
Graphene, 2012, 1, 21-25 
http://dx.doi.org/10.4236/graphene.2012.12003 Published Online October 2012 (http://www.SciRP.org/journal/graphene) 

Graphene as a Strictly 2D Sheet or as a Film of Small  
but Finite Thickness 

Bo E. Sernelius 
Division of Theory and Modeling, Department of Physics, Chemistry, and Biology, Linköping University,  

Linköping, Sweden 
Email: bos@ifm.liu.se 

 
Received July 13, 2012; revised August 13, 2012; accepted September 30, 2012 

ABSTRACT 

We study an interface between two media separated by a strictly 2D sheet. We show how the amplitude reflection coef- 
ficient can be modeled by that for an interface where the 2D sheet has been replaced by a film of small but finite thick- 
ness. We give the relationship between the 3D dielectric function of the thin film and the 2D dielectric function of the 
sheet. We apply this to graphene and show how the van der Waals interaction between two graphene sheets is modified 
when going from the 2D sheet description to the thin film description. We also show the wrong result from keeping the 
2D dielectric function to represent the film medium. 
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1. Introduction 

There are no strictly 2D (two-dimensional) systems in 
the real world. However, if the carriers are strongly con- 
fined in one direction they have quantized energy levels 
for one spatial dimension but are free to move in two 
spacial dimensions [1]. Thus the wave vector is a good 
quantum number for two dimensions but not for the third. 
Polarizability for 2D systems was discussed for the first 
time by F. Stern [2]. Graphene is a good example of a 2D 
system. The dielectric function of grapheme [3-7] has 
been derived in the literature. This function is valid for 
an idealized 2D sheet. From a distance this idealization is 
a valid approximation but at close proximity of the sheet 
the finite thickness of the real atomic layer may influence 
the physics. One feasible approximation is to represent 
the layer by a homogeneous film of small but finite 
thickness. The dielectric function of the film is not rep- 
resented by the 2D dielectric function. This has to be 
modified into a 3D version. How this modification is 
done is what this work is all about. The general results 
we obtain are not limited to graphene. We use graphene 
as an illustration. Examples where the results are useful 
are for optical properties of layered structures and for 
dispersion interactions (van der Waals and Casimir) in 
layered structures. The amplitude reflection coefficient 
for p-polarization was given for the first time in graphene 
mono- and multi-layers by Falkovsty et al. [8] for the 
far-infrared, and by Stauber et al. [9] for the visible re-
gion of the spectrum.  

In Section 2 we give the amplitude reflection coeffi- 
cients for an interface between two media, in Section 2.1 
we show how these are modified when a 2D sheet is in- 
serted at the interface, in Section 2.2 we show how these 
are modified when instead a film of finite thickness is 
inserted, and in Section 2.3 we show how a 2D sheet can 
be modeled by a homogeneous film of finite thickness. In 
Section 3 we illustrate this modeling for graphene. Before 
we end with a brief summary and conclusion Section, 5, 
we discuss in Section 4 how the results for 2D sheets and 
thin films can be used in non-planar structures.   

2. Amplitude Reflection Coefficient at an 
Interface 

For the present task we need a geometry consisting of 
two regions and one interface, i j . For planar structures 
there are two types of mode [10], transverse magnetic 
(TM) or p-polarized and transverse electric (TE) or 
s-polarized. They have different amplitude reflection 
coefficients. At an interface between medium i and j the 
TM and TE amplitude reflection coefficients for waves 
impinging from the i side are 
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respectively. Note that rji = −rij holds for both mode 
types. If retardation is neglected there is only one mode 
type and the amplitude reflection coefficient is 
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In the above equations   2
1i i ck      , 

 i   is the dielectric function of medium i, c is the 
speed of light in vacuum, and k is the length of a wave 
vector in the plane of the interface. We have suppressed 
the arguments of the functions in Equations (1)-(3). The 
amplitude reflection coefficients and the γ-functions are 
functions of k and ω. The dielectric functions are func- 
tions of ω, only, i.e. spatial dispersion is neglected. In- 
clusion of spatial dispersion in the bulk dielectric func- 
tions is possible [11,12] but would lead to much higher 
complexity and negligible effects for the present prob- 
lem.  

2.1. Interface with a Strictly 2D Sheet 

There are different formulations of electromagnetism in 
the literature. The difference lies in how the conduction 
carriers are treated. In one formulation these carriers are 
lumped together with the external charges to form the 
group of free charges. Then only the bound charges con- 
tribute to the screening. We want to be able to treat ge- 
ometries with metallic regions. Then this formulation is 
not suitable. In the formulation that we use the conduc- 
tion carriers are treated on the same footing as the bound 
charges. Thus, both bound and conduction charges con- 
tribute to the dielectric function. In the two formalisms 
the E and B fields, the true fields, of course are the same. 
However, the auxiliary fields the D and H fields are dif- 
ferent. To indicate that we use this alternative formula- 
tion we put a tilde above the D and H fields and also 
above the dielectric functions. See [6] for a fuller discus- 
sion on this topic. Within this formalism the standard 
boundary conditions, used to derive the reflection coeffi- 
cients, are that in absence of external charge and current 
densities at an interface the tangential components of the 
E and %H  fields and the normal components of the  
and B fields are all continuous across the interface. The 
sources to the fields in Maxwell's equations are the ex- 
ternal charge and current densities. In the boundary con- 
ditions any discontinuities in the normal component of 
the  fields and tangential component of the 

%D

%%D H  
fields are caused by external surface charge densities and 
external surface current densities, respectively. 

The amplitude reflection coefficient gets modified if 
there is a 2D layer at the interface. We treat [6] the 2D 
layer at the interface as external to our system. The 
modified amplitude reflection coefficient for a TM mode 
is [6] 
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where the polarizability,  � , of the 2D sheet is obtained 
from the dynamical conductivity,  � , 
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and the dielectric function is 

  , 1 ,k k   � �            (6) 

For TM modes the tangential component of the elec- 
tric field, which will induce the external current, is par- 
allel to k, so the longitudinal 2D dielectric function of the 
sheet enters. The bound charges in the 2D sheet also 
contribute to the dynamical conductivity and the po- 
larizability. 

The modified amplitude reflection coefficient for a TE 
mode is [6] 
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where the polarizability,  , of the 2D sheet is obtained 
from the dynamical conductivity,   , 
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and the dielectric function is 

  , 1 ,k k               (9) 

For a TE wave the electric field is perpendicular to k, 
so the transverse 2D dielectric function of the sheet en- 
ters.  

If retardation is neglected there is only one mode type 
and the amplitude reflection coefficient is 
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Now we have in Equations (4), (7), and (10) the am- 
plitude reflection coefficients for an interface between 
two media with a 2D sheet sandwiched in between. To be 
noted is that spatial dispersion of the 2D sheet can be 
included without any complications. This spatial disper- 
sion can have important effects [13-16]. In next section 
we will show the corresponding results when instead of a 
2D sheet we have a thin film sandwiched between the 
two media. 

2.2. Interface with a Film of Finite Thickness 

For the present task we need a geometry consisting of 
three regions and two interfaces, i|j|k. 

For this composite interface the amplitude reflection 

Copyright © 2012 SciRes.                                                                             Graphene 



B. E. SERNELIUS 23

coefficient for a wave impinging from the i side is 
[10,17]  
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where dj is the thickness of the film j. This expression is 
valid for TM- and TE-modes when retardation is in- 
cluded and also for the modes when retardation is ne- 
glected. The appropriate amplitude reflection coefficient 
from Equations (1)-(3) should be used in the expression 
on the right hand side. In next section we show how the 
effect of a strictly 2D sheet can be modeled by a film of 
finite thickness with the proper choice of 3D dielectric 
function.  

2.3. Simulating a Strictly 2D Film with a film of 
Finite Thickness 

Let us study a 2D-sheet placed in a time varying electric 
field, E, in the plane of the film. There will be a surface 
current density, 2DK E . Since we want to treat this 
2D sheet as a thin film of finite thickness, δ, we let this 
current be spread evenly through the thickness of the film. 
The volume current density, j, is then j K  and 
since  it follows that 3Dj E

3 2D D                 (12) 

Now, since  

2 22D Di k               (13) 

and 

3 34πD Di              (14) 

we find that 
3 22D D k              (15) 

Thus, in problems with 2D sheets one can treat the 
sheets as thin 3D films where the 3D polarizability above 
is used. To check if this is a reasonable approach we in- 
sert the expressions in Equations (1)-(3) into Equation 
(11) where now dj is δ and 21 2 D

j k  %  . If we now 
let the film thickness, δ, go towards zero we reproduce 
the results in Equations (4), (7), and (10). Thus in the 
limit the model is exact. 

3. Graphene as an Illustrative Example 

We will now calculate the Casimir interaction energy be- 
tween two free standing undoped graphene sheets in 
vacuum. To make it as simple as possible we neglect 
retardation and perform the calculations for zero tem- 
perature. Retardation effects are actually very small in 
graphene [6,18].  

In a general point, z, in the complex frequency plane, 

away from the real axis the polarizability is [3] 
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where v is the carrier velocity which is a constant in gra- 
phene ( E vk  ), and g represents the degeneracy pa- 
rameter with the value of 4 (a factor of 2 for spin and a 
factor of 2 for the cone degeneracy). In the numerical 
calculations we use the value [4] 8.73723  105 m/s for v. 
The polarizability in Equation (16) is valid for T = 0 
when only the contributions from the Dirac cones are 
included and there is no gap at the Fermi level. Effects of 
finite temperature and modifications due to a gap, that in 
some situations open up, can be dealt with [19] but then 
one loses the advantage of having the expression on 
closed analytical form. 

If we now treat the graphene sheet as a thin film of 
thickness δ the polarizability of the film material should 
be chosen as 
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and on the imaginary frequency axis it is 
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The van der Waals (vdW) and Casimir interactions can 
be derived in many different ways.  

One way is to derive the interaction in terms of the 
electromagnetic normal modes [10] of the system. For 
planar structures the interaction energy per unit area can 
be written as [10] 
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where   0k kf    is the condition for electromagnetic 
normal modes. For the present geometry the mode condi-
tion function is 

 22
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where the index 1 stands for vacuum and the index 2 for 
the film material. 

Using Equation (11) with the proper functions for our 
problem inserted we get 
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For strictly 2D sheets the corresponding mode condi- 
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tion function is 
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The result of Equation (19) with the mode condition 
function from Equation (23) is shown as the solid curve 
in Figure 1. With the particular screening in graphene it 
turns out that   2 ,D k i k i ,       and the se- 
paration dependence of the nonretarded interaction be- 
comes very simple. A change in dummy variables re- 
moves the only d in the integrand and produces the factor 
of d−3 in front of the integral. The result is a straight line 
in Figure 1 with the power law d−3. The dashed curve in 
Figure 1 is the result one obtains if the 2D version of the 
polarizability, 2D , is used instead of the 3D version, 

3D , to represent the film medium. As we see this wrong 
result is quite different. Even a different power law is 
obtained for large separations. 

When we treat the graphene sheets as thin films of 
thickness δ the momentum, k, enters in more places in 
the integrand with the effect that the result has a more 
complicated dependence on d. However in those add- 
itional places k always enters in the combination kδ. This 
means that there will be a universal correction factor, 
from treating the sheet as a film, that depends on d/δ. 
This correction factor is shown as the solid curve in Fig- 
ure 2. One would expect the interaction to decrease for 
small separations since all matter in the two films is fur- 
ther apart than d, as can be seen in the inset of Figure 2. 
This expected reduction is also found but then there is an 
unexpected over shoot at larger distances with a maxi- 
mum of 19 % at around 8δ. The dashed curve is the er- 
roneous correction factor obtained if 2D  instead of 

3D is used. Unfortunately this was used in [20]. 
 

 

Figure 1. The attractive nonretarded [7] interaction energy 
per unit area between two graphene sheets as function of 
separation, solid curve. The dashed curve is the erroneous 
result obtained for a 1 Å thick film when the unmodified 
graphene 2D polarizability is used for the film medium. 

4. Non-Planar Structures  

In this section we discuss how one may proceed in non- 
planar structures, One may, e.g. have a cylinder or a 
sphere coated by a graphene or graphene-like film. The 
spatial dispersion complicates things. In these structures 
the momentum, k, is no longer a good quantum number 
for the normal modes. However, the problems are often 
dominated by long wavelengths. The 3D polarizability 
for a graphene film in the long wavelength limit is 

 
2

3 eD i
 





              (24) 

Fortunately the wave number is now absent from the 
expression and nothing hinders the use of this expression 
in non-planar structures. 

5. Summary and Conclusions 

We have shown a way to modify the dielectric function 
when a homogeneous film of finite thickness is used to 
simulate a strictly 2D sheet or vice versa. As an illustra- 
tion we calculated the van der Waals interaction between 
two undoped graphene sheets. The particular screening in 
graphene leads to a very simple van der Waals interact- 
tion which follows a pure power law, the same power 
law as that for the Casimir interaction between two ideal 
metal half spaces. From this follows that the retardation 
effects are virtually absent. The general results presented 
here are valid for any 2D sheet, e.g. a 2D electron gas. In 
that case the spatial dispersion effects are more compli- 
cated [13-16].  

We found a universal correction factor, as function of 
d/δ, to the interaction between the graphene sheets when 
they were modeled by films of thickness δ. There was a 
maximum of 19 % over shoot at separations around 8δ. 

 

 

Figure 2. The ratio between the film result and the 2D sheet 
result for the interaction energy between two graphene 
sheets as function of the ratio between the separation and 
the film thickness, solid curve. The dashed curve is the er- 
roneous result obtained when the unmodified 2D polariza- 
bility is used for the film medium. 
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We further pointed out how to proceed in the case of 
non-planar structures as to avoid problems caused by 
spatial dispersion. 
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