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ABSTRACT 

The variety of definitions of Fourier transforms can create confusion for practical applications. This paper examines the 
choice of formulas for Fourier transforms and determines the appropriate choices for geoscience applications. One set 
of Discrete Fourier Transforms can be defined that approximate Fourier integrals and provide transforms between sam-
pled continuous functions in both domains. For applications involving transforms between a continuous function and a 
discrete function a second set of Discrete Fourier Transforms is needed with different scaling factors. Two classes of 
application are presented: those where either form of transforms can be used and those where it is necessary to use a 
particular transform to obtain the correct results. 
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1. Introduction 

The Fourier transform is a widely used tool for many 
applications. Its value in physics is best described by 
Lord Kelvin (in a quote reproduced in the frontpiece of 
the book by Bracewell [1]): 

“Fourier’s theorem is not only one of the most beauti- 
ful results of modern analysis, but it may be said to fur- 
nish an indispensable instrument in the treatment of 
nearly every recondite question in modern physics.”  

This is all the more fulsome praise when it is remem- 
bered that Kelvin made his comments long before the 
introduction of the Fast Fourier Transform by Cooley 
and Tukey [2]. Since then the efficient computation of 
the Fourier Transform has led to its widespread use in 
signal processing and incorporation into many software 
packages. Surprisingly, considering its extensive use, 
there are no standard definitions for the Fourier trans- 
form. Different software packages implement different 
definitions of the Fourier transform, so that a forward 
transform in one package can be the same as an inverse 
transform in another package. This can lead to consider- 
able confusion amongst users and interferes with the ef- 
ficient use of this valuable tool. 

This paper reviews the different forms of the Fourier 
transform and identifies the particular choice for geo- 
science (and other) applications. First we consider Fou- 
rier’s theorem and the definition of the Fourier integral 
and then examine the constraints imposed by using a 
discrete Fourier transform and how the discrete Fourier 
transform can approximate the Fourier integral. This in- 

cludes consideration of the different Fourier transform 
formulations for continuous and discrete functions. Sev- 
eral examples are given to illustrate the application of the 
different Fourier transform formulations. These applica- 
tions are drawn from studies of electromagnetic induc- 
tion in the Earth, magnetotellurics and geomagnetically 
induced current effects on power systems. 

2. Fourier Series and Fourier Integral 

The fundamental idea described by Fourier is that any 
function can be represented as a sum of cosine and sine 
functions. For the applications considered in this paper 
we will deal with functions varying in time so the cosine 
and sine functions represent different frequencies. In the 
general case, any time varying function can be repre- 
sented by an infinite sum of cosine and sine waves 
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If we compute the partial sum of the Fourier series 
then we obtain a function that approximates
time variation 

 the original 
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How good of an approximation that is achieved de- 
pends on the length of the series and the freque
tent of the time domain function. 

 have been removed to 
av

ncy con- 

For practical applications with sampled data we are 
dealing with a time domain function for which frequent- 
cies above the Nyquist frequency

oid aliasing problems. This “band-limited” signal is 
only an approximation of the complete true natural varia- 
tion that occurred, but can be considered a true represen- 
tation of the natural variation within the frequency range 
of interest for which the recordings were made. We will 
denote this “band-limited” signal by s(t). Now the signal 
s(t) can be represented by the partial Fourier series with- 
out any approximation  
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Equation (4) can then be rewritten as 
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All the terms in this equation can be combined into 
one summation from –N to N 
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onential form leads to the compact 
ation (8). The terms involving e  and 

n referred to as the terms for positive and 

gative frequencies. This may be confusing for anyone 
who tries to ascribe a physical meaning to term 

ative frequency”. Instead the terms “positive fre- 
quency” and “negative frequency” should just be treated 
as labels for the terms involving positive and negative 
signs in the exponents of the exponentials making up the 
cosine and sine terms. 

In the limit as the interval between frequencies goes to 
zero, the Fourier series goes to the Fourier integral. The 
Fourier integral has a va

own by Bracewell [1]. The customary formulas for the 
Fourier transform and the inverse Fourier transform 
given by Bracewell are 
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of functions f(t) in the time domain 
quency domain. If the integrals are written in terms of ω 
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Thus we already have three definitions 
integral. Brigham [3] examines this diff
siders the appropriate factors if the transforms are to 
co
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of the Fourier 
iculty and con- 

mply with Parseval’s theorem that the energy com- 
puted in the time domain is equal to the energy computed 
in the frequency domain and for consistency with the 
Laplace transform and found that these requirements 
were in conflict with the various definitions of the Fou- 
rier transform pair written in terms of ω. Brigham con- 
cludes that a logical way to resolve this conflict is to de- 
fine the Fourier transform pair in terms of frequency f as 
done in Equation (10) above. With this definition Parse- 
val’s theorem becomes 
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As long as integration is with respect to f, the scale 
factor 1 2π  never appears. Equation (10)
of Fourier integrals also adopted by Bracewell [1]. 

ety of 
ve a constant 1/N 
se transform and 

 is the system 

3. Discrete Fourier Transform 

The Discrete Fourier Transform is defined in a vari
ways. All are basically the same but ha
either in the forward transform or inver
also differ in the sign of the exponent of the exponential 
term in each transform. Proakis and Manolakis [4] use 
the definitions 
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e inverse transform. This raises the questions as to 
which terms are the most appro ones to use. The 
criteria that we will use for answering these questions are: 
1) to provide the best approximation to the Fourier inte- 
gral and 2) for consistency with standard practice in 
geoscience applications. 

The first choice to make concerns the sign of the ex- 
ponent in the exponential term. The choices are 
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where n is the index for samples in the time 
k is the index for samples in the frequency do
first choice (Equation (15a)) is the simpler fo

domain and 
main. The 
rm with a 

simple addition of the cosine and sine terms. Also 
2πei kn N  corresponds to the time dependence of the form 
2πei ft  which is most commonly used in magnetotellurics, 

as shown by the standard papers and textbooks Price [6], 
Wai 7], Ward and Hohmann [8], and Chave and Wei- 

]. Therefore we will choose the inverse transform 
with the exponential term 2πei ft . This automatically re- 
quires that the forward transform be written with the ex- 
ponential term 2πe i ft . 

The other consideration our choice of Fourier 
transform is the placement of any scaling factors (usually 
1/N) used with th ummations. For the geoscience ap- 
pl
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ications considered here the forward discrete Fourier 
transform can be considered to produce one of two 
classes of outputs in the frequency domain: 1) samples of 
a continuous function, or 2) a set of discrete frequency 

components. Obtaining these two results may be consid- 
ered to be using the discrete Fourier transform either as 
an approximation to the Fourier integral or as an ap- 
proximation to a Fourier series.  

3.1. Continuous-Time, Continuous-Frequency 
Functions 

Considering first the discrete Fo
approximation to the Fourier integral pair in Equati
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Press et al. [5] also use the additional term t  in ap- 
proximating the Fourier integral, but exclude this from 
their formal definition of the Fourier 
case there is a continuous function in the time domain 
th g 

transform. In this 

at has been regularly sampled with a samplin interval 
t and there is a continuous function in the frequency 

domain sampled with a sampling interval f . Thus the 
time domain and frequency domain functions have 
equivalent forms and correspondingly there is a symme- 

 in the transforms to go between these domains. 

3.2. Continuous-Time, Discrete-Frequency 
Functions 

Let us now consider a situation where the time do
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main 
set of 

 trans- 
form re appropriately written as a simple 

function is considered to be the summation of a 
discrete frequencies. The inverse discrete Fourier
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summation of these terms without the f  term: 
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The f  term then needs to be included in the for- 
ward transform which, with the relation 1t f N    
allows the forward Fourier transform to be written 
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This transform pair is not symmetrical but the trans- 
forms now connect two dissimilar functions: a continu- 
ous function in the time domain and a d
in the frequency domain, so it is reasonable that symme- 
try

ction in the time domain and a 
di

iscrete function 

 not occur in this case. 
Equations (17a) and (17b) represent one of the stan- 

dard discrete Fourier transform pairs commonly used. 
Thus this is an appropriate choice when transforming 
between a continuous fun

screte function in the frequency domain. However, if 
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the values in both domains are considered as samples of 
continuous functions then the symmetrical pair of trans- 
forms in Equation (16) should be used. 

3.3. Practical Considerations 

Bracewell starts with the standard “definitions” of the 
Fourier transforms, Equations (10a) and (10b), and then 

mmation over positive 
s. This does not show 

tput array in the frequency domain, starting with 
ze

 

shows they may be written as a su
and negative times and frequencie
where the discrete Fourier transform comes from. Here 
we choose to start with the summation of positive and 
negative time and frequency as an approximation of the 
Fourier integrals, then show that because the functions 
are periodic we can write the summations starting at 
zero. 

Discrete Fourier transforms convert between an array 
of values in the time domain and an array of values in the 
frequency domain. Discrete Fourier transforms produce 
an ou

ro frequency, then positive frequencies and then nega- 
tive frequencies, as shown in Figure 1. This placement 
of “negative frequencies” at the end of the Fourier trans- 
form array is explained in a number of books (e.g. [5]); 
however, the placement of “negative times” is not usu-
ally discussed. Normally it is not a consideration because 
we are dealing with a time series and it is easier to think 

 

 

0 N/2 N-1 

f/2 -f/2 0 

(a) 

(b) 

 

Figure 1. (a) Schematic showing the output array from the 
Fast Fourier Transform (solid line) and its extension as a 
periodic function (dashed line); and (b) Allocation of values 
to positive and negative frequencies. 

 
 

0 T/2 

T 

-T/2 

0 

(a) 

(b) 

T/2  

Figure 2. (a) Schematic showing variations in the time do- 
main taken from −T/2 to T/2 (solid line) and its extension as 
a periodic function (dashed line); (b) The output array from 
the Fast Fourier Transform containing the variations from
0 to T. 

 

of the time series starting at t = 0 as in Figure 2(b) rather 
than starting at 2t T   as in Figure 2(a). However, 
knowledge of the “negative t” placement is shown to be 
necessary in the example considered later in Application 
2 where we do an inverse Fourier transform of a transfer 
function in the fr  domain to obtain the impulse 
response in the time domain. 

4. Applications 

To illustrate the application of the different formulations 
of the Discrete Fourier Transf

equency

orms three applications are 
 involving a pair of transforms in 
lation can be used, the second in- 

to combine an input signal with a transfer 
function of a physical system (e.g. induction in the Earth) 

his can be done 

presented: the first
which either formu
volving the “continuous-discrete” forward transform, and 
the third involving the continuous-continuous inverse 
transform. 

4.1. Application 1: Low Pass Filter 

In many geoscience applications it is necessary to filter a 
dataset or 

which is equivalent to a filter response. T
by convolution of the input signal with the filter impulse 
response in the time domain or using multiplication by 
the filter transfer function in the frequency domain, as 
shown in Figure 3. 

The frequency domain method is often the preferred 
process because of the computational efficiencies ob- 
tained by using the Fast Fourier Transform. This involves 
taking a Fourier Transform of the input time series to 
obtain the spectrum of the input signal. Then multiply 
this spectrum by the filter transfer function to obtain the 
output spectrum. An inverse Fourier Transform is then 
used to obtain the output time series. 

In this application we consider filtering of geomag- 
 

TIME DOMAIN             FREQUENCY DOMAIN 

 

Figure 3. Filtering of a signal via convolution in the time 
domain or multiplication in the frquency domain. The Fast 
Fourier Transform (FFT) is used to go between the time 
domain and frequency domain functions. 
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netic data. Figure 4(a) shows the magnetic field varia-
tions recorded at the Victoria Magnetic Observatory 
during a magnetic storm in 1980. 

This shows a mixture of rapid and slow variations and, 
as in many other geoscience applications, it is useful to 
filter out some of the variations to more clearly show the 
other components. In this case we wish to apply a low 
pass filter with transfer function, T(f), defined by 

c cf f f               (18a) 

0 andc cf f f           (18b) 

where fc = 0.00027 Hz (corresponding to a period of 

determine the impulse response in the time domain. Con- 
sider the frequency response already used in Application 
1, defined in Equation (18). Figure 5 shows this fre- 
quency response, both in terms of positive and negative 
frequencies and as it is ordered in the FFT array. The 
Fourier integral of such a rectangular (boxcar) function 
in the frequency domain is a sinc function in the time 
domain. Because we want to approximate the Fourier 
integral in this case we use the “continuous-continuous” 
version of the inverse transform (Equation (16b)). This 
gives the results shown in Figure 6. Where, again, the 
function is shown as ordered by position in the FFT out- 
put array and as ordered in terms of positive and negative 
time. The values for the sinc function look small, but 
integrating the sinc function (sum of values multiplied by 
∆t (=60 sec) gives a value of 1.0 as required. This is con-
firmation that the scaling factor used in the inverse 
transform was correct. Use of the other version of the 
transform would have applied a different scaling factor 
and given an incorrect result. 

  1T f

 T f f 

1 
hour). Using this filter response with the Fourier Trans- 
forms as described above gives the smoother signal 
shown in Figure 4(b). 

In this application using the transform pairs in Equa- 
tion (16) or using the transform pair in Equation (17) 
gives the same result. This is because using a pair of 
transforms involves applying the same overall scaling 
factor, either t  and f  in Equation (16), where 

1t f N   , or by applying 1 N  alone in equation (17). 
Thus in this case either transform pair is satisfactory. 
However, in the next two applications we will see that a 
particular choice of transform is necessary in or

4.3. Application 3: Spectrum Determination 

There are applications that do not involve filtering but 
where it is useful to know the spectrum of the signal. 
One such example concerns the partial saturation of 
transformers produced by a combination of AC and DC 
currents flowing through transformer windings. This can 
occur because of geomagnetically induced currents (GIC) 
in power systems [10]. Consider a power transformer 
with normal magnetising current IAC subjected to a DC 
current IDC. The extra magnetic field created by the DC 
current creates an offset in the magnetic field inside the 

der to 
obtain the correct results. 

4.2. Application 2: Impulse Response 

In some cases it is more appropriate to use the time do- 
main method shown in Figure 3 for filter calculations. 
The frequency response of the filter is defined in the fre- 
quency domain and an inverse Fourier transform used to 
 

 

Figure 4. Magnetic storm recorded at victoria magnetic observatory. (a) Original data; (b) Filtered data.  
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(a) 

 
(b) 

Figure 5. The frequency response of the boxcar filter. (a) As 
a function of positive and negative frequencies; (b) As or- 
dered in the array for input to the FFT. 
 

 
(a) 

 

Figure 6. Impulse Response (sinc function). (a) As it ap-
pears in the output array from the FFT; (b) As a function of 
positive and negative time. 

transformer that pushes the transformer into the satura- 
tion region of the hysteresis curve for part of each cycle 
(Figure 7). 

The partial satuation of the transformer during each 
cycle creates the distorted magnetising current waveform 
shown in Figure 8(a). For analysing the impact on power 
system operation it is necessary to determine the spectral 
content of the distorted waveform. This can be done by a 
discrete Fourier transform of the waveform which shows 
that the signal is comprised of the fundamental plus har- 
monics of the 60 Hz AC frequency (Figure 8(b)). Thus 
the frequency domain function is not continuous and 
only contains discrete frequencies. In this case it is ap- 
propriate to use the discrete Fourier transform in Equa- 
tion (17a). 

The appropriateness of the continuous-discrete trans- 
form in such a case can also be seen by taking the dis- 
crete Fourier transform of a cosine wave of frequency, f1 
and amplitude, A. This results in a frequency spectrum 
with spikes of amplitude A/2 at frequencies ±f . Combin- 

cted am- 
plitude of the cosine wave.  

5. Discussion 

Filtering of a signal can be done by taking the Fourier 
transform of the input time series, multiplication by the 
transfer function in the frequency domain, and then tak- 
ing the inverse Fourier transform to obtain the output in 
the time domain (Figure 3). An alternative, equivalent 
procedure is to convolve the input with the filter impulse
response to directly obtain the output in the time domain
The frequency domain me  is often used because of 
the computational efficiencies provided by the Fast Fou- 
rier Transform; however, there are occasions where the 
time domain method is preferable. The impulse response 
is obtained by taking the inverse Fourier transform of the 
frequency domain transfer function (T.F.) and this has 
 

b) 

1

ing these two, as in Equation (5), gives the expe

 
. 

thod

 

Figure 7. DC offset in magnetisation of transformer pro-
ducing a distorted current waveform. 
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(a) 

 

 
(b) 

Figure 8. (a) Distorted AC waveform produced by trans-
former saturation; (b) Spectrum of the distorted waveform. 
 
already been explained in Application 2. Now we need to 
consider the appropriate formulas to use for the convolu- 
tion calculation. 

The impulse response values in the time domain are 
samples of a contiuous function. This is to be convolved 
with the time domain signal which is itself a time series 
of values that are samples of a continuous function. Thus 
we need to perform a discrete convolution that is an ap- 
proximation of the convolution integral. 

The convolution of two functions f(t) and g(t) is 

  dg t    f t g t f          (19) 

roximation of this inte- 
gral is then given by 
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Discrete convolution as an app
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

           (20) 

C olved in the frequency domain 

tions involve 
two summations and a multiplication with the transfer 
function or impulse response. Figure 9 also shows that 
both calculations involve the scaling factors t

 

omparing the steps inv
calculation (Figure 9(a)) and time domain calculation 
(Figure 9(b)) we can see that both calcula

  and 
f . Thus all the same factors are involved in the two 

calculations showing the equi  of the two proce- 
dures. 

valence

(a) 

 

uency domain; (b) Convolution in the time domain. 

racti- 
cal geoscience 

The choice of Discrete Fourier Transform 
to selection of the signs of the exponent in the exponent- 
tia

rse transforms. Here the selections 
are made based on common practice and to provide the 
best approximation to Fourier series a
grals. 

(b) 

Figure 9. Computations for filtering of a signal using a filter 
transfer function (T.F.) by: (a) Multiplication in the fre-
q

6. Conclusions 

There are a variety of definitions for Fourier integrals 
and discrete Fourier transforms. This situation is further 
confused by different software packages using different 
definitions so that a forward transform in one package 
can be the same as an inverse transform in another pack- 
age. This all hinders the production of rigorous repro- 
ducile results when using Fourier transforms for p

applications. 
pair reduces 

l terms and distribution of the scaling factors between 
the forward and inve

nd Fourier inte- 

The time dependence is chosen as 2πei ft  which is 
most commonly used in geosciences. This also represents 
the simple summation of cosine and sine terms, 

2πe cos 2π sin 2πi ft ft i ft  . This choice means that 2πei ft  
appears in the inverse transform and consequently the 
forward transform contains the term 2πe i ft . 

he chosen discrete Fourier transform is defined as an 
approximation to the Fourier integral to transform be-
tween s

T

amples of continuous functions in both the time 
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and frequency domain 
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In some applications the (continuous) time domain 
function is known to be comprised of discrete frequency 
components instead of a continuous spectrum. In these 
cases the Discrete Fourier Transforms to go betwe
continuous and discrete fun  are defined as 
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Applications th

2πei kn NX k             (22b) 

at involve use of a Fourier transform 
pair, e.g. filtering by a DFT to the frequency domain, 
multiplication by the frequency response, followed by in- 
verse DFT, can use either transform pair because the 
combined scaling factors are the same in each case, 

1t f N   . Applications t involve use of a single 
transform, either forward or inverse, must use the appro- 
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