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ABSTRACT 

The use of computers in facilitating their processing 
and analysis has become necessary with the increase- 
ing size and number of medical images. In particular, 
computer algorithms for the delineation of anatomi- 
cal structures and other regions of interest, which are 
called image segmentation, play a vital role in nu- 
merous biomedical imaging applications such as the 
quantification of tissue volumes, diagnosis, localiza- 
tion of pathology, study of anatomical structure, 
treatment planning, and computer-integrated surgery. 
In this paper, a 3D volume extraction algorithm was 
proposed for segmentation of cerebrovascular struc- 
ture on brain MRA data sets. By using a priori 
knowledge of cerebrovascular structure, multiple 
seed voxels were automatically identified on the ini- 
tially thresholded image. In the consideration of the 
preserved voxel connectivity—which is defined as 
6-connectivity with joint faces, 18-connectivity with 
joint edges, and 26-connectivity with joint corners— 
the seed voxels were grown within the cerebrovascu- 
lar structure area throughout 3D volume extraction 
process. This algorithm provided better segmentation 
results than other segmentation methods such as 
manual, and histogram thresholding approach. This 
3D volume extraction algorithm is also applicable to 
segment the tree-like organ structures such as renal 
artery, coronary artery, and airway tree from the 
medical imaging modalities.  
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1. INTRODUCTION 

The human cerebrovascular system is a complex three- 
dimensional anatomical structure. Serious types of cere- 
brovascular diseases such as carotid stenosis, aneurysm, 
and vascular malfunction may lead to brain stroke, which 
is the third leading cause of death and a principal cause 

of long-term disability in much of the industrialized 
world [1]. Therefore, an accurate model of the vascular 
system from medical imagery data volume is needed to 
detect these diseases at early stage and to prevent inva- 
sive treatments. With rapid advances in the field of me- 
dical imaging, Computed Tomography (CT), Magnetic 
Resonance Imaging (MRI), digital mammography, and 
other imaging modalities provide an effective means for 
non-invasively mapping the anatomy of a subject. These 
technologies have greatly increased knowledge of nor- 
mal and diseased anatomy for medical research and are a 
critical component in diagnosis and treatment planning. 
With the increasing size and number of medical images, 
the use of computers in facilitating their processing and 
analysis has become necessary.  

In particular, computer algorithms for the delineation 
of anatomical structures and other regions of interestare 
key component in assisting and automating specific ra- 
diological tasks. These algorithms, called imagesegmen- 
tation, play a vital role in numerous biomedical imaging 
applications such as the quantification of tissue volumes, 
diagnosis, localization of pathology, study of anatomical 
structure, treatment planning, and computerintegrated 
surgery [2]. In this paper, a 3D volume extraction algo- 
rithm was proposed for segmentation of cerebrovascular 
structure on brain MRA data sets. Section 2 describes the 
previous works related to blood vessel extraction and 
segmentation on medical imagery from various imaging 
modalities. Section 3 describes the 3D volume extraction 
of cerebrovascular structure. Section 4 describes other 
segmentation methods and results for performance 
evaluation of proposed segmentation approach. In Sec- 
tion 5, experimental segmentation results on clinical 
datasets are presented. Finally, Section 6 provides some 
discussions and concluding remarks. 

2. RELATED WORKS 

Blood vessel delineation on medical images forms an 
essential step in solving several practical applications 
such as diagnosis of the vessels (e.g. stenosis or malfor- 
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mations) and registration of patient images obtained at 
different times. Blood vessel segmentation algorithms 
are the key components of automated radiological diag- 
nostic systems. Segmentation methods vary depending 
on the imaging modality, application domain, method 
being automatic or semi-automatic, and other specific 
factors [3].  

The segmentation of cerebrovascular structure has 
been conducted on conventional angiograms, phase con- 
trast magnetic resonance angiogram, and 3D time-of- 
flight (TOF) magnetic resonance angiography. Wilson et 
al. [4,5] developed automatic statistically based algo- 
rithm for extracting the 3D vessel information from TOF 
MRA data. They introduce distributions for the data, 
motivated by a physical model of blood flow, that are 
used in a modified version of the expectation maximize- 
tion (EM) algorithm. The estimated model parameters 
are then used to classify the voxels statistically into ves- 
sels or other brain tissue classes. The algorithm is adap- 
tive because the model fitting is performed recursively so 
that classifications are made on local subvolumes of data. 
Chung et al. [6,7] presents a statistical approach to ag- 
gregating speed and phase (directional) information for 
vascular segmentation of phase contrast magnetic reso- 
nance angiograms (PC-MRA). Rather than relying on 
speed information alone, they demonstrate that including 
phase information as a priori knowledge in a Markov 
random field (MRF) model can improve the quality of 
segmentation. They propose to use a Maxwell-Gaussian 
mixture density to model the background signal distribu- 
tion and combine this with a uniform distribution for 
modeling vascular signal to give Maxwell-Gaussian- 
uniform (MGU) mixture model of image intensity. Has- 
souna et al. [8] also present an automatic statistical ap- 
proach for extracting 3D blood vessels from TOF mag- 
netic resonance angiography data. The voxels of the 
dataset are classified as either blood vessels or back- 
ground noise. Two stochastic processes model the ob- 
served volume data. The low level process characterizes 
the intensity distribution of the data, while the high level 
process characterizes their statistical dependence among 
neighboring voxels. A finite mixture of one Reyleigh and 
two normal distributions models the low level process of 
the background signal, while the blood vessels are mod- 
eled by one normal distribution. 

3. CEREBROVASCULAR STRUCTURE 
SEGMENTATION  

MRI uses radio frequency waves and a strong magnetic 
field rather than x-rays to provide remarkably clear and 
detailed pictures of internal organs and tissues. Magnetic 
resonance angiography (MRA) is a noninvasive MRI- 
based flow imaging technique. Its wide variety of acqui- 

sition sequences and techniques use to detect, diagnose 
and aid the treatment of heart disorders, stroke and blood 
vessel diseases. It provides detailed images of blood 
vessels without any contrast material, and the signal in- 
tensity of these images is proportional to the velocity of 
the blood flow. In this paper, the 3D time-of-flight (TOF) 
of MRA brain images from GE Signa Excite scanner are 
used to automatically segment the cerebrovascular struc- 
ture.  

3.1. Image Volume Analysis 

Conventional CT and MRI scans produce axial slices of 
the body that are viewed sequentially by radiologists 
who must visualize or extrapolate from these views what 
the actual 3D anatomy should be. These axial slice im-
ages can be modeled by a continuous function of two or 
three variables; in the 2D case arguments are coordinates 
 ,x y  in a plane, while if images are expanded to 3D a 
third variable might be added as follows. The image 
volume V, called image sequence function, defined  


1

,
n

i
i

V F x


  y , where F is 2D image function, n is im-  

age sequence number, x and y are spatial coordinates. 
The image analysis involves manipulating the image data 
to determine exactly the information necessary to solve 
an image application problem, and rendering quantitative 
measurements from an image to produce a description, 
and to make a sophisticated decision [9,10]. Figure 1 
shows the transverse slice images of 3D TOF brain MRA 
data sets, which provide fact that blood vessels are 
brighter than surrounding tissues and background. This is 
the nature of MRA scanning protocol that focus on the 
blood flow area and suppresses the signal intensity of 
surrounding tissues. MRA is a non-invasive MRI-based 
flow imaging technique, and it provides images of blood 
vessels in detail without any contrast agent. Its wide va- 
riety of acquisition sequences and techniques, beside its 
ability to provide detailed images of blood vessels, en- 
abled its use in the diagnosis and surgical planning of the 
cerebrovascular diseases. 

In comparison with background area and surrounding 
tissues in Figure 1, blood flow area is small portion of 
the image, which might be indicated in the histogram 
that plots the frequency of intensity occurrence in the 
image [11,12]. 

3.2. Seed Selection Process 

Thresholding is often used as an initial step in the pipe- 
line operation of image processing. In case of the back- 
ground and object occupy comparable areas in the image; 
a good initial threshold value is the average gray level of 
the image. On the contrary, if the objects are small com- 
pared to the area occupied by the background (or vice 
versa), then one group of pixels will dominate the histo-  
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(a)                 (b)                 (c) 

Figure 1. Axial sequence images of 3D TOF brain MRA data 
set. 
 
gram and the average gray level is not as good an initial 
choice. A more appropriate initial threshold value is a 
midway value between the maximum and minimum gray 
levels. Therefore, first sequence image initially binarized 
with threshold value  2 1 2hT   , where h is the 
number of bits for representation of each pixel, to deter- 
mine the region growing seed. This 2D image can be 
transformed with threshold value T from an input image 
F to an output binary image G as follows;  , 1G x y   
for image elements of objects where  ,F x y T , and 

 for image elements for the background 
where 
 ,G x y  0

 ,F x y T . These multiple region-growing 
seeds are used to extract the cerebrovascular structure on 
brain MRA data sets. 

3.3. Vessel Volume Extraction 

The region growing is a procedure that group pixels or 
sub-regions into larger regions based on predefined crite-
ria. The basic approach is to start with a set of “seed” 
points and from these grow regions by appending to each 
seed those neighboring pixels that have properties similar 
to the seed, such as specific ranges of gray level or color 
[13]. A region is a connected set of pixels, that is, a set in 
which all the pixels are adjacent or neighboring in the 2D 
image space. The definition of connectedness is as fol-
lows: between any two pixels in a connected set, there 
exists a connected path wholly within the set, where a 
connected path is that which always moves between 
neighboring pixels. Thus, in a connected set, one can 
trace a connected path between any two pixels without 
ever leaving the set. There are two rules of connectivity, 
and either one can be adopted. If only laterally adjacent 
the pixels (up, down, left, right) are considered to be 
connected, this is four-connectivity, and objects are 
four-connected. In addition, if diagonally adjacent (45˚ 
neighbor) the pixels are also considered to be connected, 
one has eight-connectivity and the objects are eight con- 
nected [14]. In 3D image volume V, the voxel connec- 
tivity is defined as the following: 1) 6-connectivity with 
joint faces, 2) 18-connectivity with joint edges, and 3) 
26-connectivity with joint corners. The 3D volume 
growing method [12,13,15,16] performed the homoge- 
neous test from the start voxel (or 3D block) to the 

neighbor voxel (or 3D block) using gray-level, texture, 
color as an acceptance criterion, and included or ex- 
cluded the neighbor voxel (or 3D block) according to the 
homogeneous test result until termination condition is 
satisfied. 

4. VALIDATION STUDY THROUGH 
MANUAL AND THRESHOLDING 
METHOD 

The validation experiments are necessary to quantify the 
performance of proposed segmentation method and— 
specific medical image processing such as registration 
and visualization. Validation is typically performed using 
one of two different types of truth models. The most 
straightforward approach to validation of segmentation, 
for instance, is by comparing the automated-segmenta- 
tion with manually obtained segmentation [17,18]. Fig- 
ures 2(a)-(c) show the 3D reconstructed images of cere- 
brovascular structure using the manual segmentation 
results where virtual camera was position at 330˚, 0˚, and 
30˚ in longitudinal direction, respectively. The other 
common approach to validating segmentation methods is 
by use of physical phantom [19] or computational phan- 
toms which consisting of digital (voxel-based) phantom 
[20,21] and mathematical (analytical) phantom [22]. 
Physical phantoms provide an accurate depiction of the 
image acquisition process but typically do not present a 
realistic representation of anatomy. On the contrary, 
whereas digital phantoms are mainly derived from seg- 
mented tomographic images of the human anatomy ob- 
tained by either CT or MRI, mathematical phantoms 
consist of regularly shaped continuous objects defined by 
combinations of mathematical geometries such as spheres, 
ellipsoids, cylinders, and cones. Although anatomically 
less realistic than digital phantoms derived from CT or 
MRI images of patients, the mathematical phantom has 
the advantage that it can be easily modified to simulate a 
wide variety of patient anatomies. Furthermore, the 
combined approach that synthesizes the digital phantom 
with geometric model of specific human organ provides 
realistic simulation of tomographic image sequence; and  
 

   

 
(a)                 (b)                 (c) 

Figure 2. 3D reconstructed images of cerebrovascular structure 
using the manual segmentation results where virtual camera 
was positioned at (a) 330˚, (b) 0˚, and (c) 30˚ in longitudinal 
direction. 
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the modifications such as identifying particular structures, 
adding pathologies, and highlighting activation are easily 
performed [23]. However, here we provide the other 
segmentation results using histogram thresholding for 
validation study. The thresholding techniques, which 
make decisions based on local pixel information, are 
effective when the intensity levels of the objects fall 
squarely outside the range of levels in the background. 
Thresholding is a pixel classification process to identify 
the pixels of a given image into two classes: those per- 
taining to objects and those pertaining to background. 
While one class includes pixels with intensity values that 
are below or equal to a certain threshold value, the re- 
maining class includes those pixels with intensity values 
above the threshold. Correct threshold value selection is 
crucial for successful segmentation; this selection can be 
determined interactively or it can be the result of auto- 
matic threshold detection method [24]. Figures 3(a)-(c) 
show the 3D reconstructed images of cerebrovascular 
structure using the results of histogram thresholding 
where virtual camera was positioned at 330˚, 0˚, and 30˚ 
in longitudinal direction, respectively. 

5. RESULTS 

The Intel P4 processor with MS Windows and Visual 
C++ were used to extract the cerebrovascular structure 
on brain MRA data sets. This algorithm was applied on 
the clinical data sets of 3D time-of-flight (TOF) MRA 
images from GE Signa Excite scanner. Each case con-
sists of 148 axial images and the dimension of image is 
512 × 512 pixels, pixel spacing is 0.43 mm and slice 
thickness is 1.4 mm. 

As a result of cerebrovascular structure extraction by 
using 3D region growing algorithm, Figures 4(a)-(c) 
show the 3D volume extraction results of cerebrovascu- 
lar structure using 6-connectivity feature where virtual 
camera was positioned at 330˚, 0˚, and 30˚ in longitude- 
nal direction, respectively. In addition, Figures 5 and 6 
show the extracted cerebrovasculature using 18-connec- 
tivity and 26-connectivity features with ray casting algo- 
rithm, respectively. The ray casting is one of the volume  
 

   

 
(a)                 (b)                 (c) 

Figure 3. 3D reconstructed images of cerebrovascular structure 
using the histogram thresholding results where virtual camera 
was positioned at (a) 330˚, (b) 0˚, and (c) 30˚ in longitudinal 
direction.  

   

 
(a)                 (b)                 (c) 

Figure 4. 3D volume extraction results of cerebrovascular 
structure using 6-connectivity feature where virtual camera was 
positioned at (a) 330˚, (b) 0˚, and (c) 30˚ in longitudinal direc- 
tion. 
 

   

 
(a)                 (b)                 (c) 

Figure 5. 3D volume extraction results of cerebrovascular 
structure using 18-connectivity feature where virtual camera 
was positioned at (a) 330˚, (b) 0˚, and (c) 30˚ in longitudinal 
direction. 
 

   

 
(a)                 (b)                 (c) 

Figure 6. 3D volume extraction results of cerebrovascular 
structure using 26-connectivity feature where virtual camera 
was positioned at (a) 330˚, (b) 0˚, and (c) 30˚ in longitudinal 
direction. 
 
rendering techniques using backward projection. Rays 
are cast from each pixel of the image plane into the 
volume data. At locations along each ray, a sample value 
and a surface normal approximation are calculated using 
values of surrounding voxels. Using the sample value 
and normal, a sample opacity and color are dynamically 
assigned by a lookup table or in a preprocessing phase. 
Then a local shading model is applied and the samples 
along the ray are composed into a pixel value of the final 
image [25,26]. By applying the ray-casting algorithm 
with perspective projection technique, these provide fine 
3D volume extraction results of cerebrovascular structure. 
For the purpose of comparing the proposed vessel ex- 
traction method with other segmentation approach, the 
number of voxels from each segmentation result was 
provided. The voxel counts are as follows: 53.4 K voxels 
from manual segmentation, 39.3 K voxels from histo- 
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gram thresholding, and proposed 3D volume extraction 
method with 6-connectivity (60.8 K voxels), 18-connec- 
tivity (61.78 K voxels), 26-connectivity (61.79 K voxels). 
These provided fact that there was a little increase in the 
total number of voxels, as the voxel connectivity was 
increased. 

6. DISCUSSION AND CONCLUSIONS 

The segmentation of regions is an important first step for 
various image related application and visualization tasks. 
Particularly, the computer algorithms for the delineation 
of anatomical structures and other regions of interest are 
an important component in assisting and automating spe- 
cific radiological tasks [2]. The region growing is classi- 
fied into multiple ways for color image segmentation 
[27,28], for geographical applications [29,30], medical 
applications [31,32], and for automatic features of seed 
selection [33,34]. 

A 3D volume extraction algorithm was proposed for 
segmentation of cerebrovascular structure. This method 
provides the new features that automatically locate the 
multiple seed voxels using a priori knowledge from 
anatomic structure of brain vessels. The seed voxels were 
automatically selected in the initially thresholded image 
by using a priori knowledge of cerebrovascular structure. 
In consideration of the preserved voxel connectivity— 
which defined as 6-connectivity with joint faces, 18- 
connectvity with joint edges, and 26-connectivity with 
joint corners—the selected seed voxels were grown 
within the cerebrovascular structure area throughout 3D 
volume extraction process. Compared with manual seg- 
mentation approach and histogram thresholding method, 
this algorithm provides fine segmentation results by ap- 
plying 3D volume extraction approach with automatic 
seed voxels selection features. The segmentation process 
on medical imagery from various imaging modalities is 
an initial and very essential step for useful clinical appli- 
cations. These segmentation results are also used to im- 
plement the medical applications such as the quantifica- 
tion of tissue volumes, diagnosis, localization of pathol- 
ogy, study of anatomical structure, treatment planning, 
and computer-integrated surgery. Although no single 
segmentation method that yields acceptable results for all 
kinds of medical image modalities, the proposed 3D 
volume extraction algorithm is also applicable to extract 
the tree-like organ structures such as renal artery, coro- 
nary artery, and airway tree on the medical image. 
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