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ABSTRACT 

Bilevel programming problems are a class of optimization problems with hierarchical structure where one of the con-
straints is also an optimization problem. Inexact restoration methods were introduced for solving nonlinear program-
ming problems a few years ago. They generate a sequence of, generally, infeasible iterates with intermediate iterations 
that consist of inexactly restored points. In this paper we present a software environment for solving bilevel program-
ming problems using an inexact restoration technique without replacing the lower level problem by its KKT optimality 
conditions. With this strategy we maintain the minimization structure of the lower level problem and avoid spurious 
solutions. The environment is a user-friendly set of Fortran 90 modules which is easily and highly configurable. It is 
prepared to use two well-tested minimization solvers and different formulations in one of the minimization subproblems. 
We validate our implementation using a set of test problems from the literature, comparing different formulations and 
the use of the minimization solvers. 
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1. Introduction 

Bilevel programming problems are optimization prob- 
lems whose feasible set is partially restricted to the solu-
tion of another optimization problem. Mathe- matically 
speaking, a bilevel problem can be stated by: 
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where , , , 
. Eventually, some components of vector 

y may be free. The sets X and Y are bounded boxes in 
 and  respectively. We suppose that the gradi-

ents of F and H, and the Hessians of f and h exist and are 
continuous in X × Y. The optimization subproblem ap-
pearing in the constraints is called the lower level prob-
lem. 
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The first formulation of bilevel programming was 
given in an economical context in [1]. Survey papers on 
this problem were published in [2,3]. Different ap-
proaches about the theory of optimality conditions for 
bilevel programming problems were introduced in [4]. In 
[5,6] necessary and sufficient optimality conditions re-
quire that the lower level problem has a unique optimal 

solution. 
Following Dempe [7] algorithms for solving bilevel 

programming problems can be classified into three cate-
gories: the first group solves the problem globally, the 
second group computes stationary points or points that 
satisfy some local optimality conditions, and the third 
group corresponds to heuristic methods. A review of al-
gorithms for globally solving this kind of problems is 
given in [2]. 

Bilevel programming problems are nonconvex opti- 
mization problems and for this reason there are diffi- 
culties to solve them globally. Therefore, descent me- 
thods were developed to compute stationary solutions. 
For the linear case, see [8]. An important fact assumed in 
[9] is that the lower level optimal solution is uniquely 
determined. 

The development of new algorithms and theory of 
bilevel programming problems is strongly motivated by a 
large number of applications. For instance, determination 
of optimal prices [10], aluminium production process 
[11], electric utility demand-side planning and engi- 
neering applications [12]. An overview of applications is 
given in [13]. 

In order to solve bilevel programming problems we 
will consider the ideas proposed in [14-16], called Inex-
act Restoration methods (IR). Let us state the nonlinear 
programming problem in the form: 
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   Minimize subje 0 Ωct to ,Cf xx  x

 m

    (2) 

where  and are continuously 
differentiable and Ω is a polytope. The IR model algo-
rithm generates feasible iterates with respect to Ω. Each 
iteration includes two different phases: restoration and 
minimization. In the restoration phase, which is executed 
once per iteration, an intermediate point (restored point) 
is found such that its infeasibility is a fraction of the 
infeasibility of the current point. After restoration we 
define a linearization of the feasible region πk around the 
restored point. In the minimization phase we compute a 
trial point belonging to πk solving a trust-region sub-
problem such that the functional value at the trial point is 
less than the functional value at the restored point. A 
Lagrangian function can be also used at the minimization 
phase as it is presented in [16,17]. By means of a merit 
function, the new iterate is accepted or rejected. In case 
of rejection, the trust-region radius is reduced and the 
minimization phase is repeated around the same restored 
point. The philosophy of IR encou- rages case-oriented 
applications. Since IR allows us to choose suitable resto-
ration and minimization procedures, the IR approach is 
quite appealing in this context. 

: nf  : nC  

Many years ago bilevel programming problems were 
solved replacing the lower level problem by its KKT 
conditions, but this presented a serious drawback because 
many spurious stationary points may appear. On the 
other hand, one of the reasons for using IR in bilevel 
programming problems is that the lower level problem 
may be treated at the restoration phase as an optimization 
problem. The classical way to find a local solution is to 
try to solve the lower level problem using optimization 
strategies that consider the lower objective function. Be-
sides that, notice that when Ω is a polytope, the approxi-
mate feasible region πk is also a polytope. Thus, the 
minimization phase consists of solving a linearly con-
strained optimization problem. Therefore, available algo-
rithms for these kinds of (potentially large-scale) prob-
lems can be fully exploited, for example MINOS [18], 
SNOPT [19] and ALGENCAN [20]. 

Our main contribution is to propose a user-friendly 
environment consisting by a set of Fortran 90 modules to 
solve a bilevel programming problem using IR without 
reformulating it as a single-level problem. The package is 
easily and highly customizable and it is prepared to use 
two well-tested minimization solvers and different for- 
mulations in the minimization subproblem. Other solvers 
can be easily included with minor changes in the code. 
The algorithm is based on [6], with additional features: 
two versions for solving the minimization step and stop-
ping criteria. One of the most attractive features of this 
environment is the autosetting options. That means that 
users just need to write Fortran code for the functions 

involved in the bilevel programming problem, and not to 
write any code about the algorithm and external solvers. 
On the other hand, the code is highly configurable, 
therefore users with expertise on these topics may take 
advantage of the code structure. 

The code is written mainly in standard Fortran 90, 
with a few features of standard Fortran 2003. The choice 
of the language was made because a big number of opti-
mization packages are written either in Fortran 77 or in 
Fortran 90. Particularly, MINOS and ALGENCAN are 
written in Fortran 77, which are used in our code. 

We validate our implementation using a set of test 
problems from the literature, comparing different for- 
mulations and the use of the minimization solvers. 

There are several formulations for the bilevel pro- 
gramming problem in the literature with their own code, 
but not software packages. For example, in [21] genetic 
algorithms are developed using GAMS [22] and MINOS, 
in [23] a decomposition based on global optimization 
approach to bilevel and quadratic programming problems 
is solved by GAMS/MINOS. 

The most popular available package is BIPA (BIlevel 
Programming with Approximation methods) [24]. BIPA 
is a code written in C for solving nonlinear bilevel pro-
gramming problems. It is a trust-region type method 
where the subproblem consists in solving a sequence of 
mixed-integer programs (MIPs) and nonlinear optimi- 
zation problems. The latter programs are solved using 
ILOG CPLEX [25] routines and DONLP2 [26] re- spec-
tively. ILOG CPLEX is a high-performance mathemati-
cal programming solver for linear program- ming, 
mixed-integer programming, and quadratic programming, 
and it is mantained by IBM. DONLP2 is a solver for 
general nonlinear programming problems. 

The paper is structured as follows. In Section 2 a 
mathematical background of IR methods is given. Sec-
tion 3 is devoted to explain an algorithm based on IR 
applied to solve bilevel programming problems. Section 
4 refers to the design of the package, and Section 5 
shows numerical experiments for a set of test problems. 
Finally, Section 6 is dedicated to the conclusions.  

2. Inexact Restoration Methods 

IR methods have been introduced in the last few years 
for solving nonlinear programming problems [14-16], 
due to the drawbacks present in feasible methods. Feasi-
ble methods generate a sequence of feasible points that, 
in the presence of strong nonlinearities, may behave 
badly. In these cases, it is not appropriate to perform 
large steps far from the solution, because the nonlinearity 
forces the distance between consecutive feasible iterates 
to be very short. On the other hand, short steps far from 
the solution are not convenient because it may produce 
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slow convergence. IR methods keep infeasibility under 
control and are tolerant when the iterates are far from the 
solution. At the end of the algorithm feasibility is pre- 
served since the weight of infeasibility is increased dur-
ing the process. 

IR methods are intended to solve the following prob-
lem 

 
 

min

. . 0,
x f x

s t C x x 

 m

0

         (3) 

where  and  are continu- 
ously differentiable and  is a closed and convex 
set. Each iteration consists of two phases: restoration and 
minimization. In the restoration phase an intermediate 
point  is obtained such that the infeasibility at yk 
is reduced with respect to the infeasibility at xk. At the 
beginning of the minimization phase a linearization πk of 
the feasible region defined by the constraints C(x) = 0 is 
constructed around the restored point yk, that is: 

: nf 
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Then, a trial point 
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,:k i n k

kz x x y k i 


      

is computed such that  , ( )k i kf z f y . Here ,k i  is a 
trust-region radius. Another formulation [17] solves a 
minimization problem where the objective function is 
replaced by its Lagrangian function: 

     ,
T

L x f x C x              (5) 

for all . In order to accept the trial point 
 a penalty merit function is considered: 

,  mx  
,k iz

     
2

, (1 )x f x C x              (6) 

where  0,1   is a penalty parameter defined by a 
nonmonotone sequence. Instead of the merit function, a 
filter criterion may be considered to accept the trial point 
[27]. Until the acceptance condition is satisfied, the 
trust-region radius is reduced and the minimization 
problem is solved again. 

The minimization phase is a problem with linear con-
straints (if Ω is a polytope), therefore any available 
solver for linearly constrained optimization can be ap- 
plied. Besides that, the method gives the freedom to for-
mulate each phase and choose the solver in order to take 
advantage of the structure of the problem. These features 
make the IR methods very attractive. 

There exist convergence results for the sequence gene- 
rated by the IR methods under mild hypotheses [14,15]. 

3. IR Bilevel Algorithm 

Let us consider, without loss of generality, the following 

problem: 
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We write the KKT conditions of the lower level prob-
lem in the form 
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where p   and . Based on [6] we propose 
the following algorithm: 

m 

3.1. Algorithm 

Set the algorithmic parameters tol, M > 0,  1 0,1   , 

min 0  ,  0,1r , {wk} a summable sequence of posi-
tive numbers, and initial approximations x0, y0, γ0 and λ0 
(initial Lagrangian multiplier estimators). 

Step 1. At iteration k, set  

 1 1
min min 1, , ,k k      , 

  , 1
large min largemin 1, ,k k k

kw k       

Step 2. Restoration phase. Find yR, μRand γR such that 

   
2 2

, , , , , ,k R R R k k k kC x y r C x y     

Step 3. Minimization phase. Set i ← 0 and choose 
,0

min
k  Compute a trial point  , , , ,, , ,k i k i k i k ix y    as 

the solution of the following problem 

 , , ,min ,x y F x y   

  '. . , , , , , , 0k R R R k R R Rs t C x y x x y y           

    ,, , , , , ,k R R R
k ix y x y    


   

For the Lagrangian formulation, change the objective 
function by the Lagrangian function 

    , , , , , , , ,
T

L x y F x y C x y         

with k  . 
Step 4. Update the Lagrangian multipliers (only for 

the Lagrangian formulation). Compute a trial ,k i such 
that , .k i M


Step 5. Predicted reduction. Compute 

 
,k i


  as the 

maximum , 10, k i       such that 
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For the Lagrangian formulation the predicted reduc-
tion is defined by 
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For the Lagrangian formulation, the actual reduction is 
defined by 

   

 

   

 

, ,

, , , , ,

,

2

, , , ,

2

, , , ,

, , , ,

1 , , ,

, , ,

k i k i k k k k k

k i k i k i k i k i

k i k k k k

k i k i k i k i

Ared L x y

L x y

C x y

C x y

    

  

 

 





  









 


 

Step 7. Acceptance and stopping criteria. See the al-
gorithm described below. 

3.2. Acceptance and Stopping Criteria 

We wish that the merit function at the trial point should 
be less than the merit function at the current point, that is, 

. However, as in unconstrained optimization 
a reduction of the merit function is not enough to guar-
antee convergence. In fact, we need a sufficient reduction 
of the merit function, that is defined by the following 
test: 

, 0k iAred 

, ,0.1k i k iAred Pred  

If this test holds, we accept the trial point as a new ap-
proximation and terminate iteration k. Otherwise, we 
reduce the trust-region radius and repeat the mini- miza-
tion phase. 

The stopping criteria proposed here consists of a com-
parison between two successive approximations of either 
the sequence  , , ,k k k kx y   , or the sequence of func-
tional values  ,k kF x y , and a feasibility test using the 
KKT conditions of the lower level problem and the upper 
level constraints (if there exist). 

We remark that the new stopping criteria is different 
from the criteria used in [1], where a nonlinear mini- 
mization problem has to be solved in each iteration and 
this could be computationally expensive. Moreover, the 
numerical experiments validate the proposed procedure. 

The proposed stopping criteria is: 

if , ,0.1k i k iAred Pred  then 

set k,i k,i

1
δ δ

2
 , 1i i   and 

repeat minimization phase (Step 3) 
else 

compute 

   , , , ,, , , , , ,k i k i k i k i k k k kV x y x y ,      

  , ,, ,k i k i k kW F x y F x y    

set    , , , ,, , , , , ,k k k k k i k i k i k ix y x y    , 

, ,,k k i k k i     , ,k k i   

set , ,,k k i k k iAred Ared Pred Pred   

if 
2

V to l  or W tol then  

if  
2

, , ,k R R RC x y tol    then 

Terminate declaring finite convergence 
Otherwise Return to restoration phase 
(Step 2) 

end 
else 

Return to restoration phase (Step 2) 
end 

end 

4. Design 

The software environment presented here consists of a 
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set of modules, mainly in standard Fortran 90, that solves 
the bilevel programming problem using an IR formu- 
lation. The algorithm is based on the ideas of [6] with a 
new stopping criterion and two optional procedures for 
the minimization phase. The code is able to solve resto-
ration and minimization phases by means of two optimi-
zation solvers: MINOS and ALGENCAN. MINOS has 
been extensively used for many years and it is one of the 
most known codes in optimization, becoming a reference 
in this area. Although MINOS is a commercial software, 
our code can be compiled using ALGENCAN instead of 
MINOS (ALGENCAN can be freely downloaded). Other 
solvers could be included with minor changes. Each 
problem can be configured in only one module with its 
own setting options (default or advanced) independently 
of the rest of the code. A list of capabilities is described 
below: 

Modularity: the modules can be classified into cate-
gories: 1) sizes, bounds and initial conditions; 2) default 
algorithmic parameters like solver and formulation 
choices, tolerances, etc.; 3) variables of the external 
solvers; 4) variables from different phases; 5) definition 
of the problem (this is the only one module provided by 
the user); 6) modules related to the bilevel algorithm 
(completely independent of the problem and external 
solvers). 

Simplicity: there are no derived types of variables de-
fined in the code. The code has been prepared for both 
an expert programmer as well as for a medium pro-
grammer. 

Language: the modules are programmed in standard 
Fortran 90 with a very few features of standard Fortran 
2003 (for instance, array constructors) for easier data 
input. It has been successfully compiled and executed 
with the Intel Fortran Compiler, Portland Fortran Com-
piler, GNU Fortran and G95. 

Configurability: there are two possible configurations: 
default and advanced. The default configuration only 
requires to set problem sizes, initial conditions and the 
functions involved in the problem. The advanced con-
figuration needs the requirements of the default configu-
ration and allows to modify one or several default pa-
rameters and procedures, for instance: 
- external solver (MINOS or ALGENCAN); 
- Lagrangian or non Lagrangian formulation; 
- solver settings for restoration or minimization phases; 
- function settings for restoration or minimization 

phases; 
- KKT conditions of the lower level problem and the 

upper level constraints; 
Precision: the code handles double precision real 

variables, because the external solvers (MINOS and 
ALGENCAN) handle double precision real variables by 
default. 

5. Numerical Experiments 

In this section we illustrate the use of our software to 
solve a particular bilevel programming problem. Besides 
that, we consider a set of test problems from the literature 
and present numerical results for different parameters 
and options of our code (i.e. external solvers, formula-
tions, etc.). 

5.1. Sample Application 

We consider the problem BIPA2 from [24]: 
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We add slack variables and rewrite the problem in the 
following standard form: 
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where x = (x1) and y = (y1, y2, y3, y4). 
Specific settings may require additional information 

for the restoration and minimization phases, for example 
the calculation of the function  , , ,C x y  

' ,C x

 (see Equa-
tion (8)) representing the KKT conditions of the lower 
level problem and its Jacobian matrix  , ,y   : 
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In order to avoid messy computations to obtain func-
tions C and C', or the solver settings, users can choose 
the default configuration, in which only the problem data 
has to be given. In case of a complex problem, the de-
fault configuration is a good option to prevent human 
errors. 

The next subsection contains a number of other exam-
ples. For programming details please refer to the user 
manual that accompanies the software. 

5.2. Additional Test Problems 

Table 1 reports test problems from literature. The first 
column indicates the problem as it is referenced in the 
last column. The numbers n, m, q and p are the same than 
in (1). 

Most of these problems belong to the test problem 
collection in [28]. Initial points are given in Table 1. All 
tests were performed in a PC running Linux, Core 2 Duo, 
2.0GHz, 3Gb RAM, with the following Fortran compil-
ers: Intel Fortran Compiler, G95, GNU Fortran and Port-
land Compiler. 

In all cases the solution was successfully found in a 
small number of iterations (except problem 9.2.05 that 
converged in 43 iterations) and agrees with the reported 
solution (see Table 2). Notice that these results were 
obtained using the default configuration. The main de-
fault setting parameters are: 
- External solver: MINOS. 
- IR formulation: without using the Lagrangian formu-

lation. 
- All of the solver dependent functions are automati-

cally set. 
For a complete list of setting parameters, please refer 

to the user manual. 
All the problems in Table 2 were tested with advanced 

configurations, for example using a user setting function 
C. The same results were obtained using other formula-
tions, for instance, ALGENCAN as the external solver 
and the Lagrangian function. The numerical results agree 
in all cases unless the number of iterations, due to inter-

nal formulations. 
In all cases the CPU time was negligible, therefore no 

comparison with other solvers could be made. 

6. Conclusions 

The main idea behind this work is to provide an en- vi-
ronment in order to solve general bilevel programming 
problems. One of the most important features of our im-
plementation besides portability is to provide a user- 
friendly code. At the same time the code is intended to be 
highly configurable to exploit the best characteristics of 
both the problems and external solvers. This environment, 
 

Table 1. Test problems. 

Problem n m q p Initial point Ref.

9.2.05 1 1 0 3 (15.0; 20.0) [28]

9.2.06 1 2 0 3 (5.0; 6.0, 0.0) [28]

9.2.09 2 2 0 3 (1.0, 1.0; 1.0, 1.0) [28]

9.2.10 1 1 0 4 (2.0; 10.0) [28]

9.3.04 2 2 1 6 (5.0, 5.0; 0.0, 0.0) [28]

9.3.05 1 2 0 1 (1.0; 0.0, 0.0) [28]

9.3.06 1 1 0 3 (0.0; 0.0) [28]

9.3.07 2 2 0 4 (0.0, 0.0; 0.0, 0.0) [28]

9.3.08 1 1 0 3 (1.9; 2.0) [28]

9.3.09 1 1 0 1 (1.0; 1.0) [28]

9.3.10 1 2 0 1 (0.2; 1.0, 0.5) [28]

BIPA2 1 1 1 3 (2.1; 2.0) [24]

BIPA3 1 1 1 1 (1.0; 1.0) [24]

BIPA4 1 1 1 1 (1.0; 1.0) [24]

FalkLiu95 2 2 0 4 (0.0, 0.0; 0.0, 0.0) [29]

FloudasZlobec98 1 2 0 2 (1.5; 10.0, 15.0) [30]

ShimIshiBard97-1 1 1 0 4 (2.5; 5.0) [31]

ShimIshiBard97-2 1 1 1 1 (6.5; 11.0) [31]
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Table 2. Numerical experiments for test problems with the 
default configuration. 

Problem It. (x, y) (IR) F(x, y) (IR)

9.2.05 43 (19.0; 14.0) −37.00 

9.2.06 10 (1.0; 0.0, 0.0) −1.00 

9.2.09 8 (1.0, 0.0; 0.5, 1.0) −1.75 

9.2.10 3 (0.889; 2.222) 3.11 

9.3.04 20 (0.0, 0.0; −10.0, −10.0) 0.00 

9.3.05 4 (3.0; 1.0, 2.0) 0.50 

9.3.06 10 (1.0; 3.0) 5.00 

9.3.07 2 (0.5, 0.5; 0.5, 0.5) −1.00 

9.3.08 8 (1.0; 0.0) 17.00 

9.3.09 6 (0.25; 0.0) 1.25 

9.3.10 1 (2.0; 6.0, 0.0) 2.00 

BIPA2 9 (1.0; 0.0) 17.00 

BIPA3 2 (4.0; 0.0) 2.00 

BIPA4 2 (0.0; 0.6) 88.79 

FalkLiu95 3 (0.75, 0.75; 0.75, 0.75) −2.25 

FloudasZlobec98 2 (1.0; 0.0, 1.0) 1.00 

ShimIshiBard97-1 5 (2.0; 1.0) −2.00 

ShimIshiBard97-2 6 (7.1; 12.898) 230.89 

 
in the case of the default configuration, supplies all the 
necessary tools to automatically set the auxiliary subrou-
tines and solvers. Therefore, it allows a cleaner and 
shorter coding and avoids a lot of human errors. 

The bilevel algorithm based on the inexact restoration 
method has appealing theoretical properties, in the sense 
that under certain hypotheses, convergence is assured [1]. 
This feature is a remarkably advantage over other pack-
ages that solve bilevel programming problems without 
convergence results. To solve each phase of the inexact 
restoration algorithm adapted to bilevel programming 
problems, external solvers are needed. In our case we use 
two packages (MINOS and ALGENCAN), however, 
other solvers can be added with minor changes in the 
source code. We decided not to mix different solvers for 
the restoration and minimization phases, because they are 
based on different philosophies. For instance, MINOS 
uses factorizations and ALGENCAN exploits ma-
trix-vector products. 

Finally, numerical results are promising since different 
kinds of bilevel programming problems (linear, quadratic 
and nonlinear) have been successfully solved. Several 
tests have been carried out using different algorithmic 
parameters and configurations with the same results, with 
similar execution time. 

The source code and the user manual can be obtained 
from the authors’ electronic addresses.  
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