js Js
method S S S Ja S Js
1L 1.14E-3  23.65 3.452 6907E-2 0.6621 -—23.87
1L 0.3521 2157 36.56 0.5982 0.2164 —33.37
2L 21 SE+ 4.92 1. 8.354 -22.
2L 6.768E—02 362.5 219.2 0.5261 8.599  -30.97 87 9-5E+6 749 933 3 37
3L 03525 2157 366 05982  0.185 —33.83 3L 1.I1SE-3  23.74 3.485 6.907E-2 0.7306 -23.94
4L 0331 2135 3235 04423 1226 —39.09 AL LI6ES3 281 1302 3.329E-2 0.1476 -26.11
5L 0.3499 197.4 554 0.503 7.15E—2 -33.54 5L 1.07E-3 2891 21.56 4.811E-2 0.1288 —23.93
6L 0.3464 979.5 9145 16.37 18.83  —28.59 6L 2.7E+4 6.3E+9 5342 215.1 18.56 —17.45
7L 0.3261 228.1 3537 0.6467 0.3426 —33.06 7L 8.78E-4 279 7.862 7.322E-2 1309 -23.75
Copyright © 2012 SciRes. AM
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Table 16. Average of best objective values (n = 40, 0 =

1E-4).

Method  fi S S Ja S5 Js
1L 1.95E-3 44.19 1.629 5.55E-2 2.18E-2 -32.01
2L 3587 52E+6 1143 1.561 8.508  —30.02
3L 1.92E-3 44.13 1.629 555E-2 9.63E-2 -31.85
4L 1.87E-3 3492 2248 3.26E-2 8.84E-2 -34.93
SL 2.29E-3 39.14 283 3.83E-2 8.35E-3 -31.78
6L 3.1E+4 74E+9 705.6 2884 18.76 -24.3
7L 2.1E-3  40.52 322 497E-2 0.4307 -31.80

Table 17. Average of best objective values (n = 50, 0 =

1E-4).

method A S S Ja S5 Jo
1L 3.22E-3 47.1 0.139 4.76E-2 1.1E-2 —40.31
2L 16.27 44E+6 157.6  0.671 8.056  —36.14
3L 3.28E-3 47.08 0.139 4.75E-2 6.91E-2 —40.56
4L 4.33E-3 49.4 26 3.58E-2 448E-2 —43.13
SL 3.52E-3 58.88 37.14 3.43E-2 1.08E-2 -39.75
6L 3.66E+4 7.7E+9 8253 324.4 18.89  —30.24
7L 3.62E-3 47.39 0.67 4.42E-2 0.3323 -39.23

better results than their counterparts without local search,
with few exceptions of method 2L on f; for n = 10 to 50
and on f; for n = 10.

According to Tables 8-17, method 6L remains the
worst, and method 2L performs poorly on many in-
stances. Although no single method performs the best on
all instances, methods 4L and 5L appear to be the top
two performers. method 1L also does well on some
instances.

4.4. Perturbed Point Test

As described in Section 2.2.2, Birbil et al. [9] proposed a
new EML method that modifies the original EML
method using a perturbed point. Since the original EML
method is denoted as method 1 in Table 1, the new
method is denoted as method 1P herein. Both methods
differ only on how the force exerted on the perturbed
particle is calculated.

Based on the same idea, methods 2-7 are modified to
use the perturbed particle, and the resulting methods are
denoted as methods 2P-7P. Notably, these perturbed
methods calculates the objective function the same
number of times as their non-perturbed counterparts do.

The parameter v, defined in Section 2.2.2, for these
perturbed methods is set to 0.5 in this test. Tables 18-22
show the performance results of these perturbed methods.
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Table 18. Average of best objective values (n = 10, perturb).

Method /i e S Ja S5 Js
1P 10.89  49E+3  34.59 1.11 2922 —7.014
2P 712.8 1.9E+7  47.841 6.568 8.855 —6.643
3P 11.14 6602 31.497 1.098 2.885 —7.075
4P 4.185 2534 12.431 0.961 1.199 -8.604
5p 5.53 3279 18.105 1.017 1.703  —7.765
6P 1.1E+4 22E+9 157.73 108.449 18.052 —3.377
7P 15.18 1.0E+4 3493 1.101 3251 —6.778
Table 19. Average of best objective values (n = 20, perturb).
Method  fi e E Ja S5 Jo
1P 11.33 3843 47.11 1.097 2.127  —11.87
2P 1611 9.34E+7 14222 16274 9.210 11.63
3P 10.75 3961 45.624  1.098 2.147  —-11.931
4P 3.149 1487 33.88  1.024  0.898 —14.947
SP 4.444 1989 35.002 1.034 1.205 —14.621
6P 23,442 6.1E+9 37342 23095 18.675 —6.161
7P 13.77 5388 56.742 1.120  2.434 -11.321
Table 20. Average of best objective values (n = 30, perturb).
Method  fi S S Ja S5 Js
1P 8.634 2477 29.79 1.078 1.509 -15.77
2P 3015.6  1.4E+8 249.925 30.663 8.547 —14.46
3P 8.645  2316.8 30.842 1.073 1.516 —15.93
4P 2.633  1043.1 67.331 1.003 0.858  —20.61
5P 3.151 1099.9  62.754 1.022 0.783 —19.64
6P 38,769  1E+10 601.736 349.424 18904 —8.29
7P 10.49 4038 45.664 1.105 1.697 —-15.23
Table 21. Average of best objective values (n = 40, perturb).
Method /i S S Ja S Js
1P 6.861 1657 26.45 1.064 1.113 -19.67
2P 0.00195  44.188 1.6287 0.056 0.022 —32.01
3P 0.00223  42.143 23595 0.072 0.212 -32.154
4P 35.8705 5,234,622 11429 1.561 8508 —30.017
5P 0.00192  44.128 1.6288 0.056 0.096 —31.847
6P 0.00187  34.920 224778 0.033 0.088 —34.934
7P 0.00229  39.141  28.2972 0.038 0.008 —31.782
AM
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Table 22. Average of best objective values (n = 50, perturb).

Method h 5 f Ja fs Jo
1P 5.72 1355 22.64 1.047 0.8617 —23.47
2P 0.0032  47.099 0.139 0.048 0.0110 —40.305
3P 0.0031 52.434 0.338 0.037 0.0109 -39.668
4p 16.27 4,366,733 157.607 0.671 8.0557 —36.135
5P 0.0033  47.078 0.139 0.048 0.0691 —40.565
6P 0.0043  49.402 26.001 0.036 0.0448 —43.134
7P 0.0035  58.879 37.136  0.034 0.0108 —39.753

Among them, method 4P appears to perform the best
for n < 30, while methods SP-7P perform the best for n >
30.

However, when comparing to their non-perturbed
counterparts in Tables 3-7, these perturbed methods
often yield no improvement (shown in italicized font in
Tables 18-22), especially for n < 30. Although these
perturbed methods have a better chance to escape from
local optimums, they often require much more iterations
to reach the global optimum. Since the maximal number
of iterations is set to 25n, where n is the number of
dimensions, these perturbed methods might not yet
experience the benefit of a perturbed particle when # is
not large enough.

5. Conclusions

This paper studies various interpretations of the elec-
tromagnetic heuristics in EML algorithms. Our results
show that EML methods without local search and
perturbed point often yield poor results, especially for
methods 2 and 6. Notably, methods 2 and 6 differ from
other EML methods in two aspects. Firstly, they consider
the electromagnetic force from only one randomly
chosen particle instead of all other particles. Secondly,
they move particles in a less free manner than the other
methods do. Specifically, with method 2, when particle i
exerts a force to move particle j, the distance of this
movement is restricted to no greater than the distance
between particles i and j. The distance of this movement
is even smaller with method 6. Further experiment is
needed to find the culprit for their poor performance.
Notable, even using either perturbed point or local search,
methods 2P, 2L, 6P and 6L still yield unstable results.
Strictly following the electromagnetic heuristics does
not guarantee better performance. Actually, no single
interpretation of the electromagnetic heuristics con-
sistently performs better than other interpretations. On
notable example is method 4, which appears to be the
best method with no local and perturbed point. However,
its perturbed version, method 4P, becomes quite
unstable. Overall, these perturbed methods often yield

Copyright © 2012 SciRes.

poorer results than their un-perturbed counterparts do.
Therefore, improving the perturbed technique and
integrating various EML methods are future research
topics.
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