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ABSTRACT 

This paper studies the optimal investment problem for utility maximization with multiple risky assets under the constant 
elasticity of variance (CEV) model. By applying stochastic optimal control approach and variable change technique, we 
derive explicit optimal strategy for an investor with logarithmic utility function. Finally, we analyze the properties of 
the optimal strategy and present a numerical example. 
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1. Introduction 

Optimal investment problem of utility maximization is a 
fundamental problem in mathematical finance and has 
been studied in many articles. This problem is usually 
studied via two approaches in literatures. One is stochas-
tic control approach used by Merton [1,2] for the first 
time. By this approach, Browne [3] found the optimal 
investment strategy to maximize the expected exponen-
tial utility of terminal wealth for an insurance company. 
Yang and Zhang [4] studied a similar problem for an 
insurer with exponential utility via stochastic control 
approach. Another method is the martingale approach 
which was adapted to the problem of utility maximiza-
tion by Pliska [5], Karatzas, Lehoczky and Shreve [6] 
and Cox and Huang [7]. Much of this development ap-
peared in [8,9]. Applying the martingale approach, 
Karatzas et al. [10] investigated the utility maximization 
problem in an incomplete market and Zhang [11] con-
sidered a similar problem. In [12], closed-form strategies 
were obtained for different utilities maximization of an 
insurer through martingale approach. Zhou [13] applied 
the martingale approach to study the exponential utility 
maximization for an insurer in the Lévy market. 
  The above mentioned researches using the martingale 
method have provided results for general risky assets’ 
prices, but most found specific solutions for geometric 
Brownian motion (GBM) model or a similar one merely. 
Meanwhile the works applying stochastic control theory 
generally supposed the risky assets’ prices satisfy geo-
metric Brownian motions. However, numerous studies 
(see e.g., [14] and the references therein) have shown 

that empirical evidence does not support the assumptions 
of GBM model and a model with stochastic volatility 
will be more practical. 

The constant elasticity of variance (CEV) model with 
stochastic volatility is a natural extension of geometric 
Brownian motion and can explain the empirical bias ex-
hibited by the GBM model, such as volatility smile. The 
CEV model allows the volatility to change with the un-
derlying price and was first proposed by Cox and Ross 
[15]. In comparison with other stochastic volatility mod-
els, the CEV model is easier to deal with analytically and 
the GBM model can be seen as its special case. The CEV 
model was usually applied for option pricing and sensi-
tivity analysis of options in most literatures, see [16-19] 
for example. Recently, the CEV model has been applied 
in the research of optimal investment, as was done by 
Xiao, Zhai and Qin [20]. Gao [21,22] investigated the 
utility maximization problem for a participant in a de-
fined-contribution pension plan under the CEV model. 
Gu, Yang, Li and Zhang [23] used the CEV model for 
studying the optimal investment and reinsurance pro- 
blems. 

However, the above researches of optimization prob-
lem under the CEV model concerned only one risky asset 
and a risk-free asset. But actually, an investor needs to 
invest in multiple risky assets to disperse risk and in-
crease his/her profit. Thus, to make the optimization 
problem even more realistic, we deal with the investment 
problem with a risk-free asset and multiple risky assets 
under the CEV model. Although Zhao and Rong [24] 
have studied portfolio selection problem with multiple  
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risky assets under the CEV model, they obtained closed- 
form solutions only for special model parameters. Where- 
as in this paper, considering to maximize the expected 
logarithmic utility of an investor’s terminal wealth, we 
derive optimal strategy explicitly for all values of the 
elasticity coefficient. By applying the methods of sto-
chastic optimal control, we derive a complicated nonlin-
ear partial differential equation (PDE). However, there 
are terms that contain variables concerning different as-
sets’ prices, which makes it difficult to characterize the 
solution structure. Therefore, we conjecture a correspond- 
ing solution to this PDE via separating variables partially 
and simplify it into several PDEs. The coefficient vari-
ables of these simplified PDEs are closely correlated and 
therefore we use a power transformation and a variable 
change technique to solve them. 

It is noteworthy that the introduction of multiple risky 
assets does give rise to difficulties and this research is 
not a routine extension of the case of one risky asset. For 
portfolio selection problems concerning risky assets with 
the CEV price processes, the characterization of solution 
under  dimensional case is quite different from one 
dimensional case. Owing to the consideration of multiple 
risky assets, we conjecture the solution through separat-
ing variables represented different assets’ prices and 
combining each price variable with time variable respec-
tively. 
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Furthermore, we compare our result with that under 
the GBM model and that of one dimensional case. Firstly, 
the optimal policy for an investor with logarithmic utility 
under the CEV model is similar to that under the GBM 
model in form except for a stochastic volatility. Secondly, 
our solution is just the result of [20] when there is only 
one risky asset. Moreover, we present a numerical simu-
lation to analyze the properties of the optimal strategy 
under the CEV model. 

This paper proceeds as follows. Section 2 proposes the 
utility maximization problem with multiple risky assets 
whose prices are driven by the CEV models and provides 
the general framework to solve the optimization problem. 
In Section 3, we derive the optimal investment strategy 
for logarithmic utility function and compare our result 
with the previous works. Section 4 provides a numerical 
analysis to illustrate our results. Section 5 concludes the 
paper. 

2. Problem Formulation 

We consider a financial market consisting of a risk-free 
asset (hereinafter called “bond”) and  risky assets 
(hereinafter called “stocks”). The price process  

 of the bond follows 

 0 0 d =S t rS  t        (1) 

where  is the interest rate. The price processes 
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 S tthen   is the instantaneous volatility matrix. 
The elasticity parameter   satisfies 0 = 0. If   , 
the volatility matrix is constant with respect to the stock 
prices and Equation (2) reduces to the standard Black- 
Scholes model. In addition, we assume that T
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positive definite throughout this paper. 

The investor is allowed to invest in those  stocks as 
well as in the bond. Let i  be the money amount 
invested in the i th stock at time  for i n . 
Denote by 1 n  and each   πi t  
is an   = 1, 2, ,i n

  π , 0t t 
t -predictable process for . 

Corresponding to a trading strategy  and an 
initial capital V , the investor’s wealth process 
   , 0X t t  follows the dynamics 

      
     

 

T

T

d = π d

π d

0 = ,

nX t rX t t r t

t S t W t

X V







   


1

 T
= 1, ,11  1n

        (3) 

where  is an  vector. n
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   , , =with 1 2 n, , ,H T s s  s x U x . 
The Hamilton-Jacobi-Bellman (HJB) equation asso- 

ciated with the portfolio selection problem under the 
CEV model is 
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Putting Equation (7) into HJB Equation (6), after sim-
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The problem now is to solve the nonlinear partial dif-

ferential equation (PDE) (8) for H  and recover  
from derivatives of 

*π
H . 

3. Optimal Strategy for the Logarithmic 
Utility 

In this paper, we consider the investment problem for 
logarithmic utility function 

  = ln .U x x                   (9) 

A solution to Equation (8) is conjectured in the fol-
lowing form: 
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split Equation (11) into two equations:  
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Proof. Equations (7) and (10) leads to 
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where  T
(1) ( )

1
:= , , n

s s sn
g g g . Due to Equations (14), (16) 
), we have for each 

 2 1 0,i
yi i

m   

and then 

     

and (20 1 i n  , 

  = 2 =i
s ig s

      
1T

= .nt S t r X t   


 1  

According to Equations (14), (16) and (20), we ob  

=1

n

i

mediately

21), we find that the 

*π t S

tain 

  = 1ig . This together with Equations (10) and (13) im-  

 completes the proof. 
Remark 2. From Equation (

optimal investment proportion    *π t X t  is inde- 
pendent of the wealth. This can ed by the 
relative risk tolerance     

 be explain
U x xU x  , which is a 

constant for logarithmic wealth has no 
influence on the optimal proportion invested in stocks.  

Remark 3. For a logarithmic utility function, the 
op

utility. Thus, the 

under a geom
timal policy under the CEV model is similar to that 

etric Brownian motion (GBM) model. How-  
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ever, the volatility matrix of the stocks   S t

  is not  

constant but related to the prices of stoc result 
implies that the CEV model fully cons role of 

ks. This 
iders the 

 unidimensional 
an

  

the stochastic price of the stock market. 
Remark 4. In the case where there is only one stock 

and a bond, i.e. = 1n ,  , , S t   are
d we are back to the settings of [20]. Equation (21) 

reduces to 

   *π = ,
r

t X t22 S t






which is the same as the optimal policy
Zhai and Qin [20]. From Equation (22), we find that 


          (22) 

 derived by Xiao, 

 *π t  decreases with  . A bigger   means a larger 
volatility, which increases risks for investors. Thus, in-

s would reduce th amount invested in the stock to 
avoid risks. 

4. Numeri

vestor e 

cal Analysis 

me numerical simulations to 
 optimal strategy and illus-

), i.e., 
n

ks at 
 

In this section, we provide so
analyze the properties of the
trate the dynamic behavior of the optimal strategy. 

We assume that there are two stocks and one bond in 
the market during the time horizon = 10T  (years

= 2 . Throughout the numerical analysis, we use the 
optimal proportion invested in stoc time t , i.e., 

 * X t  to denote the optimal strategy. 
Let 

π t

 

   1 2

18.16 12.15
= 0.03, = 0.12,0.1 , = ,

12.03 13.10

= 1, 0 = 13.5, 0 = 12.5.

r

S S

 



 
 
 



 

Figure 1 shows the effects of the appreciation rate 1  
on the optimal strategies. As expected, the optimal pro-
portion invested in stock 1 increases with respect to its 
appreciation rate 1 . Since multiple stocks are consid-
ered, we can analyze the impact of one stock on the other 
stock. From Figure 1, we find that there is an inverse 
relationship between 1  and the optimal strategy of 
stock 2. This is consistent with intuition. When the ap-
preciation rate of one stock increases constantly, it is 
optimal to increase the proportion of wealth in this stock 
and reduce investment in the other stock. Furthermore, 
Figure 1 also shows that the total proportion invested in 
two stocks changes moderately with 1 . This implies 
that the influence of one stock’s appreciation rate on the 
total investment is not obvious. 

In Figure 2, the parameters are given by: 

 

   1 2

1 2
= 0.03, = 0.12,0.1 , = ,

1.5 1.2

= 0.4, 0 = 8, 0 = 6.

r

S S

 



 
 
 



 

Figures 2(a) and (b) plot the evolution of the stocks’ 
prices and the optimal strategy over time under the CEV 
model, respectively. Unlike the GBM model, the optimal 
proportion invested in each stock under the CEV model 
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Figure 1. The effect of μ1 on the optimal strategy. 
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Figure 2. (a) Evolution of stocks’ prices over time; (b) Evolution of optimal strategy over tim . 

fluctuates with
the overall tendency of optimal proportion invested in 

ure 2(b) also 
indicates that sometimes it is optimal to sell short stock 1. 

e
 

 stocks’ prices. As shown in Figure 2(b), over time (see Figure 2(a)). Moreover, Fig

stock 1 decreases with respect to time. This is because 
that the actual price of stock 1 has a decreasing trend 

On the contrary, the optimal strategy of stock 2 increases 
in general due to the rising tendency of its price. Conse- 
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quently, the total proportion invested in stocks is rela- 
tively steady over time. 

5. Conclusion 

By considering multiple risky assets and a risk-free asset 
in a financial market, this paper extends the port

der the constant elasticity of vari-
l. We propose the framework of port-

si

d by
n of Tianjin under grant
ts’ innovation training foun-

tainty: The Continuous-Time Case,” The Review of Eco-
nomics and Sta , pp. 247-257. 
doi:10.2307/19

folio 
selection problem un
ance (CEV) mode
folio selection problem with multiple risky assets under 
the CEV model. Explicit solution for the logarithmic 
utility maximization has been derived via stochastic con-
trol approach. It is shown that for portfolio selection 
problems concerning risky assets with the CEV price 
processes, there are differences in solution characteriza-
tion and calculations between one dimensional case and 
n  dimensional case. The optimal policy under the CEV 
model is the same as that under the GBM model in form 
except for a stochastic volatility matrix. Finally, numeri-
cal results demonstrate the properties of the multidimen-

onal optimal strategy under the CEV model. 
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