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ABSTRACT 

The boundary layer flow of a steady incompressible and visco-elastic fluid with short memory (obeying Walters’ B 
fluid model) passing over a hot vertical porous plate has been investigated in the presence of transverse magnetic field. 
The momentum and energy equations are reduced to couple non-linear partial differential equations along with the 
boundary conditions by using a suitable similarity transformation. These partial differential equations are transformed to 
a system of coupled non-linear ordinary differential equations by employing a perturbation technique. The system is 
solved by developing a suitable numerical procedure such as implicit finite difference scheme along with Newton’s 
linearization method. The computational results for the flow quantities have presented graphically for the effects of 
thermal radiation, viscous dissipation, heat generation/absorption, visco-elasticity, Hartmann number and the perme-
ability parameter. Results demonstrated that Prandtl number has more pronouncing effect on the temperature distribu-
tion rather than the viscosity parameter as well as the thermal radiation parameter. Further the velocity gradient changes 
significantly due to the presence of temperature dependent variable viscosity. 
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1. Introduction 

The mixed convection boundary layer flow of non-New- 
tonian fluid in the presence of strong magnetic field has 
wide range of application in nuclear engineering and 
industries. In astrophysical and geophysical studies, the 
MHD boundary layer flows of an electrically conducting 
fluid through porous media have also enormous applica- 
tions. These studies are also used for modeling and 
simulation. Many researchers have studied the transient 
laminar natural convection flow past a vertical porous 
plate for the application in the branch of science and 
technology such as in the field of agriculture engineering 
and chemical engineering. In petroleum refineries, move- 
ment of oil, water and gas through porous media for pu- 
rification and filtration are bright applied areas of re- 
search. With the advancement of science and technology, 
MHD study on any fluid flow phenomenon exhibits 
some results which have constructive application for the 
design of devices. MHD heat transfer has great impor- 
tance in the liquid metal flows, ionized gas flow in a nu- 
clear reactor and electrolytes. Research works on radia- 
tion of heat in natural convection flow are very limited, 
though these have many modern applications viz. missile 

technology used in army, nuclear power plant, parts of 
aircraft and ceramic tiles. Thus more investigation is re- 
quired by considering the terms like magnetic field, heat 
source/sink, thermal radiation and variable viscosity. 

Considering the application in underground water re-
source and seepage of water under dam, Raptis et al. [1] 
examined the free convection flow through a vertical 
porous media. In the other context Raptis et al. [2,3] 
studied the similar problem by introducing mass transfer, 
constant suction and constant heat flux. Lai and Kulacki 
[4] shown an interesting problem regarding free convec- 
tive flow of Newtonian fluid through a vertical porous 
medium with varying permeability. Taking into account 
the temperature dependent viscosity and thermal conduc- 
tivity Rani and Kim [5] studied the flow of Newtonian 
fluid over a semi-infinite isothermal vertical cylinder. In 
the recent past several authors have studied the radiation 
effect on the flow past a parallel plate [6,7]. Rahman et al. 
[8] presented an interesting result on a natural convection 
flow past a vertical plate considering the temperature 
dependent thermal conductivity and heat conduction. 
Using implicit finite difference scheme Laganathan et al. 
[9] solved a coupled non-linear momentum and energy 
equations for the investigation of the effect of thermal 
conductivity on the free convective flow over a semi-  *Corresponding author. 
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infinite vertical plate under the influence of transverse 
magnetic field. Shit and Haldar [10] investigated the ef-
fects of thermal radiation on the magnetohydrodynamic 
flow and heat transfer over nonlinear shrinking porous 
sheet. Jang and Leu [11] analyzed vortex instability in 
the Newtonian fluid flow and estimated the effect of 
variable viscosity. Unsteady boundary layer flow over a 
stretching sheet has rigorously studied by Misra et al. [12] 
in the presence of variable thermal conductivity. Sharma 
et al. [13] in two subsequent study showed that the vari-
able permeability increase the flow velocity and heat 
source has revised effect on Nusselt number for air and 
water. They elaborately discussed the effect of Grashoff 
number on Newtonian fluid due to the presence of mag-
netic field. In polymer processing industries, researchers 
deals with non-Newtonian fluids in which stress strain 
relations are non-linear. The differential types of fluid 
flow exhibits a little effect of deformation gradient on the 
stress. In the constitutive relations stress is just a function 
of velocity gradient and its higher power and the stress 
relaxation time is very small. Rivlin-Eriction fluid shows 
small relaxation time factor in addition to a convective 
time derivative in its constitutive relation. The boundary 
layer flow of non-Newtonian Rivlin-Eriction fluid past a 
wedge was investigated by Massoudi and Ramezan [14]. 
They presented results for velocity and shear stress at the 
wall for different suction/injection rates and different 
wedge angle. 

It is well known that most of the fluid property 
changes in the presence of heat generation/absorption. 
Therefore, it is highly meaningful to study the fluid flow 
and heat transfer taking into account the temperature 
dependent viscosity. Singh and Gorla [15] carried out the 
boundary layer analysis of free convective flow of con-
ducting Newtonian fluid over an infinite vertical porous 
plate. In this investigation they studied the effect of vis-
cous dissipation, Joule heating, thermal diffusion and 
Hall current. To study the effect of viscosity which varies 
with temperature and viscous dissipation, Pal and Mon-
dal [16] adopted a problem of mixed convective heat 
transfer over a stretching surface under the influence of 
non-uniform heat source/sink. In a similar study Shateyi 
and Motsa [17] used successive linearization method to 
solve a set of non-linear ordinary differential equation 
arises in formulation of unsteady heat transfer over a 
stretching sheet with Hall Effect. Taking into account the 
variable viscosity and thermal conductivity Mahanti and 
Gaur [18] put forwarded some interesting results on free 
convective flow and heat transfer due to heat sink along 
an isothermal vertical plate. Numerical solutions for 
non-Newtonian fluid flow differential equation have 
been presented by Cortell [19,20]. He compared the re-
sults with Rajagopal et al. [21] and found close similari-  

ties. Successively the same author presented similarity 
solutions when the flow takes place over a stretching 
sheet. Adopting a second order fluid he studied two cases 
viz., constant surface temperature and prescribed surface 
temperature along with the examination of effect of vis-
coelasticity on heat transfer. Very recently, he studied the 
viscoelastic fluid flow and heat transfer over a stretching 
sheet [22]. Incorporating viscous dissipation, work due to 
deformation, heat radiation and heat generation/absorp- 
tion terms in energy equation he presented several results 
and compared among those. Takhar et al. [23] investi-
gated the mixed convection flow over a hot vertical plate 
in the presence of non-Darcian porous media. 

In order to study the flow of viscoelastic fluids of 
longer relaxation time we consider Walters liquid B’ 
model and investigated the flow and heat transfer through 
a vertical porous plate in the presence of transverse 
magnetic field. In the present problem heat and fluid 
flow has been investigated for viscoelastic fluid when the 
radiation of heat occurs from the flow domain and flow 
field has some heat source/sink. Introducing some simi- 
larity variables in the governing equations the reducing 
equations are found to be non-linear partial differential 
equations. Taking into account the boundary layer ap- 
proximation length of the plate is adopted as the pertur- 
bation parameter. A set of non-linear ordinary differen- 
tial equations are solved by finite difference techniques 
with the use of boundary conditions prescribed in the 
problem. Interesting effects of viscoelasticity, radiation 
parameter, variable viscosity, magnetic field and heat 
source are to be observed on account of fluid flow and 
heat transfer. 

2. Mathematical Formulation and Analysis 

Considering the steady two dimensional flow of viscoe-
lastic fluid past a porous hot vertical plate in which the 
x-axis is taken in the vertical direction and y-axis per-
pendicular to it as horizontal. The fluid is assumed to be 
falling down vertically over a vertical plane. The consti-
tutive equation of Walter’s B’ liquid can be written as (cf. 
Mahapatra and Gupta [24]) 

ik ik ikp                     (1) 

       1, 2 e , d
t i k

mrik
m r

x x
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where 
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


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 N   is denoted as the distribution function of re-
laxation time, ij  the isotropic stress tensor,  the 
hydrostatic pressure, ij

p
 the metric tensor, ix  the posi-

tion at time t  at the point ix ,  the rate of strain  1eik
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tensor. Taking into account the short relaxation time the 
Equation (2) becomes 

     1 1
0e 2 e 2 eik ikik

ik

D
k

Dt
    1         (4) 
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Considering boundary layer approximation in which 
the pressure term becomes order of boundary layer thick- 
ness δ(x) and the governing equations such as continuity, 
momentum and energy equations are reducing to 
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The boundary conditions are 

0u  , ,  at           (8) 0v  wT T 0y 

0u U , ,  when  0v  0T  y 

where  and  are the velocity components along and 
perpendicular to the plate, µ is the viscosity of the fluid, 
ρ the density of the fluid, β the volumetric coefficient of 
thermal expansion, K the permeability of the porous me-
dium (being a constant), g the field of gravity,  the 
visco-elastic constant, λ the thermal diffusivity, 

u v

0k

pC  the 
specific heat at constant pressure, T  the temperature 
variable, w  the constant temperature at the plate, T T  
the ambient temperature, r  is the radiative heat flux 
and  is the rate of internal heat generation (>0). The 
second and fifth terms on the right hand side of the Equa- 
tion (8) represent the effects of viscous dissipation and 
elastic deformation respectively. 

q
q

The non-linear radiative heat flux may be expressed as 
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where σ and k are the Stefan Boltzmann constant and 
mean absorption coefficient respectively. 

The term q  is considered to be 
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with k, the thermal conductivity, A  and B  are the 
parameters of space-dependent and temperature depend- 
ent internal heat generation ( A  > 0,  > 0) and ab- 
sorption (

B

A  < 0, B  < 0) respectively. 
The temperature dependent fluid viscosity is given 

by e A T T    , where   is the constant viscosity 
away from the ambient of temperature field and A is the 
con- trolling coefficient. 

Let us introduce the similarity variable  
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With the use of above variables into the Equation (6) 
we obtain 
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Introducing the above mentioned non-dimensional vari-
ables and from (9) into the Equations (6) and (7) it is 
found that 
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where  
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Since ξ is a small variable in magnitude so that we can 
expand the unknown functions in powers of ξ and thus 
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Using (12) and (13) into (11) and equating the coeffi-
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and the perturbed boundary conditions reduces to 
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Equations (14)-(18) are coupled and highly non-linear 
ordinary differential equations, finding\exact solutions are 
not possible. So to get into the insight of the problem, 
above equations with the boundary conditions (19) and 
(20) are solved numerically with the use of finite differ-
ence scheme developed by Misra and Shit [25].  

Another important studies of this investigation are two 
physical quantities such as local skin friction ( fC ) and 
Nusselt number ( xNu ) defined by 
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is the surface heat flux. The non-dimensional form of 
these two quantities may be expressed as 

 1 2 2 0f eC R f   and  1 2 0x eNu R     

3. Results and Discussions 

The system of coupled non-linear ordinary differential 
Equations (14)-(18) subject to the boundary conditions 
(19) and (20) are solved numerically by using the finite 
difference scheme along with the Newton’s linearization 
technique [25-27] to linearize the discretized equations. 
The essential features of this technique is that it is based 
on a finite difference scheme, which has better stability, 
simple, accurate and more efficient. Finite difference 
technique leads to a system which is tri-diagonal and 
therefore speedy convergence as well as economical 
memory space to store the coefficients. 

Figure 1 gives the variation of f  along with the 
distance from the plate. The variation of 1A , the pa-
rameter which is associated with the viscosity function of 
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the temperature produce a substantial change in a single 
valued function f  of  . It is observed that the values 
of f  increases sharply in magnitude as the values of 

1A  increases. In our problem the temperature dependent 
viscosity vary exponentially with temperature multiplied 
by a negative constant. The presented graphs are in the 
sense that as 1A  increases, the viscosity of the fluid 
decreases and hence resistance in the flow becomes 
weaker. It enhances the flow velocity in a substantial 
manner. Besides, velocity increases at a distance away 
from the point of commencing the horizontal velocity. 
This characteristic of velocity appears because the effect 
of temperature diminishes along with the distance from 
the plate. 

To study the velocity of fluid along the plate for the 
effect of Grashof number is presented in Figure 2. From 
this figure we observed that the change is insignificant 
but the distinction can be made easily. Basic structure of 
the curves is similar and rectilinear. It is interesting to 
note that the velocity changes sharply with respect to the 
distance from the plate. Also the Grashof number reduces 
the friction then it attributed to increase the flow velocity 
in moderate magnitude. 
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Figure 1. Variation of f with   for different values of . A1
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Figure 2. Variation of f with   for different values of . rG

The temperature profile at different point of the plate 
along y-direction is shown in Figure 3. The effect of 
increasing the constant 1A  is prominent on the tem-
perature variation. The temperature at some point on the 
plate increases with the decreasing values of 1A . This 
reveals that the temperature distribution has adverse ef-
fect with the viscosity parameter. Thus for any values of 

1A  the temperature distribution vanishes asymptotically. 
The appreciable change in temperature ( ) with Prandlt 
number is found to be presented in Figure 4. It is to be 
noted that the Prandtl numbers have profound impression 
in a certain neighborhood of the point of commencement 
of flow along the horizontal y-direction. This is also ex-
pected because the Prandtl number is associated with the 
convective part of the heat transfer equation and the ef-
fect of this part on temperature distribution becomes 
weaker as the fluid moves on the plate for a low Rey-
nolds number flow. Figure 5 represents the temperature 
variation along the horizontal plate for different radiation 
parameter. It is observed that the temperature decreases 
sharply with the increasing distance away from the plate. 
The sharpness increases with the increasing values of R. 
It is interesting to note from this figure that as heat radi- 
ates into the fluid, the temperature increases immediately 
with a short distance which is quite natural in heat trans-  
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Figure 3. Variation of   with   for different values of A1. 
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Figure 4. Variation of   with   for different values of Pr. 
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fer can be obtained in Chen [28]. The velocity gradient 
increases with the increase of the viscosity parameter 
shown in Figure 6. At some fixed point on the horizontal 
plate temperature increases with the increasing values of 
the parameter 1A . This figure also depicts that the varia-
tion of viscosity has significant effect on the velocity 
gradient. Thus, if viscosity decreases then velocity gra-
dient as well as motion of fluid accelerated. A compari-
son has also been made with Takhar et al. [23]. Figure 7 
represents the variation of 1f   with the viscosity pa-
rameter 1A . Comparing two Figures 6 and 7 it is ob-
serve that both the figures have same attitude i.e. 1f   
and 1f   both decrease with the increasing values of 1A . 
For 1A = 0, graphs of Figures 6 and 7 are totally differ-
ent. In Figure 7, it may predict that for 1A = −7.0 or −8.0, 

1f   becomes zero which is absent in Figure 6. This char-
acteristic appears due to the boundary conditions used to 
solve for 0f   and 1f  . 

Figure 8 is an interesting figure as this predicts a criti-
cal point on the plate after which back flow occur. This 
figure shows that the velocity gradient 1f   has positive 
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Figure 5. Temperature profile for various values of R. 
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Figure 6. First order velocity distribution for various A1. 
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Figure 7. Second order velocity distribution for various A1. 
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Figure 8. Second order velocity distribution for different 
values of M. 
 
and negative values before and after 1.5  .  

It is worthwhile to mention here that 1f   decreases 
with the increasing values of M. Thus it may conclude 
that the influence of magnetic field on the velocity gra-
dient is predominantly vanishes after certain distance 
from the plate. 

Figure 8 is an interesting figure as this predicts a 
critical point on the plate after which back flow occur. 
This figure shows that the velocity gradient 1f   has 
positive and negative values before and after 1.5  . 

It is worthwhile to mention here that 1f   decreases 
with the increasing values of M. Thus it may conclude 
that the influence of magnetic field on the velocity gra-
dient is predominantly vanishes after certain distance 
from the plate. 

In the present study we have considered a flow past a 
porous vertical plate where the permeability is a function 
of  . Figure 9 gives the distribution of second order 
temperature for various permeability constants. The 
structure of this figure is similar for positive and negative 
values of   but the trend is reversed in the case of its 
values in magnitude. It is found that the effect of   is 
more prominent in the vicinity of the vertical wall and it 
is nearly same for 1.0   onwards. Therefore heating 
and cooling both are possible by controlling the values of 
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 . The Grashof number plays an important role on the 
flow and heat transfer of a viscoelastic fluid. To interpret 
the effect of Gr on second order velocity gradient the 
Figure 10 is being presented. This observation illustrates 
that 1f   decreases slowly with the decreasing values of 
Gr. Also the values of 1f   cannot become zero at any 
point on the horizontal plate as well as for any value of 
Gr. The second order temperature distribution with   
for different values of Gr has been presented in Figure 
11. For the same values of Gr, there is always cooling 
and heating in the fluid before and after the plate posi-
tioned at 0.5 
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Figure 9. Second order velocity distribution for various M. 
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Figure 10. Second order velocity for various Gr. 
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Figure 11. Second order temperature profile for various Gr. 

Figure 12 gives the variation of second order velocity 
component for different permeability parameter K. It is 
seen that 1f  decrease with the increasing values of K. 
Here the permeability of the fluid effectively decreases 
the flow velocity. It is interesting to mention here that the 
fluid velocity can never be zero as we advance along the 
plate. Figure 13 depicts the change in 1f  for various 
values of the viscoelastic parameter 0K . With the in-
creasing values of 0K  back flow becomes more promi-
nent. It is observed that at the beginning of motion flow 
appears to be positive; however, with the advancement of 
the flow over the horizontal plate back flow appears. 
Therefore the viscoelastic parameter retards the motion 
significantly. To furnish the influence of source and sink 
parameter A  on 2 , we presented it in Figure 14. 
This parameter has mild effect on the second order tem-
perature distribution, however in the neighborhood of the 
vertical plate, the magnitude of 2  has substantial dis-
tinction between different curves. Also, for the critical 
value 1.0  , 2  becomes negative i.e. there is cool-
ing in the fluid which is an important characteristic. Thus, 
for positive source constant, A  fluid may lose its heat 
after crossing over the critical distance. 
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Figure 12. Variation of  for various values of K. f1
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Figure 13. Variation of  for various . f1 K0
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Nusselt number for different values of the viscosity pa-
rameter 1A . We observed that the rate temperature dis-
tribution in the fluid increases with the increasing values 
of viscosity parameter. This is due to the fact that the 
viscosity parameter depends on temperature. Moreover, 
the magnitude of local Nusselt number decreases with 
the increasing of radiation parameter. 
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4. Conclusion 

In the present paper a numerical investigation has been 
conducted for the flow of visco-elastic fluid past a porous 
vertical plate in the presence of transverse magnetic field. 
Results are presented graphically for different non-di-
mensional parameters such as M the magnetic parameter 
(Hartmann number), Gr the Grashof number, Ec the  

Figure 14. Second order temperature profile for different 
*A . 

 
Eckert number, 1A  the constant appeared in the expo-
nentially variable viscosity, R the radiation parameter, 
A the source parameter, 0K  the visco-elastic parameter 

and  the permeability parameter. Using perturbation 
technique the momentum and energy equations are re- 
duced to a coupled non-linear ordinary differential equa-
tion and those are solved by finite difference method by 
already developed scheme. Results extracted from this 

K

From Table 1 it is found that the zeroth order and first 
order skin-friction varies significantly with various vis-
cosity parameter. As the exponential coefficient of vis-
cosity increase when other parameters are fixed, the 
magnitude of frictional resistance increase on the plate. 
Also it has decreasing effect for the increasing values of 
magnetic parameter because this parameter creates more 
resistance on the flow. Table 2 illustrates the variation of  
 
Table 1. Values of skin-friction coefficient   f0 0 ,  f1 0

 = G0.0,

 for different values of viscosity parameter A and magnetic parame-

ter M with .      *
rK = K = E = R = A = M =01.0, 0.5, 0.1, 0.5, 0.2, 0.2 c ε= 0.0,

1A  −5.0 −3.0 0.0 0.2 

M 0 (0)f   1(0)f   0 (0)f   1(0)f   0 (0)f   1(0)f   0 (0)f   1(0)f   

0.1 0.8341 1.4520 1.0034 3.2981 6.8743 9.2897 11.4532 13.0943 

0.5 0.7234 1.0756 1.3420 2.4861 4.2091 7.9824 11.0126 13.0018 

0.7 0.6213 1.0002 1.0217 1.8749 3.6849 6.4320 9.9682 11.9828 

0.9 0.5103 0.8321 0.9092 1.0502 2.4703 5.6027 7.2581 10.3904 

1.2 0.4579 0.7480 0.7769 0.8062 1.6729 4.6802 6.0361 8.3096 

1.5 0.2495 0.6103 0.5302 0.5481 0.7302 2.6819 5.0318 6.9906 

 
Table 2. Numerical values of the local Nusselt number  

0 0 ,  
2 0

 *= A.5,

for different viscosity parameter A1 and magnetic pa-

rameter M. .      K = K = E = R ε = M =01.0, 0.5, 0.1, = 0.0, 0.0, 0.2, 0.2 c r= G 0

1A  −5.0 −3.0 0.0 0.2 

R 0 (0)   2 (0)   0 (0)   2 (0)   0 (0)   2 (0)   0 (0)   2 (0)   

0.1 0.3591 2.5020 1.7310 3.2082 4.0835 6.0807 8.0391 10.021 

0.3 0.3109 2.0031 1.1200 2.9080 3.6117 5.8024 7.0816 9.0826 

0.9 0.2713 1.5514 0.8279 1.7999 3.0010 5.1320 6.0321 7.9397 

1.5 0.1030 0.9831 0.2036 0.8593 1.7903 4.2731 5.5081 6.4501 

2.3 0.0709 0.3804 0.1005 0.3362 0.2419 2.0255 3.6091 4.0906 

2.8 0.0125 0.1038 0.0502 0.0998 0.07677 0.9512 1.0085 1.9862 
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study concluded that the temperature distribution as well 
as fluid velocity substantially depends on variable vis- 
cosity parameter which is the function of temperature. 
Another important feature is the paramount effect of 
Grashof number on the temperature and velocity. Heat 
radiation into the fluid enhances the temperature signifi-
cantly in this study. 
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