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ABSTRACT 

For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we pro- 
pose new numerical method expressed in the forms of simultaneous differential equations. At first we derive the equa- 
tion of motion in finite temperature, which is found to be same expression as Heisenberg equation of motion except for 
the c-number. Based on this equation, we construct numerical method to estimate time-dependent physical properties in 
finite temperature precisely without using analytical procedures such as Keldysh formalism. Since our approach is so 
simple and is based on the simultaneous differential equations including no terms related to self-energies, computer 
programming can be easily performed. It is possible to estimate exact time-dependent physical properties, providing 
that Hamiltonian of the system is taken to be a one-electron picture. Furthermore, we refer to the application to the 
many body problem and it is numerically possible to calculate physical properties using Hartree Fock approximation. 
Our numerical method can be applied to the case even when perturbative Hamiltonians are newly introduced or Hamil- 
tonian shows complex time-dependent behavior. In this article, at first, we derive the equation of motion in finite tem- 
perature. Secondly, for the purpose of verification and of exhibiting the usefulness, we show the derivation of gap equa- 
tion of superconductivity and of sum rule of electrical conductivity and the application to the many body problem. Fi- 
nally we apply this method to these two cases: the first case is most simplified resonance charge transfer neutralization 
of an ion and the second is the same process but impurity potential is newly introduced as perturbative Hamiltonian. 
Through both cases, it is found that neutralization process is not so sensitive to temperature, however, impurity potential 
as small as 10 meV strongly influences the neutralization of ion.  
 
Keywords: Heisenberg Equation of Motion; Neumann Equation; Time-Dependent Physical Properties; Finite 

Temperature; Numerical Solutions; Simultaneous Differential Equations 

1. Introduction 

In the previous work [1], we proposed a new and nu- 
merical method so as to evaluate various time-dependent 
properties and to extend the theoretical forms easily even 
when Hamiltonian shows complex time-dependence or 
perturbative Hamiltonian is newly introduced. Our pro- 
posed method is based on the Heisenberg equations of 
motion as shown below  

 †ˆi a t
t





  † ˆˆ , ,i ia t H  

 †â t

         (1.1) 

where operator i  is in Heisenberg representation. 
By using Equation (1.1), the differentiation of  
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By taking the expectation value of each term, we 
obtain the following differential equation:  
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    (1.3) 

However, as shown above, theoretical treatments are 
restricted to the ground state, i.e., T = 0 K; thus various 
time-dependent physical properties in finite temperature 
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have remained unresolved.  
As to the theoretical evaluation of time-dependent 

properties in finite temperature, linear response theory [2] 
is an excellent method and can be applied to many cases 
such as calculations of electrical conductivity and mag- 
netic susceptibility under the oscillating field and it is 
proved that this method gives exact solutions within the 
range of linearity. Usually time-dependent perturbative 
Hamiltonian 1  Ĥ t

    ˆ=

 is given in the form of separation of 
variables in the linear response theory:  

1Ĥ t f t A

 

            (1.4) 

By defining perturbative Hamiltonian in the form of 
separation of variables as shown in Equation (1.4), vari-  

ous time-dependent physical properties 
av

B̂ t

B̂

 in  

finite temperature, which originates from the operator 
, can be easily deduced as     

     R
BAg t

av

1ˆ dB t f  

 R




         (1.5) 

where BAg t

   BA

 is a retarded thermal Green function and 
defined by  

 R
BAg t   t t             (1.6) 

and  

    ˆˆ ,HB t A0

i
ˆTrBA t     

        (1.7) 

     0
ˆexp i H t 

 

0
ˆ ˆ ˆexp iHB t H t B     (1.8) 

As shown in Equations (1.5)-(1.8), if a perturbative 
Hamiltonian can not be decomposed into the form of 
separation of variables of Equation (1.4) or can show 
complex time-dependent behaviours, it seems to be a 
complicated task to evaluate time-dependent physical  

properties 
av

B̂ t

 R

 because of analytical and/or nu- 

merical difficulty in the estimation of retarded thermal 
Green function BAg t  and of analytical corrections 
concerning to Equations (1.5)-(1.8). In addition, linear 
response theory can not be applied unless linearity is 
observed. 

Although Green function methods are excellent and 
smart in analyzing the various time dependent phenom- 
ena, integral schemes are essential in diagram methods 
(Dyson equation), which easily leads to numerical and/or 
analytical difficulties and awkwardness for the explana- 
tion of experimental data. For example, let us consider 
the simplest case of atom-surface collision where the 
electron transfer matrix between surface and an ion and 
energy level of the ion shows strong time-dependence 
due to the change in atom-surface distance, we can write 
down the time-dependent Newns-Anderson Hamiltonian 

as below 

     0 1
ˆ ˆ ˆH z H z H z                 (1.9) 
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where z is an atom-surface distance with showing time- 
dependence ( z v t E

†Ĉ
Ĉ

 E z

†Ĉ ˆ

 V z

 v: velocity of ion); k  is the en- 
ergy of a conduction electron with momentum k; k  
and k  are creation and annihilation operators of a 
conduction electron with momentum k; a  denotes 
the energy level of an ion and usually depends on the z; 

a  and aC  are creation and annihilation operators of a 
state of the ion, respectively; and ak  is the electron 
transfer matrix element from the conduction electron k to 
a state of the ion and can be expressed as a function of z. 
Keldysh formalism is usually adopted in treating such a 
non-equilibirum problem and Dyson equation is given in 
the following form:  

   

     

0

2
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, ,
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d d , , ,
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  (1.12) 

 ,G t twhere   is retaded Green function of ion and is 
expressed as  

        †ˆ ˆ, i ,a aG t t t t C t C t    
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   (1.13) 
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(1.14) 

 0 ,G t t   and ,t t

   

1 2  are retarded Green function of 
non-perturative state of ion and self-energy, respectively.  
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And 
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where  

   
20πx V x E k k


 n 

  
k

         (1.19) 

The number of electron on the ion at t , i.e., 
, which we should seek and calculate, is  

         2 2
, ,G  k k

 

 ,G t tk
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(1.20) 

In above equation, nk denotes the number of 
electron occupying the band state k at initial state and 

 is given  
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0
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  (1.21) 

As shown in the series of Equations (1.12) to (1.21), 
many calculations and procedures are necessary to evalu- 
ate , which suggest that analytical efforts to evalu- 
ate  are usually failed except for a few cases. 
Since energy state of ion  E t

 0 ,G t t
 0 ,G t t

a , which is experiment- 
tally determined, is considered complex, we can easily 
guess analytical form of  can not be obtainable 
and numerical expression of  is only possible. 
Additionally analytical procedures to treat the term  x

0V V

 
in Equation (1.19) is very difficult except for a few cases. 
Usually the assumption of k  (k independence) is 
strongly required, thus Equation (1.19) is 

0

     
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

 k k
k

x E   k
k  (1.22) 

In the above equation,  E

0 0V V



 

 is D.O.S (Density of 
States) for conduction electrons. The assumption of 

k  (k independence) is a very rough approxima- 
tion and actual the systems seem to have k dependence, 
thus this approximation may not match the analysis of 
experimental data. Next, let us discuss the term of self 
energy . By substituting Equation (1.22) into 
Equation (1.18), we obtain following expression for self 
energy:  
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     
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 



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 
   (1.23) 

Usually the term of 1 2  of Equation (1.23) can 
not be evaluated in the analytical form except for the 
specific cases such as  or  E 0 const  E   

0 0 , therefore, the procedure on the basis of 
(1.12) seems too complicated even if perturbative method 
is used. Consequently awkward and complex analytical 
and/or numerical schems for calculating integral parts 
and a lot of approximations ignoring experimental condi- 

tions are essentially required to evaluate . Actually, 
theoretical solutions are obatined in the limited condi- 
tions such as wide band limit.  

  

 n 

ˆ

E E

Furthermore, if there exists impurity atoms or disloca- 
tions on surface, we should take account of the presence 
of impurity potential   as shown below H

†ˆ ˆˆ .V C C   H            (1.24) kk' k k
kk'

When such a perturbative Hamiltonian is intoroduced 
into the system, it should be noted that the methods on 
the basis of Keldysh formalism seems almost impossible 
for evaluating  n   precisely because of a lots of 
awkward analytical and/or numerical tasks and approxi- 
mations ignoring experimental conditions.  

Concerning the other approaches, we can mention the 
works performed by Brako and Newns, [3,4]. Starting 
from the equation of motion method proposed by Bloss 
and Hone [5], they performed calculations by solving the 
simultaneous differential equations while regarding op- 
erators (Q-number) as c-number. Based on these ap- 
proaches, their method are expressed in the integral 
forms and exact solutions can be attainable in the case of 
wide band limit with assuming . Actu- 
ally experimental data on the polarisation of the light 
emitted in the electronic transition of H atoms scattered 
on Ni(111) surface [6] were theoretically interpreted and 
examined by their method [7].  

 Δ constantx 

 

However, their method also seems to meet the nu- 
merical and analytical difficulties and nuisances when 
perturbative Hamiltonian is introduced or the system 
shows complicated time-dependence because of integral 
schemes being involved. Actually, their method can not 
be applied to the case when impurity potential as shown 
in Equation (1.24) is introduced into the system. 

Concerning these theoretical methods as stated above, 
the main reason for complicating calculations is that 
theoretical expressions are given not in the differential 
forms but in the integral ones. In this article, therefore, 
for the purpose of constructing the method which can be 
applicable to experimental analysis, we propose a new 
numerical methods on the basis of differential forms. At 
first we derive the extension of Heisenberg equation of 
motion to finite temperature. Then, based on the such an 
extension, we construct simultaneous differential equa- 
tions which can evaluate time-dependent physical prop-  

av
B̂ terties  in finite temperature. Our method can  

be applied to the case when a perturbative Hamiltonian 
can show so complex time-dependent behaviours that 
analysis on the basis of linear response theory and/or of 
Green function methods seem to meet analytical difficul- 
ties and nuisance and even when perturbative Hamilto- 
nian is newly introduced.  
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In Section 2, we show the derivation of theoretical 
formalism and verify our proposed method for two cases: 
superconductivity and electrical conductivity. Further-
more we refer to the application to the many body prob-
lem using Hatree Fock approximation. After confirming 
our calculations, in Section 3, we apply our method to 
the two cases of resonant charge transfer processes, in 
which time-dependent properties play important roles on 
deciding dynamics. The first case is the most simlified 
resonant charge transfer process that a single charged ion 
is neutralzed in front of metal. During calculating, to 
simplify the discussion we assume electron transfer ma-
trix remains constant. However it is sufficiently possible 
to estimate physical properties under the condition that 
electron transfer matrix shows k dependence. In the sec- 
ond case, we numerically treat the same process when 
impurity potential is introduced as perturbative Hamilto- 
nian. The second case is more complicated than the first 
one and is usually considered as a difficult and awkward 
task to analyze on the basis of conventional ways such as 
Keldysh formalism because perturbative Hamiltonian 
often complicates the scheme of the evaluation of self 
energy. Furthermore, temperature dependence of reso- 
nant charge transfer process under the presence of impu- 
rity potential remains unresolved. Finally, in Section 4 
we conclude this paper and discuss the remaining prob-
lems and further developments. 

2. Theoretical Approach, Its Verifications 
and Application to Many Body Problem  

2.1. Derivation of Theoretical Framework 

Firstly, let us start from the Neumann equation, which is 
given by  

 i
t



  ˆˆ ˆ, ,t H t    



           (2.1) 

where operator ˆ t  is a time-dependent density op- 
erator. Additionally we set 0  (chemical potential) = 0 
hereafter for simplifying the discussion. Then time-de-  

pendent physical properties  
av

B̂ t  in finite tempera- 

ture is given by  

   ˆ ˆˆTr t B
av

B t     .          (2.2) 

By taking the the differentiation of the above equation, 
we obtain 
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d d
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Substituting the Neumann equation of Equation (2.1) 
into the above equation, we get  
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av

d 1ˆ Tr
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B t
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
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XFinally, using the relation Y YX      

 

, we 

obtain the following formula with respect to the the dif- 

ferential form of 
av

B̂ t  

   

 
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d 1ˆ ˆ ˆˆTr ,
d i

1 ˆ ˆ,
i

B t t B H
t

B H t

     

   





 

      (2.5) 

It should be easily noticed that Equation (2.5) takes the 
same form as Heisenberg equation of motion in Equation 
(1.1) except for the c-number. The above equation cor- 
responds to the extension of Heisenberg equation of mo- 
tion to finite temperature. Equation (2.5) directly leads to  

the fact that time-dependent physical properties 
av

B̂ t

 
0

† † †

ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ ˆ ˆ ,

K H N

C C V t C C C C 




        




  k k k k k k k k k
k k,k

0E

  

in finite temperature are expressed not in the integral 
forms as Dyson equations but in the differential forms 
(simultaneous differetial equations); this, therefore, indi- 
cates analytical and/or numerical nuisances will be ex- 
pected to greatly decrease even if Hamiltonian includes 
complex terms and/or perturbative Hamiltonian is intro- 
duced. 

2.2. Derivation of Gap Equation in 
Superconductivity  

Next, in order to verify the above theoretical results, let 
us apply the above equation to the superconductivity. we 
consider the following Hamiltonian:  

  (2.6) 

where 

                 (2.7)  k k

and  

    .V t t V k k k k

E
†Ĉ

           (2.8) 

In the above equations, k  is the energy of a con- 
duction electron with momentum k. k  and Ĉ k  are 
creation and annihilation operators of a conduction elec- 
tron with momentum k and spin orientations  . Con- 
cerning  t , this function increases monotonically and 
satisfies   

   0 and 1  .        (2.9)    

 Furthermore we introduce gap function Δ , tk

     

 as 
defined below  

av

ˆ ˆ, .t V t C C t     kq q q
q

k      (2.10) 

Using mean field approximation and Equation (2.10), 
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Hamiltonian Equation (2.6) can be reduced to one- 
electron picture and given by  

 

   

  

†

† † *

† †

av
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 
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k
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k

k

k
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k
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ˆ ˆB̂ C C
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Next, we take operator  as  

  
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             (2.12) 

Accordingly,  is  
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Then, based on the Equation (2.5), the differential 

form of 
av

B̂ t  is  
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


av

av

ˆ

ˆ, .

C t

C t

 

 

 q q q

q

t 

 (2.14) 

In the limit of ,  

 

  

d ˆ ˆ
d

C C t
t

t

  

  

q q

q q   
av

0

, 1



 
     (2.15) 

Consequently from Equation (2.14)  

 

 

ˆ ˆ2

1

C C    

  

q q q

q     
av

n n    
q q

 

    (2.16) 

where  

 

   

†

†

ˆ

ˆ

n C

n C

 

 

 

 

q q av

av

ˆ

ˆ

C

C



   





q

q q q

      (2.17) 

By combining the above relation with Equation (2.10), 
we obtain 

    1
2

V


     kq

q q

k q     n n    
q q

t 
†

†

ˆ ˆ ,

ˆ ˆ ,

v

v

 

 
   

   

 

 

k kk k k

k kk k k

uk vk

 (2.18) 

Next, using Bogoliubov transformation to the Hamil- 
tonian of Equation (2.11) in the limit of   

ˆ

ˆ

C u

C u
           (2.19) 

where  and  satisfies  
22 1u v .              (2.20)  k k

Then Hamiltonian can be easily diagonalized and is 
given by  

 

  
 

† †

2

† †

av.

ˆ ˆ ˆ ˆ ˆ

2 2

ˆ ˆ

kK E

v u v

C C

   



   

  

 

   

 








k k k k

k

k k k k
k

k k
k

k

k

 

   (2.21) 

where  
22E   k k k

   

. 

From Bogoliubov transformation of Equation (2.19),  

 
av av

22

av av

ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ1

n C C C C

u v   

    

     

  

  

q q q q q

q qq q q q

† †

† †

   

 (2.22) 

 
av av

22

av av

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ1

n C C C C

u v   

         

     

   

  

q q q q q

q qq q q q

† †

† †
 (2.23) 

Since Hamiltonian is diagonalized as shown in Equa- 

tion (2.21), we can easily estimate †

av
ˆ ˆ  q q

 and 

†

av
ˆ ˆ    q q

. Then   

 
av av

ˆ ˆ ˆ ˆ elq q q q
f E           q

† †  ,   (2.24) 

 elfwhere x

   
 is a Fermi-Dirac function  

  1 1 expelf x x  . Consequently, the term of 

   1 n n    
q q

   

 is   

1
1 tanh .

2
n n E

E


  

       
 

q
qq q

q




 

  (2.25) 

By substituting the above result into Equation (2.18), 
we finally obtain gap equation.  

  1
tanh .

2 2

V
E

E
      

 
 kq

q
q q

k q 
      (2.26) 

2.3. Calculation of Electrical Conductivity 

Next, we apply the Equation (2.5) to the electrical con- 
duction. At first, we assume the following Hamiltonian:   

   

 

0 1

2

0 1 2
=1

1
=1

ˆ ˆ ˆ

1ˆ ˆ , , ,
2

ˆ

N
j

j j N
j j

N

j j
j

H H H

Q
H V

m c

H f t Q

 

 
    

 

  





P A r r r r

r E

 (2.27) 
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where jm  and jQ
 , ,

 are jth mass and charge of particles 
respectively, c is a light velocity, and 1 2 NV

 
 r r r  is 

a potential term. Magnetic Field jH r
 

 is expressed by 
using vector potential jA r , i.e.,    rotj jH r A r . 
Electric field E , vector of location jr  and ˆ

jP  are   

   
  

 

1 2 3

1 2 3

1 2 3

, , ,

, , ,

i

,

j j j

j j

j j j

E E E

x x x

x

  

 
   



 1,2,3 

1 2 3

, ,

, ,

ˆ ˆ ˆ ˆ, ,

i ,

x y z

j j j j

j j j

E E E

x y z

P P P

x x

 

 



 
 

 

E

r

P



      (2.28) 

We obtain j , the time differential form 
of , from the relation   

x
jx

 

0
ˆ ˆ, ,j

j
j

H x H

Q

m c

    
 
 
 

A r

    3, ,j jAr r

B̂

i ,

1 ˆ

j j

j j
j

x x

x P

 

 

  

 




       (2.29) 

where  

   1 2j jA AA r r . 

Since we focus on the electrical conduction, we take 
operator  as an electric current density along   di- 
rection,   

1

1
,

Ω

N

k k
k

Q xˆ ˆB j 

 

Ω

           (2.30) 

where  is a volume of the system. Let us consider the 
case of magnetic field   0H r , i.e., , then we 
obtain the following from Equations (2.27) and (2.29),  

  0A r

 0 1, ,NV
 

  
 

r r
=1

ˆˆ
iΩ

N
k

k k k

Q
j H

m x


          (2.31) 

 

 

1
1 1

3

1 1 1

ˆˆ
Ω

Ω

N N

k l
k l

N N

k l
k l

f t
j H Q Q

f t
Q Q



 

  

    

 





, ,

, .

k l

k l

x

E x x

 

  

  

  

r E


  (2.32) 

Using the relation of , i kl kk lx x m 

ˆˆ ,j H

     



,  

 is  

 

 

1

2

.

N

k

k

V

Q

m



 
  

 
r r

=1

=1

iˆˆ ,
Ω

i

Ω

N
k

k k k

N

k

Q
j H

m x

f t E





     










   (2.33) 

By applying the above result to Equation (2.5), we ob-
tain the following differential equation with respect to 
the electric current density along   direction:   

 

 

1av
=1

av

2

=1

d 1ˆ =
d Ω

.
Ω

N
k

N
k k k

N
k

k k

Q
j t V r r

t m x

f t Q
E

m







  









V

m m

 (2.34) 

It should be noted that the first term in the right hand 
expresses the force related to the potential  while the 
second expresses term the force related to the applied 
electrical field. For example, let us consider the simplest 
case where k  k mass of electron, Q e     
charge of electron and   1f t 

 

, then   

 ˆ ,
Ω

N
j t e v t             (2.35) 

 v t  is a velocity of electron along the where   
direction. Consequently, Equation (2.34) is   

 
av

=1
av

d 1
.

d

N

k k

m v t V eE
t N x 




  

   (2.36) 

Furthermore, assuming that kV x    is only depend- 
ent upon  , we obtain  

  avav

d
,

d
m v t V eE

t
          (2.37) 

where v        = , ,x yt v t v t v t
V

z . In the above equation, 
the term of   indicates the force due to the potential 
V; thus Equation (2.37) corresponds to the classical 
equation of motion.  

Next, let us back to the Equation (2.34). We solve this 

equation under the initial condition of  
av

ˆ 0 0j  . 

The solution of Equation (2.34) can be easily evaluated 
as below   

  

 

10av
=1

av

2

0
=1

1ˆ d
Ω

d
Ω

N tk
N

k k k

N tk

k k

Q
j t V

m x

E Q
f

m




  


  





 

 

r r 
 (2.38) 

avkV x  If we focus on the term of  in the right 

hand of the above equation, the exact expression of this 
term is:  

     1 1

av

ˆTr .N N
k k

V V
x x 

 
         

   
r r r r (2.39)  

 ˆThe density operator  
 f

 of Equation (2.39) can be 
extended into the series of the power of  .  

     2

0 1 2
ˆ ˆˆ ˆ .f f         (2.40)       

 ˆConsequently,using the above extension of  
obtain the following result when    exp if

, we 
  :  
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 

0
av

0
=1

d

exi ˆˆTr Tr
p i 1

k

l
lk k

x

l tV V
t

x x l


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



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


 

(2.41) 

 
av

ĵ t  is calculated by substituting Equation 

into Equa

(2.41) 

tion (2.38),  

 

 

  

0av
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Ω
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k
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N
k

l
k lk k

N
k
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E Q
t

m















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 


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 

N Qt

      

  



 



 

(2.42)  

Considering the case where there is no pertu
H

bative 
amiltonian of 1Ĥ , we can easily conclude no electrical  

current, which m s  ean
av

ˆ 0j t  . Then  

  0
av

ˆˆi , 0
d

j t j H
t      . 

Consequently, 

av

d ˆ

0ˆ 0.
N

k k

k kk k k k

Q V

m x m x 


 

       
   (2.43) 

From the above result, even if pertubative Hamiltonian 

1 1
av

Tr
iΩ iΩ

N Q V

of 1Ĥ  exists,  
av

ĵ t  is  

 

 

  
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1
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


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



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
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 



 (2.44) 

Then,  

 
av

ˆ 0j tlim


              (2.45) 

Since l in the Equation (2.44) co
er

rresponds to the pow-
 of Hamiltonian 1Ĥ , it is sufficient to take 1l   

within the range of linearity, i.e., the first order of Ha - 
iltonian 1

ˆ
m

H . Accordingly, on the basis of linear response 
theory,  is   1̂

0 0
ˆ ˆi ii

1 00
ˆ ˆe e , e d ,H HA iˆ  

        


   (2.46) 

where  

=1

ˆ
N

j j
j

A Q  r E . 

Consequently, within the range of linearity,  
av

ĵ t  

is expressed as below,  

   iiˆ e tj t   
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i
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A

m x
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m



 



 



 



 





        

 

 



 


(2.47) 

We define  
av

ĵ t  and electrical conductivity    

in anner the following m :  

     

   

i

av
1 ,

1
.

Ω

t j

j E




  


ˆ ej t 

  



 
        (2.48) 

Furthermore  



0 0
ˆ ˆi i

00
ˆ ˆlim d e Tr e , e 0H H

k

V
A

x
 




 



         
   . (2.49) 

Finally we obtain the sum rule  

i

 
2

=1

k

k k

Q

m
          (2.50) 

2.4. Application to Many Body Problem 

, let us 

lim i
N

  

Concerning the application to many body problem
consider the follwing Anderson Hamiltonian: 

0 1
ˆ ˆ ˆ ,H H H                        (2.51) 

 

†
0

† †

ˆˆ

ˆ ˆ ˆ ˆ ,

d d d

d d d d

H E C

V C C V C C

   
 

   




 





k k k
k

k k k k
k

    (2.52) 

† †
1

ˆ ˆ ˆ ˆˆ ,
d d d d

†ˆ ˆ ˆC E C C

H UC C C C                   (2.53) 

Ek , †Ĉ k , Ĉ k  and   are th

section 2.  ˆ
dC

e same as defined in sub 

2. 
  and ˆ

dC   are creation and anihilation 

operators of  electro with spin orientation 

 

a d n  . 
dE  

and dVk  denotes energy level of a d electro  a
electron transfer matrix element from a d electron to 
conduction electron with momentum k, respectively. U is 
a Coulomb repulsive energy between d↑ and d↓ elec- 
trons.  

Going through the same procedures as shown in Sub 
Se

n nd 

ential equations: 
ction 2.2, we obtain the following simultaneous differ- 
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   

 
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,
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where     †ˆ ˆˆ i jt C C 
   and  

av
Trijn t 

    † †ˆ ˆ ˆ ˆ
i j k lt C C C C    . In the above equation, 

av
ˆTrijkln t

  means  , e.g.,    if 
As illustrated in Equations (2.54)-(2.56), these sim

taneous differe numerically 
ev

  . 
ul- 

ntial equations can not be 
aluated due to the prsesence of many body terms of  

 
avd d d

n t   k
and  

avd d d
n t   k

. For the purpose of  

solving these equations numerically, we introduce such 
an approximatio w,   n as belo
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By substituting Equation (2.58) into Equatio
non-linear simulataneous differential equations of Equa- 
tio

,
d d d

n t  
  (2.5

n (2.54), 

n (2.59) to Equation (2.61) are deduced with showing 
the numerical solvability. thus we can evaluate using 
computer codes. 
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It should be noted that our method is quite sim
cause these non-linear simulataneous differential equa- 
tions do not have any terms related to comlicated self- 
energies or vertex corrections, which should be essen- 
tially involved in considering the electrons correlation.  

Next, let us discuss the above approxima
view points of mean field approximation (H
approximation). Firstly, we define ˆdn

ple be- 

tion in the 
atree Fock 

 as  

 †ˆ ˆˆ ˆ ˆ ,n C C n n n       (2.62) d d d d d d     

where ˆdn   denotes average value of ˆdn  . Then, ig- 
noring the   ˆ ˆd d d dn n n n     , we obtain the fol- 
lowing Hamiltonian by substituting the above equation 
into Coulomb repulsive term of Equation (2.53):  
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 the ab
i t

From ove Hamiltonian, simultaneous the differ- 
ential equat ons of Equa ions (2.64)-(2.66) are derived as 
the following:   
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Since  is the average value of ˆdnˆdn , accord- 
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ingly it seems resonable t place o re ˆdn   by  

 
avd dn t  . With ove replacement, 

(2.64) turns out to ent to Equation (2.59). Ad- 
ditionally one at Equation (2.65) and 
(2.66) are equivalent 0) and (2.61), respectively. It 
can be, therefore, c  that the approximation of 
Equation (2.58) is ed as Hatree Fock approxima- 
tion. In this article, we efer to introduce 
approximation into ou osed method.  

ation  

sonance Ch

ine the sur- 
face dynamica  such as neutralization, mo- 

cal 
fra t any investigations related to 

 the ab

 be equival
 can easily see th

 to (2.6
oncluded

regard
pr

r prop

3. Application to the RCT Neutraliz

l processes

RCT, m

Equation  

Hartree Fock 

on Surface 

As firstly stated in the previous art Analysicle “ is of Re-
arge Transfer Neutralization on the Basis of 

Heisenberg Equations of Motion” [1], a resonant elec- 
tron charge transfer (RCT) between a metal surface and 
an atom is interesting and important event , which Newns 
first proposed and discussed to explain the chemical ad- 
sorption in 1969 [8] on the basis of Anderson-Newns 
Model. In considering the various surface phenomena, 
RCT have played important roles to determ

lecular dissociation and chemisorption. In the theoreti
mework to trea

the analysis on time-dependent Anderson-Newns model 
(TDAN) have been reported and discussed extensively to 
account for the various experimental results. The evalua- 
tion of time-dependent properties, therefore, are essential 
in analyzing various results related to such surface dy- 
namical processes. Concerning to these analysis, it is 
well known that the Keldysh formalism [9] has been of- 
ten used, because this method was developed for the 
purpose of being applicable to non-equilibrium states 
such as TDAN. Consequently analysis on the basis of the 
above formalism have been reported and discussed in the 
field of surface science [10-16].  

In this section, firstly, let us apply our theoretical re- 
sults to the most simplified RCT neutralization process, 
where a singly charged ion approaches a metal surface 
and moves away from it after the ion-surface collision. 
To describe the electronic interaction between a metal 
surface and an ion, we consider the following TDAN 
while ignoring spin orientations:  

0 1
ˆ ˆ ˆ ,H H H                        (3.1) 
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In the above equations, all variables and operator are 
same as alleady defined in the section of introduction. 
Since z can be expressed as a function of time (z = v|t| v: 

velocity of ion), we use 

 

 ,aE t   aV tk  and  aV tk  in- 
stead of  aE z ,  aV zk  and  aV zk . We take B̂ as  

† †ˆ ˆ ˆ ˆ ˆˆ , ,B C C C C C † ˆ
a a a C k k k            (3.4) 
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where we define  

 

d

  (3.7) 

  †

av
ˆ ˆˆTrij i jn t t C C        

and 

       (3.8) 

 
avjin t  is obtained from the relation  

    av av
= *ji ijn t n t . 

Consequently, we obtain the simultaneous differential 
equations corresponding to the Hamiltonian of Equation 
(3.1). It should be noted that evaluated differential equa- 
tions are the same expressions as alread
previous article [1]. The differences between finite tem-
perature case and ground state (0 K) are initial conditions. 
The merit of this method is that one can obtain numerical 

s (3.5)-(3.7) under various initial 
conditions by using computer codes
introduction, since Equations (3.5)-(3.

rential f rd the solu- 
basic s as integral 

schemes ascribed to son equation. Consequently our 
pr

y stated in the 

solutions of Equation
. As stated in the 
7) are given in the 

diffe orms, numerical procedures towa
tions are ally free from such nuisance

Dy
oposed method seems to be applicable to the cases 

even when Hamiltonian includes complicated time de- 
pendent terms.  

When calculating these simultaneous differential equa- 
tions, we follow the same procedures as stated in the 
previous article [1]. Concerning the surface-particle (ion) 
interaction, we adopt the Gaussian form of  

   0 2 2expa aV t V v t k  (ζ: constant, v: ion velocity) 
without an imaginary part and momentum k dependence. 
For the purpose of simplifying the discussion, we assume 
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that  aV tk  has k independence. However, as shown in 
Equations (3.5)-(3.7), it is sufficiently possible to calcu-
late numerically in the case of  aV tk  having k de-
pendence. Simultaneous differential equations obtained 
from Equations (3.5)-(3.7) are solved numerically under  

the initial conditions of  
avaa 0n   ,  

  0a av
n  k  and    elavk kkn f E   k k   

where  
av

n kk  and  
avaan   correspond to  

the number of electrons 

 and t

occupying momentum k and the 
complete ionic state at t  , respectively. We as-
sume that Fermi level μ0 remains in the middle of the 
band at bandwidth D and energy interval Eh   are 
0.8 eV and 0.01 eV, respectively. The range of energy 
Ek  is −0.4 eV ≤ Ek ≤ 0.4 eV and h  band, i.e., −0.4 
eV ≤ Ek ≤ 0 eV is filled with electrons at T = 0 K.  

Additionally, when the ion is close to the surface, the 

alf of

 actually fluctu  because of 
 between the ace and the 

ion. Thus, calculations including such a correction are 
. In this article, e the sam
ous aricle [1 he depend

 

atomic level of the ion ates
frequent electron transfers  surf

required we tak e form as stated 
in previ ], then t ence of ion level 

aE  on the surface-ion distance z can be expressed as 
below in the atomic unit, 

     
1

,
4a a a

im

E E z E t I
z z
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

(3.9) 

ere 

   

wh  , I and zim are work function, ionization 
potential and the location of image potential (we take 
z 2im Ba   and I = 3 eV in calculations hereafter, aB: 
Bohr radius).  

Figure 1 illustrates neutralization rate   av
= aan   

as a function of work function  . From the values of 
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igure 1. Temperature dependence of neutralization rate 
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F

 aan
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   as a function of   (= work function) by 

here numerically solving Equations (3.5)-(3.7), w  akV t   

 ζv t0 2 2  (V = 1.2 eV, ζ = 1 Å locity v = 

2 × 105 cm/s. ●: T = 0 K, □: T = 300 △K, : T = 600 K. 

neutralization rate, it is found that the RCT is numeri- 
cally confirmed at the range of 1.4 eV 

a expV a
0 −2) and ion ve

  2 eV. As 
illustrated in Figure 1, neutralization rate is not so sensi- 
tive to temperature, but rather slow even in the range of 
600 K, which seems consistent with the report by Sulston 
et al. [17]. 

Secondly, let us apply our method to the same RCT 
process when impurity potential is newly introduced. 
Actually, such a theoretical calculations as evaluating the 
temperture dependent properties of RCT under the pre - 
ence of impurity potential hav  not been reported and 
discussed. Usually the presence of perturvative Hamilto- 

cedures, bec
ly re-

obtain exact s
r- 

res 

s
e

nian will easily cause the difficulty in the analytical pro- 
ause the complicated and/or awkward 

schemes for the evaluation of self energy is usual  
quired. It seems, therefore, to be a very difficult task to 

olution in this case, using conventinal me-
thods such as Green functions based on Keldysh fo
malism. However, our proposed methods straightfor- 
wardly gives exact solution and procedu of analysis 
are very simple. Let us consider the case where impurity 
potential exists on crystal surface. Hamiltonian is   

0
ˆ ˆ ˆ ,H H H                            (3.10) 
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Concerning  aE z , we take the same expression as 
Equation (3.9). Based on the above Hamiltonian, we ob- 
tain the following equations; 
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In calculations, 0 10 meV    (const 
and Im (V0) = 0) lation time and sim
plifying the calcu s. However, as
above equations, it is ble for the case of 
V kk  being k itial conditions are 
same as stated i ragraph (T = 0, 300 
and 600 K). Ad l μ0 locates at the Ek 
= 0. Lower an  are –0.29 eV a
eV, respectivel E  is 10 
thus bandwidth  1D N E   , N = 40). 

 Fermi Level  is 

As shown in Equations (3.13)-(3.15), one can easily 
see that our proposed method is enough simple to evalu- 
ate numerical solutions using computer codes and is able 
to gives exact solutions because impurity potenti
regarded as one body potential.  

Figure 2 illustrates neut

 we assume V Vkk

for shortening calcu
lation scheme

numerically possi
 and k' dependence. In

n the preceding pa
ditionally, Fermi leve

d upper limit of band
y and energy interval 
 D is 0.39 eV (

0.29 eV 0.0E  k

s at T = 0 K. 

- 
 shown 

nd 0.1 
meV. 

Ac- codingly, eV
filled with electron

al can be 

ralization rate   avaan    

as a function of k function  wor   for V0 = +10 meV at T 
= 0 K, 300 K an 600 K together with the data of V0 = 0 
m gure 2, the shape

for 

d 
eV at T = 0 K. As shown in Fi  of neu- 

tralization rate drastically changes when impurity poten- 
tial as small as 10 meV is newly introduced into the sys- 
tem: single peak for V0 = 0 meV while about three peaks 

V0 = +10 meV. From the values of neutralization rate, 
neutralization is numerically confirmed at the range of 
about 1.4 eV    2.4 eV for V0 = +10 meV, showing 
the extension in comparison with the case of V0 = 0 meV. 
This extension of neutralization is also n erically con- 
firmed in the previous article [ uld be re- 
markable that the all 
as 10 meV greatly extends t

um
1]; thus it sho

presence of impurity potential as sm
he neutralization range. 

H

mplified RCT and RCT 
w  our proposed

owever, neutralization rate is not so sensitive to tem- 
perature, which shows same tendency as Figure 1. 

In this subsection, for the purpose of verifying the use- 
fulness of our proposed method, we apply this approach 
to the two cases of RCT: most si

ith impurity potential newly induced.  
method straightforwardly offers exact solutions by such a 
simple procedure as numerically solving the simultane- 
ous differential equations of (3.5)-(3.7) and (3.13)-(3.15). 
It should be easily noticed again that the only differences 
between present work and previous article [1] are initial 
conditions. Thus we can easily conclude that simultane- 
ous differential equations for seeking temperature de- 
pendence of neutralization probability take the same 
forms as those in previous article [1] except for initial 
cconditions.  

4. Conclusions 

Starting from Neumann equation, we obtain equation of 
motion in finite temperature, i.e., Equation (2.5). As 
illustrated below, it should be obvious that our theoretical  
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Figure 2. Temperature dependence of neutralization rate 

  aa as a function of n   
av

 (= work function) for 

0 = +10 meV together with the data of impurity potential V
V0 = 0 meV by numerically solving Equations (3.13)-(3.15), 

where    ak aV t V ζv t0 2 2exp  ( aV 0 = 1.2 eV, ζ = 1 Å−2) and 

ion velocity v = 2 × 105 cm/s. ○: T = 0 K V0 = 0 meV, ●: T 
= 0 K V  = +10 meV, □: T = 300 K V  = +10 meV, △: T = 0 0

600 K V0 = +10 meV. 
 
form takes the same expression as Heisenberg equation 
of motion except for the c-number. Thus our derived 
equation corresponds to the extension of Heisenberg eq-
uation of motion to finite temperature. 

   † † ˆˆ ˆi = ,i ia t a t H
t

   
  Heisenberg equation of motion 

   
av av

d ˆ ˆ ˆi ,
d

B t B H t
t

     Our theoretical form Based 

on the above theoretical form, we propose a new method 

to calculate time-dependent p erties of  rop
av

finite temperature by solving numerically simultaneous 
quations straightfo wardly derived from 

Equation (2.5).  
Our proposed method consists of numerical proce- 

dures to s without any approximation. 
Consequently exact solution can be expected, which pro- 
vide that Hamiltonian is given in an one-electron picture. 
Being expressed not in the integral manner but in the 

multaneous differen

B̂ t  in  

differential e r

 solve these equation

tial equations, our theoretical form 

sical properties in 
finite temperature even i
of phonons and/or photons.  

In this work, for the purpo
and usefulness of our method

rules in electrical conduction. Through these examples, 

si
can be expected to reduce analytical and/or numerical 
difficulties greatly even when Hamiltonian has compli- 
cated structures or perturbative Hamiltonian is intro- 
duced into the system. Furthermore, our proposed method 
are generally possible to evaluate phy

f Hamiltonian includes the terms 

se of exhibiting verification 
, we take the two examples: 

derivation of gap equation in superconductivity and sum 
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our proposed equation seems to be applicable fec-  and ef
tive in the various fields.   

It should be noted that our proposed method can be 
easily applied to the many body problem. For example, 
when there exists the Coulomb repulsive term between 
d   and d   electrons as given as below, 

† †
coulomb

ˆ ˆ ˆ ˆˆ
d d d d

H UC C C C    , 

The terms of  
avd d d

n t   k
 and  

avd d d
n t   k

  

caused from many body term appear in simultaneous 
differential equations. In this article, we adopt Hatree 
Fock approximation 

     
av av avd d d d d d

n t n t n t       
k k

, 

     
av av avd d d d d d

n t n t n t       
k k

. 

By introducing such an approximation, we obtain non- 
linear simultaneous differential equations with showing 
closed form, which means that numerical solutions are 
obtainable. However, the above approximation does not  

include spin cross term such as  
avd d

n t  ,  

 
avd k

n t   and  
avd k

proximations than Hartree Fock are considered to have 
the spin cross terms, we could expect such approxima-  

t s are ex r ssed as functions of  

n t  . Since more precise ap-  

ion p e
avd d

n t  ,  

 
avd

n t k
,  

avd d
n t   and  

avd
n t k

 or  

 
avd d

t  , n  
avd

n k  t , 
av

 and 
d d

n t   d
n t k

 

in the following manner: 

     
    av av

, ,
d d d

n t n t   k

 
av av av

, ,d d d d d dn t F n t n t       k k

     
    av av

, .
d d d

n t n t   k

For further research,it seems more importatnt to find 
and determine optimized function of F and G. 

sses, i h time-de- 

av av
, ,d d d d d dn t G n t n t       k k

 

n w
 important s, we ap- 

ply two cas  is the mos

quations, w  will 
greatly red e numerical uisa d cal- 
culation tim Consequent oposed m seems 
possible to timate physical properties even if the sys-

ime-dependent behaviors. The 
ded as difficult to analyze be- 

cause of the presence of impurity potential. The presence 
of perturbative Hamiltonian such as impurity pot tial 
usually causes comlicated and awkward schemes for the 
evaluation of self energy. However, our propsoed method 
straightforwardly deduces the solutions without any as- 
sumution, which is considered a great merit in anal ing 
the case where pertubative Hamiltoniam is introduced. 
Based on our method, the only differences between 
gr



av

Concerning the RCT proce ich 
pendent physical properties play role

es: one t simplified RCT process 
and the other are the same process but under impurity 
potential. In analyzing the first case, no integrations as- 
sociated with time-dependent terms are found in the ob- 
tained simultaneous differential e hich

uc instabilities, n nces an
e. ly our pr ethod 

 es  
tem shows complicated t
other case is usually regar

en

yz

oud state (T = 0 K) and finite temperature are simple  

enough to change initial conditions: 
avaan  0  , 

 
av

0an  k  a n d     elav
n f E   kk kk' k  a t 

0 KT   whereas   0aan   ,   0an  k  and 

   n E    kk' kk k  at T = 0 K. Through the  

analysis of both cases, neutralization process is found to 
be not so sensitive to temperature up to 600 K while im- 
purity potential as small as 10 meV greatly changes the 
neutralization process. 

In addition, as already stated in the previous article [1], 
small energy intervals ΔE can give accurate and reliable 
calculation results, which means that the number of elec- 
trons N is large because of ΔN D E  (D: band width). 
Furthermore, assuming that the system consists of N 
electrons, then numerical solutions of 2N  simultaneous 
differential equations are required. For example, let us 
consider actual case. Usually D takes several eV. If we 
set energy interval Δ 1E   meV, the value of N is in the 
range of several thousand, which indicates that we have 
to solve 106 - 107 simutaneous differential equations. In 
this article, we adopt algorithm based on the Runge- 
Kutta-Fehlberg formula and solve numerical  
103 simultaneous differential equations,  

ve a hug dif-
 equations a from 
points of mo ula

ly about 6 ×
 however a fast

algorithm to sol e number of simultaneous 
ferential ccurately is strongly desirable 
the view re precise sim tions. 
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