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ABSTRACT 

Predictors of a multiple linear regression equation selected by GCV (Generalized Cross Validation) may contain unde- 
sirable predictors with no linear functional relationship with the target variable, but are chosen only by accident. This is 
because GCV estimates prediction error, but does not control the probability of selecting irrelevant predictors of the 
target variable. To take this possibility into account, a new statistics “GCVf” (“f” stands for “flexible”) is suggested. The 
rigidness in accepting predictors by GCVf is adjustable; GCVf is a natural generalization of GCV. For example, GCVf is 
designed so that the possibility of erroneous identification of linear relationships is 5 percent when all predictors have 
no linear relationships with the target variable. Predictors of the multiple linear regression equation by this method are 
highly likely to have linear relationships with the target variable. 
 
Keywords: GCV; GCVf; Identification of Functional Relationship; Knowledge Discovery; Multiple Regression;  

Significance Level 

1. Introduction 

There are two categories of methods for selecting pre- 
dictors of regression equations such as multiple linear 
regression. One includes methods using statistical tests 
such as the F-test. The other one includes methods of 
choosing predictors by optimizing statistics such as GCV 
or AIC (Akaike’s Information Criterion). The former 
methods have a problem in that they examine only a part 
of multiple linear regression equations among many 
applicants of the predictors (e.g., p. 193 in Myers [1]). In 
this point, all possible regression procedures are desirable. 
It has spread the use of statistics such as GCV and AIC to 
produce multiple linear regression equations. 

Studies of statistics such as GCV and AIC aim to con- 
struct multiple linear regression equations with a small 
prediction error in terms of residual sum of squares or 
log-likelihood. In addition, discussion on the practical 
use of multiple linear regression equations advances on 
the assumption of the existence of a linear relationship 
between the predictors adopted in a multiple linear re- 
gression equation and the target variables. However, we 
should consider the possibility that some predictors used 
in a multiple linear regression equation have no linear 
relationships with the target variable. If we cannot ne- 
glect the probability that some predictors with no linear 
relationships with the target variable reduce the pre- 
diction error by accident, there is some probability that 
one or more predictors with no linear relationships with 

the target variable may be selected among the many 
applicants of predictors. Hence, if our purpose is to select 
predictors with linear relationships with the target va- 
riable, we need a method different from those that choose 
a multiple linear regression equation yielding a small 
prediction error. We address this possibility in the following 
discussion. 

We present an example that casts some doubt on the 
linear relationships between the predictors selected by 
GCV and the target variable in Section 2. In preparation 
to cope with this problem, in Section 3, we show the 
association between GCV (or AIC) and the F-test. In 
Section 4, on the basis of this insight, we suggest “GCVf” 
(“f” stands for “flexible”) to help solve this problem. 
Then, in Section 5, we propose a procedure for estimating 
the probability of the existence of linear relationships 
between the predictors and the target variable using GCVf. 
Finally, we show the application of this method to the 
data which is used in Section 2. 

2. Definition of the Problem Using Real Data 

We use the first 50 sets of Boston house price data (named 
“Boston”) retrieved from StatLib. These data consist of 
14 variables. The applicants of the predictors ({x1, x2, x3, 
x4}) and the target variable (y) are selected among them: 

x1: per capita crime rate by town; 
x2: proportion of nonretail business acres per town; 
x3: average number of rooms per dwelling; 
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x4: pupil-teacher ratio by town; 
y: median value of owner-occupied homes in $1000’s. 
Figure 1 shows a matrix of scatter plots for showing 

the distributions of the above data. The correlations of 
the target variable with x1 and x3 appear to be high. The 
negative correlation between x1 and y indicates that house 
prices in crime-ridden parts of the city tend to be low. 
The positive correlation between x3 and y implies that 
house price is relatively high if the average number of 
rooms per household in an area is large. The result of the 

 
Coefficients:Estimate Std.Error t value  Pr t   

(Intercept) −28.0049 10.6679 −2.625 0.01179* 

x.1 −6.7668 1.6640 −4.067 0.00019*** 

x.2 −0.5825 0.3324 −1.752 0.08651 

x.3 7.3779 1.1860 6.221 1.47e−07*** 

x.4 0.5784 0.3121 1.854 0.07037 

Signif.codes: 0“***”0.001; “**”0.01; “*”0.05; “.”0.1; “ ”1 

Residual standard error: 2.841 on 45 degrees of freedom Multiple R-squared: 
0.7957, Adjusted R-squared: 0.7776 F-statistic: 43.83 on 4 and 45 DF, 
p-value: 5.692e−15. 

 

 

Figure 1. Matrix of scatter plots using four applicants of 
predictors and the target variable. The first 50 sets of Boston 
house price data (named “Boston”) are used. 

construction of a multiple linear regression equation 
using 50 datasets with all the predictors is shown below. 
The R command lm() installed by default was used for 
this purpose. 

The above table shows that {x1, x3} should be chosen 
as predictors if a 5 percent significant level is adopted in 
the t-test. 

However, if predictors are not independent of each 
other, this result is not necessarily reliable. Then, all 
possible regression procedures using GCV were carried 
out to select predictors. GCV is defined as 
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where n is the number of data and q is the number of 
predictors. RSS(q) is 

  

 
2

0
1 1

if 1,
qn

i j ij
i j

RSS q y a a x q
 

 

 

    
 

       (2

where {xij} indicate the data of the selected predict

orrect, the data ({y }) of 
th

1 50iy i . The 
n unchanged. Th

wn in Figure 2 where the frequencies 
of

) 

ors. 
{aj} are regression coefficients given by conducting the 
least squares using selected predictors. {yi} shows the data 
of the target variable. The above procedures were uses to 
select all predictors ({x1, x2, x3, x4}). Predictor selection 
by GCV results in a multiple linear regression equation 
that is expected to provide a small prediction error with 
the use of the regression equation for predictive purposes. 
Hence, since the multiple linear regression equation 
using {x1, x2, x3, x4} is of great use for prediction, we are 
inclined to think that each of the predictors {x1, x2, x3, x4} 
has a linear relationship with y. 

To determine whether this is c i

e target variable (y) are randomly resampled with 
replacement to obtain n data    B  
data of the target variable remai e pro- 
cedure was repeated 500 times while varying the seed of 
the pseudo-random number generator. This procedure 
provided 500 sets of bootstrapped data. The values of the 
target variable of these bootstrapped data are provided by 
random sampling from a population with a distribution 
given by the data of the target variable; hence, they are 
not associated with the predictors. Therefore, if pre- 
dictors are selected using these bootstrapped data, a con- 
stant seems to be almost always chosen as the best re- 
gression equation. 

The result is sho
 the number of selected predictors are illustrated. A 

constant is selected as the best regression equation in 
only 267 of the 500 data sets. This result shows that even  
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Figure 2. Frequencies of the number of predictors selecte

 the data do not have linear relationships between the 

e predictors are chosen by all possible 
re

3. Relationship between Model Selection 

F(  

 

d 
by GCV. 
 
if
predictors and the target variable, a functional relation- 
ship represented by a multiple linear regression equation 
or a simple regression equation is found at about 50 per- 
cent probability. 

Therefore, if th
gression procedures using statistics such as GCV, we 

should not rule out the possibility that they contain one 
or more predictors with no linear relationships with the 
target variable. This implies that we need a new model 
selection criterion. This new criterion should choose 
predictors only if the predictors are highly likely to have 
linear relationships with the target variable. 

Criterion and F-Test 

n, q) (F values) is defined as
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Hence, we have 
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Furthermore, Equation (1) leads to 
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The substitution of Equation (4) gives 
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Therefore, when we have a multiple linear regression 
equation with (q – 1) predictors, the condition f
ing a q-th predictor is written as 

or accept- 
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That is, 
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If the inequality sign in the above equation is replaced 
with an equality sign and n = 25, F(n, 
Figure 3 (left panel). This shows that when we use GCV, 
F(

q) is shown as in 

n, q) for determining whether the q-th predictor should 
be added to the multiple linear regression equation with 
(q – 1) predictors is nearly independent of q. 

If the multiple linear regression equation with (q – 1) 
predictors is correct, F(n, q) is written as 

     
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1, 1n qF    stands for the F distribution; the fi
of freedom is 1 and the second degree of freedom is (n – 
q – 1). R2(q) is the coefficient of determination defined as 

rst degree 
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where   ˆ q
iy  are estimates derived us

linear regression equation with q predictors. Then, we 
calculate p that satisfies the equation 

where den(1, n – q – 1, x) is the probability density 
function of an F distribution; the first degree
is 1 and the second degree of freedom is (n – q – 1). p is 

 

ing a multiple 

 
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1, 1, d ,
F n q

p den n q x x


         (11) 

 of freedom 

the value of the integral. The lower limit of the inte- 
gration of the probability density function with respect to 
x is F(n, q, p). This p represents the probability that F is 
larger than F(n, q) when the multiple linear regression 
function with (q – 1) predictors is a true one. Hence, the 
values of F(n, q) drawn in Figure 3 (left panel) are sub- 
stituted into Equation (11); the resultant values of p are 
shown in Figure 4 (left panel). These values of p are the 
probability that the q-th predictor is wrongly accepted 
when the multiple linear regression equation with the (q – 
1) predictors is correct. That is, this is the probability of a 
type one error. When the forward and backward selection 
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Figure 3. Relationship between q and F(25, q) corresponding to GCV and AIC. 
 

 

Figure 4. Relationship between q and p corresponding to GCV and AIC (n = 25). 
 
method using F valu

xed at values ranging from 0.25 to 0.5 (e.g., p. 188 in 

 linear regression 
eq

Copyright © 2012 SciRes.    

e is carried out, this probability is 
fi
Myers [1]), or 0.05 (e.g., p. 314 in Montgomery [2]). 
Therefore, the selection method for predictors by GCV 
has similar features with the forward and backward 
selection method with a fixed p because p in Figure 4 
(left panel) is nearly independent of q. 

On the other hand, the forward and backward selection 
method does not compare the multiple

uation with predictors of {x1, x2} with that with 
predictors of {x3, x4} for example. This type of com- 
parison can be performed by GCV. All possible regres- 
sion procedures using GCV entail such a comparison. 
Hence, the comparison of two multiple linear regression 
equations in the forward and backward selection method 
should be on par with that of the same multiple linear re- 
gression equations by all possible regression procedures.  

On the other hand, AIC is defined as 
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The substitution of Equation (4) leads to 
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(left panel). The corresponding p is shown in Figure 4 
(right panel). It shows the characteristics 
show that, when we have a multiple linear regression 
eq th (q − 1) predictors, p for determining whether 
to accept a q-th predictor augments with an increase i
This is consistent with the tendency that AIC 
new predictor with comparative ease when the present 

 

he q-th predictor when the following 
equation is satisfied:  

of AIC which 

uation wi
n q. 

accepts a 

multiple linear regression equation has many predictors. 

4. Introduction of GCVf 

In the previous section, we associate GCV and AIC with 
the forward and backward selection method using F. This 
indicates that GCV is desirable as long as p is nearly 
independent of q. However, if p corresponding to a 
model selection criterion should be independent of q, we 
may well develop a new model selection criterion that 
meets the requirement. Then, if p is given, F(n, q, p) is
calculated using 
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The difference between Equations (17) and (11) is that 
Equation (11) is used to obtain p when F(n, q) is given, 
whereas Equation (17) works as an equation for calculating 
F(n, q, p) when p is in hand. Equation (4) indicates that 
the multiple linear regression equation with (q − 1) pre- 
dictors accepts t
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 criterion, is the same in function t e forward 
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tween GCV and AIC, for example. However, GCVf(q) 
allows us to adjust the characteristics of the model 
selection criterion continuously by varying p. Therefore, 
if p is tuned acco g to the nature of the data or to the 
purpose of the regression, we have an appropriate model 

selection criterion. The background that made us think of 
GCVf(q) as a flexible version of the conventional GCV(q) 
is as follows. 
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when n is large, the equation below holds:  
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If q = 1, we have 

  2

1 2
1 1 .

1
1

CGCV
n

n

 
  
 

            (25) 

2
1 .fCGCV

n
                        (26) 

tions (23)-(26), GCVf(q) is appro- 
xim  GCV(q) when p = 0.1573. 

Because of Equa
ately identical to

CGCV(q) and CGCVf(q) when n 
shown in Figure 5. It demonstrates th
= 0.1573 is set are approximately identical to those of 
GCV(q). Furthermore, a small p is assumed in CGCVf(q); 
CGCVf(q) is large. This indicates that GCVf(q) with a 
small p selects a multiple linear regression equation with  

= 100 are set are 
at GCVf(q) when p 
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Figure 5. CGCV(q) and CGCVf(q). “ × CGCV(q), “ ”  ” 
CGCVf(q) (p = 0.05), “〇” CGCVf(q) ( 0.1573), “p =  ” 
CGCVf(q) (p = 0.5). 
 
a small number of predictors. 

5. Identification of Linear Functional 
Relationships Using GCVf 

The discussion in the previous section shows that GCVf(q) 
enables us to adjust the rigidness of accepting new 

o

s
f the targ  

predictors. By taking advantage of this feature, a meth d 
of including predictors with a clear causal connection is 
developed. This method i  performed as follows: 
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unchanged. Thus, we have 500 sets of bootstrapped data. 
2) Using various values of p, predictors are selected by 

GCVf(q); this process is carried out for 500 sets of boot- 
strapped data. We choose p by which the probability of 
obtaining regression equations except a constant one is 
approximately 0.05. 

3) Using p selected in (2), model selection by GCVf(q) 
is carried out for the o

This method generates sets of bootstrapped data of 
which the data of the target variable are resampled ones; 
hence, there is no causal connection at all between the 
data of the predictors and those of the target variable. 
This is because the values of the target variable are sam- 
pled from a population with a distribution given by the 
data of the target variable; the values of the target varia- 
ble are not associated with those of the predictors. Al- 
though the predictor variables are selected using th  

otstrapped data, regression equations except a constant 
may be produced with considerable 

cates that the model selection criterion is very likely to 
accept predictors. Therefore, we should find p to make 
this probability approximately 5 percent. When the model 
selection is carried out using GCVf(q) given by the op- 
timized p, a regression equations except a constant will 
be selected at a 5 percent probability when a constant 
should be chosen. This strategy quells our suspicion that 
a constant might be actually desirable even though regre- 
ssion equations except a constant were selected. This me- 
thod is similar to Generalized Cross-validation Test (p. 
87, in Wang [3]) in which the Monte Carlo method is 
carried out to test whether a regression equation should 
be parametric such as a simple regression equation. 

Next, model selection was carried out for the data used 
in Section 2. GCVf with various values of p was used for 
choosing predictors that are highly likely to have linear 
functional relationships with the target variable; the data 
of the target variable were bootstrapped. Table 1 shows 
the results using the settings of p = 0.01, p = 0.06, p = 
0.05 and p = 0.04. When GCVf with p = 0.05 is em- 
ployed, a constant was selected in 446 sets. Hence, if a 
model selection method adopts GCVf with p = 0.05 and 
multiple linear regression equation except a constant are 
chosen, we reject the null hypothesis at a 5 pe

gnificance level: there are no linear functional relation- 
ships between the predictors and the target variable. Then, 
a model selection by all possible regression procedures 
was carried out using GCVf with p = 0.05. GCVf is mini- 
mized when {x1, x3, x4} were chosen. On the other hand, 
a model selection by all possible regression procedures 
using GCV chose {x1, x2, x3, x4} in Section 2. In view of 
Figure 2, this result follows our intuition that one or 
more predictors among the four selected ones may not 
have linear functional relationships with the target varia- 
ble. 

However, if the data are slightly altered, GCVf with p 
= 0.05 may choose different predictors from {x1, x3, x4}. 
If this possibility is correct, the selection of {x1, x3, x4} is 
not valid. To clarify this point, a bootstrap method in the 
usual sense is conducted for these data; 500 sets of boot- 
strapped data are generated. That is, the data set of {(xi1, 
xi2, xi3, xi4, yi)} (1 50i  ) was randomly resampled with 
replacement whereas the set of values of the predictors 

 
Table 1. Frequencies of the number of selected predictors. 

Number of predictors p = 0.1 p = 0.06 p = 0.05 p = 0.05

0 404 446 453 461 

1 66 44 37 31 

2 29 10 10 8 

3 1 0 0 0 

4 0 0 0 0 
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We have assumed that when GCV or AIC yields a 
multiple linear regression equation with a small predic- 
tion error, there is a linear functional relationship be- 
tween the predictors employed in the regression equation 
and the target variable. Not much attention has been paid 
to the probability that one or more selected predictors 
actually have no linear functional relationships with the 
target variable. However, we should not ignore the pos- 
sibility that when several predictors with no linear
tional relationships 
in the applicants of 
dictors are adopted as appropriate predictors in a multiple 
linear regression equation. This is because when many 
applicants of the predictors have no linear relationships 
with the target variable, one or more such predictors will 
be selected at a high probability, since p in Figure 4 does 
not depend on the number of applicants of the predictors. 

Hence, another statistics for model selection based on 
an approach different from the use of prediction error is 
required for choosing predictors with linear relationships 
with the target variable. The new statistics should make 
the threshold high for accepting predictors when quite a 
few predictors have no linear functional relationship with 
the target variable. Although this strategy poses a re- 
latively high risk of rejecting predictors that actually 
 

Table 2. Frequencies of selected predictors. 

Predictor Frequency Predictor Frequency 

{x1, x3, x4} 166 {x2, x3} 14 

{x1, x2, x3} 157 {x2, x3, x4} 4 

{x1, x3} 87 {x1, x2} 1 

{x1, x2, x3, x4} 71   

hav ationshi ith the t ariable, we have 
to accept this trade-off. T is policy is quite similar to that 
of m omparis n wh cept th com- 
parat gh risk of ing n nce when there 
is fferenc ith the purpose of reducing the 

[2] D. C. Montgomery, E. A. Peck and G. G. Vining, “In- 
troduction to ysis,” 3rd Edition, 
Wiley, New Y

e linear rel ps w arget v
h
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ively hi  detect o differe

actually a di e w
risk of mistakenly finding a difference when there is no 
difference.  

Using the statistics of GCVf suggested here, we select 
one or more predictors at a 0.05 probability when no 
predictors have linear relationships with the target varia- 
ble. If we select predictors using this new statistics, the 
chosen predictors are less likely to contain those that 
have no linear relationships with the target variable. 

However, there is still room for further study of the 
detailed characteristics of GCVf produced by the pro- 
cedure presented here. In particular, we should know the 
behavior of GCVf when there are high correlations 
between predictors. 

The discussion so far indicates that the criteria for se- 
lecting predictors of a multiple linear regression equation 
are classified into two categories: one aims to minimize 
prediction error and the other is designed to select pre- 
dictors with a high probability of having linear relation- 
ships with the target variable. GCV and GCVf are exam- 
ples of both categories, respectively. Interest has been 
focused on the derivation of multiple linear regression 
equations yielded using a criterion of prediction error. 
We expect that more attention will be paid to the prob- 
ability of the existence of linear relationships. Further- 
more, we should study whether a similar discussion is 
possible with respect to regression equations different 
from the multiple linear regression equation. 
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