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ABSTRACT 

In statistical modeling area, the Akaike information criterion AIC, is a widely known and extensively used tool for 
model choice. The φ-divergence test statistic is a recently developed tool for statistical model selection. The popularity 
of the divergence criterion is however tempered by their known lack of robustness in small sample. In this paper the 
penalized minimum Hellinger distance type statistics are considered and some properties are established. The limit laws 
of the estimates and test statistics are given under both the null and the alternative hypotheses, and approximations of 
the power functions are deduced. A model selection criterion relative to these divergence measures are developed for 
parametric inference. Our interest is in the problem to testing for choosing between two models using some informa-
tional type statistics, when independent sample are drawn from a discrete population. Here, we discuss the asymptotic 
properties and the performance of new procedure tests and investigate their small sample behavior. 
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1. Introduction 

A comprehensive surveys on Pearson chi-square type 
statistics has been provided by many authors as Cochran 
[1], Watson [2] and Moore [3,4], in particular on quad-
ratics forms in the cell frequencies. Recently, Andrews [5] 
has extended the Pearson chi-square testing method to 
non-dynamic parametric models, i.e., to models with 
covariates. Because Pearson chi-square statistics provide 
natural measures for the discrepancy between the ob-
served data and a specific parametric model, they have 
also been used for discriminating among competing 
models. Such a situation is frequent in Social Sciences 
where many competing models are proposed to fit a giv-
en sample. A well know difficulty is that each chi-square 
statistic tends to become large without an increase in its 
degrees of freedom as the sample size increases. As a 
consequence goodness-of-fit tests based on Pearson type 
chi-square statistics will generally reject the correct 
specification of every competing model. 

To circumvent such a difficulty, a popular method for 
model selection, which is similar to use of Akaike [6] 
Information Criterion (AIC), consists in considering that 
the lower the chi-square statistic, the better is the model. 
The preceding selection rule, however, does not take into 
account random variations inherent in the values of the 

statistics. 
We propose here a procedure for taking into account 

the stochastic nature of these differences so as to assess 
their significance. The main propose of this paper is to 
address this issue. We shall propose some convenient 
asymptotically standard normal tests for model selection 
based on φ-divergence type statistics. Following Vuong 
[7,8] the procedures considered here are testing the null 
hypothesis that the competing models are equally close 
to the data generating process (DGP) versus the alterna-
tive hypothesis that one model is closer to the DGP 
where closeness of a model is measured according to the 
discrepancy implicit in the φ-divergence type statistic 
used. Thus the outcomes of our tests provide information 
on the strength of the statistical evidence for the choice 
of a model based on its goodness-of-fit (see Ngom [9]; 
Diedhiou and Ngom [10]). The model selection approach 
roposed here differs from those of Cox [11], and Akaike 
[12] for non nested hypotheses. This difference is that the 
present approach is based on the discrepancy implicit in 
the divergence type statistics used, while these other ap-
proaches as Vuong’s [7] tests for model selection rely on 
the Kullback-Leibler [13] information criterion (KLIC). 

Beran [14] showed that by using the minimum Hellin-
ger distance estimator, one can simultaneously obtain 
asymptotic efficiency and robustness properties in the 
presence of outliers. The works of Simpson [15] and *Corresponding author. 
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Lindsay [16] have shown that, in the tests hypotheses, 
robust alternatives to the likelihood ratio test can be gen-
erated by using the Hellinger distance. We consider a 
general class of estimators that is very broad and contains 
most of estimators currently used in practice when form-
ing divergence type statistics. This covers the case stud-
ies in Harris and Basu [17]; Basu et al. [18]; Basu and 
Basu [19] where the penalized Hellinger distance is used. 

The remainder of this paper is organized as follows. 
Section 2 introduces the basic notations and definitions. 
Section 3 gives a short overview of divergence measures. 
Section 4 investigates the asymptotic distribution of the 
penalized Hellinger distance. In Section 5, some applica-
tions for testing hypotheses are proposed. Section 6 pre-
sents some simulation results. Section 7 concludes the 
paper. 

2. Definitions and Notation 

In this section, we briefly present the basic assumptions 
on the model and parameters estimators, and we define 
our generalized divergence type statistics. We consider a 
discrete statistical model, i.e 1 2 n, , ,X X X

1,X  T

1, ,p p

 , ;m
mp  



   T
 :   

P P

0 :H PP

 an inde-
pendent random sample from a discrete population with 
support . Let m  be a 
probability vector i.e. P  Ωm where Ωm is the simplex of 
probability m-vectors,  

 ,m

m p

, 1, , .i m

P

1 2, ,p

1i i i
1,

m 0p p   

We consider a parameter model 

  1 , , mP p p  P  

which may or may not contain the true distribution P, 
where Θ is a compact subset of k-dimensional Euclidean 
space (with k < m − 1). If P contains P, then there exists 
a θ0  Θ such that 

0
 and the model P is said to 

be correctly specified. 
We are interested in testing  (with true pa-

rameter 0) versus H1:P  m –P . 
By 

0p 
1,i  T

0m  

:P 

   
 

 we denote the usual Euclidean norm and we 
interpret probability distributions on X as row vectors 
from ℝm. For simplicity we restrict ourselves to unknown 
true parameters θ0 satisfying the classical regularity con-
ditions given by Birch [20]: 

1) True θ0 is an interior point of  and 0i  for 
. Thus 

0
 is an interior 

point of the set m.  
,m P   0 , ,ip p

2) The mapping m  is totally differentiable at 
θ0 so that the partial derivatives of pi with respect to each 
θj exist at θ0 and pi(θ) has a linear approximation at θ0 
given by 

   
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where  0 o  denotes a function verifying  

 
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

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3) The Jacobian matrix  

 
0
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0

0

1

i

i mj
j k

pP
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
 
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is of full rank (i.e. of rank k and k < m). 

4) The inverse mapping  is continuous 
at 

0
 

: mP5) The mapping   is continuous at every 
point 

P P

.  
Under the hypothesis that P  P, there exists an un-

known parameter θ0 such that 
0



      
0

T

1 2,  , ,  mpP p p    

 and the problem 
of point estimation appears in a natural way. Let n be 
sample size. We can estimate the distribution 

 by the vector of ob-  

 served frequencies 1ˆ ˆ,ˆ , mp pP  
n X



 on X i.e. of meas-
urable mapping . m

This non parametric estimator 1ˆ ˆ,ˆ , mp pP    is de-  

fined by ˆ j
jp

N

n
  

1

n

i
i

i
j jN T X



 

  1 if

0 otherwise
ii

j i

, 
 

where 

X j
T X


 


          (2.1) 

We can now define the class of φ-divergence type sta-
tistics considered in this paper. 

3. A Brief Review of φ-Divergences 

Many different measures quantifying the degree of dis-
crimination between two probability distributions have 
been studied in the past. They are frequently called dis-
tance measures, although some of them are not strictly 
metrics. They have been applied to different areas, such 
as medical image registration (Josien P.W. Pluim [21], 
classification and retrieval, among others. This class of 
distances is referred, in the literature, as the class of φ, f 
or g-divergences (Csisza’r [11]; Vajda [22]; Morales et 
al. [23]; the class of disparities (Lindsay [16]). The di-
vergence measures play an important role in statistical 
theory, especially in large theories of estimation and 
testing. 

Later many papers have appeared in the literature, 
where divergence or entropy type measures of informa-
tion have been used in testing statistical hypotheses. 
Among others we refer to Read and Cressie [24], Zogra-
fos et al. [25], Salicru’ et al. [26], Bar-Hen and Daudin 
[27], Mene’ndez et al. [28]), Pardo et al. [29] and the 
references therein. A measure of discrimination between 
two probability distributions called φ-divergence, was 
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introduced by Csisza’r [30]. 
Recently, Broniatowski et al. [31] presented a new 

dual representation for divergences. Their aim was to 
introduce estimation and test procedures through diver-
gence optimization for discrete or continuous parametric 
models. In the problem where independent samples are 
drawn from two different discrete populations, Basu et al. 
[32] developed some tests based on the Hellinger dis-
tance and penalized versions of it. 

Consider two populations X and Y, according to classi- 
fication criteria can be grouped into m classes species 

1 2, , , mx x x
 1 2, , , mP p p p

 and  with probabilities  
 and  respec-

tively. Then 

1 2 m

Q q
, , ,y y y

 1 2, , , mq q

 
1

m
i

i
ii

,
p

D P Q q
q




 
  

 


 0,
 

           (3.2) 

is the -divergence between P and Q (see Csisza’r, [30]) 
for every  in the set Φ of real convex functions defined 
on . The function (t) is assumed to verify the 
following regularity condition:    R: 0,  is 

convex and continuous, where 
0 0 0
0

  
 

 and 

  lim u
0

0
u

p  




    
 

. 

Its restriction on 0,

   1 1

 is finite, twice continuously 
differentiable in a neighborhood of u = 1, with  

 and  1 1  0   (cf. Liese and Vajda 
[33]). 

We shall be interested also in parametric estimators 

ˆ
ˆ ˆ

nQ Q P


 

P

                (3.3) 

of 
0

 which can be obtained by means of various point 
estimators  

   :n n 

P

ˆ ˆ   

of the unknown parameter 0. 
It is convenient to measure the difference between ob-

served and expected frequencies 
0

. A minimum Di-
vergence estimator of θ is a minimizer of  ˆ ,D P P

P̂
0   

where  is a nonparametric distribution estimate. In 
our case, where data come from a discrete distribution, 
the empirical distribution defined in (2.1) can be used. 

In particular if we replace    1
4 1

2
x

    

P̂

1 x x    

in (3.2) we get the Hellinger distance between distribu-
tion  and Pθ given by  

   
  

1 1

1

2
1 2 :

ˆ ,D P P 
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2ˆ2

,ˆ

m

i i
i

D P P H

p p










         (3.4) 

Liese and Vajda [33], Lindsay [16] and Morales et al. 

[23] introduced the so-called minimum φ-divergence es-
timate defined by  

   ˆ Θ
ˆ ˆ, min , ;D P P D P P  

      (3.5)  

 Θ
ˆ ˆarg ;min ,  D P P    

log 1

         (3.6) 

Remark 3.1. The class of estimates (3.4) contains the 
maximum likelihood estimator (MLE). 

In particular if we replace x x    

 
 1

ˆ ˆarg min ,

ˆarg min log

mKL m

m

ii i

KL P

P MLp

P

E











 



  

 Θ
ˆarg ;ˆ min ,  H HD P P   

P̂

 we get 

 

where KLm is the modified Kullback-Leibler divergence. 
Beran [14] first pointed out that the minimum Hellin-

ger distance estimator (MHDE) of θ, defined by 

      (3.7) 

has robustness proprieties. 
Further results were given by Tamura and Boos [34], 

Simpson [15], and Basu et al. [35] for more details on 
this method of estimation. Simpson, however, noted that 
the small sample performance of the Hellinger deviance 
test at some discrete models such as the Poisson is 
somewhat unsatisfactory, in the sense that the test re-
quires a very large sample size for the chi-square ap-
proximation to be useful (Simpson [15], Table 3). In 
order to avoid this problem, one possibility is to use the 
penalized Hellinger distance (see Harris and Basu, [36]; 
Basu, Basu and Basu, [19]; Basu et al. [32]). The penal-
ized Hellinger distance family between the probability 
vectors  and Pθ is defined by: 

 

   
21 1

2 2

ˆ,

ˆ2 C

m m

i ii

h

ii

P P

p

PH

p h p

D

 



 
 

  
        
 

    (3.8) 



where h is a real positive number with 

   ˆ ˆ: 0  and : 0i ii p c i p    



 

Note that when h = 1, this generates the ordinary Hel-
linger distance (Simpson, [15]). 

Hence (3.7) can be written as follows 

Θ
ˆ min ˆarg ,h
PH D P PPH           (3.9)   

One of the suggestions to use the penalized Hellinger 
is motivated by the fact that this suitable choice may lead 
to an estimate more robust than the MLE. 

A model selection criterion can be designed to esti-
mate an expected overall discrepancy, a quantity which 
reflects the degree of similarity between a fitted ap- 
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proximating model and the generating or true model. 
Estimation of Kullback’s information (see Kullback- 
Leibler [13]) is the key to deriving the Akaike Informa-
tion criterion AIC (Akaike [6]). 

Motivated by the above developments, we propose by 
analogy with the approach introduced by Vuong [7,8], a 
new information criterion relating to the φ-divergences. 
In our test, the null hypothesis is that the competing 
models are as close to the data generating process (DGP) 
where closeness of a model is measured according to the 
discrepancy implicit in the penalized Hellinger diver-
gence. 

4. Asymptotic Distribution of the Penalized 
Hellinger Distance 

Hereafter, we focus on asymptotic results. We assume 
that the true parameter 0  and mapping : mP 

 T

1 , , mP p p  

 
satisfy conditions 1 - 6 of Birch [20]. 

We consider the m-vector , the m 

 k Jacobian matrix 



   jl 1, ,  ;  1, ,j m l k  

 

J J  with 

l
jl jJ p 









 
 

 the m × k matrix 

 1 2diag P J  
D  and the k  k Fisher information 

matrix 

 T
 D D 

1
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1m
j j

j j r s r s k

p p

p
 




  

  
     
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where  
   

1 2

1

diag diag ,
1 1

,
m

P
p p


 


 
 
 
 



P

.  

The above defined matrices are considered at the point 
θ  Θ where the derivatives exist and all the coordinates 
pj(θ) are positive. 

The stochastic convergences of random vectors Xn to a 
random vector X are denoted by nX X

L
 and 

nX X
c

 (convergences in probability and in law, 
respectively). Instead 0P

n n X  for a sequence of 
positive numbers cn we can write 1

p no cX . 
This relation means: 

lim x  lim sup x    0.n nc X x 

ˆ

  

An estimator P  of 
0

P  
is consistent if for every 

0 Θ   the random vector  1  tends in prob-
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ˆ, ,ˆ mp p
 0 0

, , mp p 1 , i.e. if 

 0
ˆlim 0 for all 0x P P        

We need the following result to prove Theorem 4.3. 
Proposition 4.1. (Mandal et al. [37]) 
Let   Φ, let p:Θ → Ωm be twice continuously dif-

ferentiable in a neighborhood of 0  and assume that 
conditions 1 - 5 of Section 2 hold. Suppose that 

0
I

ˆ
 is the 

k  k Fisher Information matrix and PH  satisfying (3.7). 

 0P̂HThen the limiting distribution of n

0
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
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01 1 1, , m m
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n i
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and applying the Central Limit Theorem we have 

0 0

0

1 1
, , 0,

m m
P

p p

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N n N n

n n
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where 

 0 0 00

Tdiag .P P P P
    


         (4.10) 

ˆ
ˆ ,h

HFor simplicity, we write 
PH

D P P


 instead  

 ˆ
ˆ ,h

PH
PHD P P


. 

Theorem 4.3. Under the assumptions of Proposition 
(4.1), we have 

  0ˆ
ˆ , 0,

PH
n P P 

   
 N
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T1
0
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0 0

 

                          (4.11) P  

Proof. A first order Taylor expansion gives 
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 
 
0 0

T

0

0

P̂HJˆ
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 

 
            (4.12) 

In the same way as in Morales et al. [28], it can be es-
tablished that: 
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PH I D P

o P P

  



   

 

0

T
1 2 P̂ P   

    (4.13) 

From (4.12) and (4.13) we obtain 

   0

T
1 2 ˆP P P   

ˆ

ˆ

PH

P P







 0 1

ˆ
m

PP 

 
0 0 0 0

0

1 T
ˆ 0 diag

ˆ

PH
P P J I D

o P P

   



  

 
 

therefore the random vectors 

0

0 2 1m
P P






 


   0 2m m
M

 

and 




 
 
 

I
  

where I is the m  m unity matrix, have the same asymp-
totic distribution. 

Furthermore it is clear (applying TCL) that 

 ˆ
ˆ

PH
n P P 

0
0,    N

0

 

Being   0 0 0

TP P P
 

the m  m matrix .diag     im-
plies 

 0 0

T,n I M 
0

00ˆ
2 1

ˆ
0,

PH m

P P I

MP P






   


 
     

      

 N  

therefore, we get 

     0 ˆ

 
0ˆ

0

ˆ ˆ

0,

PH PH
n P P 

0 0 0

T T

n P P n P P



   

   
 N

  (4.14) 

0 0 0 0 0 0
M M M M              

        
� 

The case which is interest to us here is to test the hy-
pothesis H0:P  P. Our proposal is based on the follow-  

ing penalized divergence test statistic  ˆ
ˆ,

PH

h
HD P P



ˆ

 

where P  and ˆ
PH  

have been introduce in Theorem 
(4.3) and (3.7) respectively. 

P

 ˆ
ˆ,

PH

h
HD Pn P



 Θ1 in arg ,f hPHD P P

Using arguments similar to those developed by Basu 
[17], under the assumptions of (4.3) and the hypothesis 
H0:P = P, the asymptotic distribution of  

2
 

is a chi-square when h = 1 with derees  

m − k − 1 degrees of freedom. Since the others members 
of penalized Hellinger distance tests differ from the or-
dinary Hellinger distance test only at the empty cells, 
they too have the same asymptotic distribution. 

Considering now the case when the model is wrong i.e. 
H1:P  P. We introduce the following regularity as-
sumptions 

(A1) There exists  

1ˆ

as

PH
P P

  
such that: 

 

11 12

21 22

* 
 
 
 

Λ Λ

Λ Λ

11 p

 when n  + 

(A2) There exists 1  ; , with 

 Λ 12 21Λ Λ
 

in (4.10) and  such that 

0

0ˆ

ˆ
0,

PH

P P

P P
n








 
 
 



    

 N . 

Theorem 4.4. Under H:P  P and assume that condi-
tions (A1) and (A2) hold, we have: 

      1

2
ˆ ,

ˆ , 0,h h
H H PPH

n D P P D P P 
     

 N

 
2 T T T T

11 12 12 22,P

 

where 

H H H J J H J J          (4.15) 

 T
1, , mH h h   with 

 
 1 2

1

1 2
1

,

, , 1, ,h
i H

i p p p p

h D p p i m
p

 

 
  

 
  

 T
1, , mAnd j j   with J

 
 1 2

1

1 2
2

.

, , 1, ,h
i H

i p p p p

j D p p i m
p

 

 
  

 
  

Proof. A first order Taylor expansion gives 

    
 

 
1

1

1

T
ˆ

T
ˆ

ˆ

ˆ ˆ, ,

ˆ

PH

PH

PH

h h
H HD P P D P P H P P

J P

o P

P

PP P











  



  

     (4.16) 

From the assumed assumptions (A1) and (A2), the re-
sult follows.                                   � 

5. Applications for Testing Hypothesis 

The estimate ˆ
ˆ,

PH

h
HD P P



 ˆ
ˆ,h

HD P P

 can be used to perform sta-

tistical tests. 

5.1. Test of Goodness-Fit 

For completeness, we look at 
PH  in the usual 

way, i.e. as a goodness-of-fit statistic. Recall that here 

PH  is the minimum penalized Hellinger distance esti-
mator of . Since  ˆ

ˆ,
PH

h
HD P P

  is a consistent estimator 
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 ,h
HD P P , the null hypothesis when using the statis- of 

tic  is  ˆ
ˆ,

PH

h
HD P P

  : , 0h
o H P P H D  or equivalently, 

Ho:P = P. 
Hence, if Ho is rejected so that one can infer that the 

parametric model P is misspecified. Since  ,hD P PH   
is non-negative and takes value zero only when P = P, 
the tests are defined through the critical region. 

  ˆ ,
PH

ˆ2 ,
PH

h
H kP P q

 

 : , 0h
o H P P 

 
 

 

C nD   

where q,k is the (1 − )-quantile of the 2-distribution 
with m – k – 1 degrees of freedom. 

Remark 5.1. Theorem (4.4) can be used to give the 
following approximation to the power of test  

H D . 

Approximated power function is 

  ˆ

,

ˆ2 ,

      1
2

h
P

n

nD P P

q n


 




 





,

,

2 ,

PH
H k

h
k H

P

q

D P P

n



 



  
 
 
 
 





     (5.17) 

where q,k is the (1 – )-quantile of the 2-distribution 
with m – k – 1 degrees of freedom and n  is a sequence 
of distribution function tending uniformily to the stan-
dard normal distribution x . Note that if  

 : ,P P  0h
o H , then for any fixed size  the prob-

ability of rejection 
H D 

 : , 0h
o H P P 

ˆ ,2 ,
PH

H D

 ˆh

 with the rejec- 

tion rule H kP q
nD P  tends to one as n  . 

Obtaining the approximate sample n, guaranteeing a 
power  for a give alternative P, is an interesting appli- 
cation of Formula (5.17). If we wish the power to be 
equal to *, we must solve the equation 

 
 ,h

k Hq D P P 

   
 

,

,

1
1

2P

n

n

     
 

 . 

It is not difficult to check that the sample size n*, is the 
solution of the following equation 

   

   

22

2
2 1 *

,

, ,

1

h h
H H

P

n D P P n

n

D P P 

 



   

,
,

2

2
k

k

q
q 


 
  
 

 

 

The solution is given by  

 
 2

2

2 ,

a a b

D P P

 
 
 
 

2 1 1

h
H

a b
n 

 
 

with  ,P  and  
2

  a    ,hD P P,k Hb q   
and the required size is 


0 1n n    , where    de-

notes “integer part of”. 

5.2. Test for Model Selection 

As we mentioned above, when one chooses a particular 
-divergence type statistic 

   ˆ ˆ
ˆ ˆ, ,

PH PH

h h
H HD P P PHD P P

 


ˆ

 

with PH  the corresponding minimum penalized Hel-
linger distance estimator of , one actually evaluates the 
goodness-of-fit of the parametric model P according to 
the discrepancy  ,hD P PH   between the true distribu-
tion P and the specified model P. Thus it is natural to 
define the best model among a collection of competing 
models to be the model that is closest to the true distribu-
tion according to the discrepancy  ,hD P PH  . 

In this paper we consider the problem of selecting be-
tween two models. Let   be another 
model, where  is a q-dimensional parametric models P. 
In a similar way, we can define the minimum penalized 
Hellinger distance estimator of  and the corresponding 
discrepancy 

 (.| ;G G   

 ,hD P GH   for the model G. 
Our special interest is the situation in which a re-

searcher has two competing parametric models P and G, 
and he wishes to select the better of two models based on 
their discrimination statistic between the observations 
and models P and G, defined respectively by 

 ˆ,hD P P  ˆ
PH

H   and ˆPHH 
Let the two competing parametric models P and G 

with the given discrepancy  

ˆ,hD P P

 ,. .h
HD P

. 

Définition 5.2.  

  0 : , ,eq h h
H HH D P P D P P   means that the two 

models are equivalent, 
  : , ,h h

HH D P P D P Pp H    means that P is better 
than G, 

  : , ,h h
G H HH D P P D P P
   means that P is worse 

than G. 
Remark 5.3. 1) It does not require that the same di- 

 ˆ
ˆ,

PH

h
HD P P

   vergence type statistics be used in forming 

 ˆ
ˆ ,

PH

h
HD P P . Choosing, however, different dis- and 

crepancy for evaluating competing models is hardly juti- 
fied. 

2) This definition does not require that either of the 
competing models be correctly specified. On the other 
hand, a correctly specified model must be at least as 
good as any other model. 

The following expression of the indicator 
  , ,h hD P P D P PH H   is unknown, but from the pre-

vious section, it can be estimated by the difference 


   ˆ ˆ
ˆ ˆ, ,

PHPH

h h
H Hn D P P D P P

     
This difference converges to zero under the null hypo- 
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thesis 0
eqH , but converges to a strictly negative or posi- 

tive constant when PH


 and GH


 holds. 
Th  justify the use of  

ˆPHPH
H   as a model selection indi-

cator and common procedure of selecting the model with 
highest goodness-of-fit. 

ese proper actually
 ˆ,hD P P

ke into account t
 ˆ,hD P P

ties 

 ˆ
ˆ,h

HD P P 

As argued in the introduction, however, it is important 
to ta he random nature of the difference 

ˆPHPH
H   so as to assess its signific- 

ance. To do so we consider the asymptotic distribution  
 ˆ

ˆ,h
HD P P 

of    ˆ,
PH

h
H P ˆ

ˆ ˆ,
PH

h
Hn D P P D P

    0
eq under H . 

Our major task is to propose some tests for model se-
lection, i.e. for the null hypothesis 0

eqH  against the al-
ternative PH


 or GH


. We use the next lemma with 

P̂H  an d ˆPH  as the corresponding minimum pena- 
lized Hellinger distance estimator of  and . 

Using P and P defined earlier, we consider the vector 
 T

 1, ,  mkK k   where 

 
1 2

1 2
1

,

with,h
i H

i P P P P

k D P P
p

 

 
  

 
1, ,mi  



 

T
 1, , mQ q q   

where 

 
1 2

1 2
2

,

w,h
i H

i P P P P

q D P P
p

 

 
  

 
ith 1, ,mi    

Lemma 5.4. Under the assumptions of the Theorem 
(4.4), we have 

(i) for the model P 

     
   

ˆ

T
ˆ

, ,

1

PH

PH

h h
H H

p

D P P D P

PQ P o



 
 

Tˆ ˆ,P K PP  

 Tˆ ˆ,K PP  

 ;

 

(ii) for model G 

   
   

ˆ

T
ˆ

, ,

1

PH

PH

h h
H H

p

D P P D P G

GQ G o



   
 

Proof. 
The results follow from a first order Taylor expan-

sion. 
We define 

 T2 ;K K Q Q K  K Q Q    

1

ˆ

PH

P

P P

P



 
  
 

       

which is the variance of  

 T
;K K Q Q     . 

Since K, K, Q, Q, and * are consistently estimated 
by their sample analogues ˆK


, ˆK , ˆQ


, ˆQ  and *, 

hence 2 is consistently estimated by 

   T2
ˆ ˆ ˆˆ ˆ ˆ ˆˆ

ˆˆ ; ;K K Q Q K K Q Q     
        

Next we define the model selection statistic and its 
asymptotic distribution under the null and alternative 
hypothesis. 

Let 

    ˆ ˆ
ˆ ˆ, ,

ˆ PHPH

h h h
H H

n
HI D P P D P P 


 

where HIh stands for the penalized Hellinger Indicator. 
The following theorem provides the limit distribution 

of HIh under the null and alternatives hypothesis.  
Theorem 5.5. Under the assumptions of Theorem (4.4), 

suppose that   0, then 
 0 0 1 ., ,eq hH HI  N

PH

 

GH

 

 1) Under the null hypothesis 
2) Under the null hypothesis  in probabil-

ity. 
3) Under the null hypothesis  in prob-

ability. 
Proof. 
From the Lemma (5.4), it follows that 

   
       
     

ˆ ˆ

T T

T T
ˆ ˆ

ˆ ˆ, ,

ˆ ˆ, ,

1

PHPH

PHPH

h h
H H

h h
H H

p

D P P D P P

D P P D P G K P P K P P

Q P Q G oP G



  

  



  



  

 

 



 



0 :eqH P G ˆ ˆ and Under  PHPH
P G   we get 

   
   
     

   
1

ˆ ˆ

T T

T T
ˆ ˆ

T

ˆ ˆ, ,

ˆ ˆ

1

; 1
ˆ

PHPH

PH PH

PH

h h
H H

p

p

D P P D P P

K P P K P P

Q P Q P o

P
K

P

K Q Q
P

P

P

o
P



 

  

 


 

 




   

  

 
     

 

   

Finally, applying the Central Limit Theorem and as-
sumptions (A1) and (A2), we can now immediately obtain 

 0,1 .hHI  N
.                            

� 

6. Computational Results 

6.1. Example 

To illustrate the model procedure discussed in the pre-
ceding section, we consider an example. We need to de-
fine the competing models, the estimation method used 
for each competing model and the Hellinger penalized 
penalized type statistic to measure the departure of each 
proposed parametric model from the true data generating 
process. 

For our competing models, we consider the problem of 
choosing between the family of Poisson distribution and 
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the family of Geometric distribution. The Poisson distri-
bution P() is parameterized by  and has density 

   exp

!
,x

x
f

 


 
 for

x

x

forp x 

 

and zero otherwise. 
The Geometric distribution G(p) is parameterized by p 

and has density 

    1
, 1

x
G x p p

    

and zero otherwise. We use the minimum penalized Hel-
linger distance statistic to evaluate the discrepancy of the 
proposed model from the true data generating process. 

We partition the real line into m intervals  
  1i i  where 0  and , , 1i  Λ mC, , mC C 0C    . 

The choice of the cells is discussed below. 
The corresponding minimum penalized Hellinger dis-

tance estimator of  and p are: 

 
 2

c

m

i
i

1 2 1 2

ˆ ˆarg min ,

      arg min

h
PH H

m

i i
i

D P P

f p p







 



 


 


 







 



 

 
 1 2 1 2

ˆˆ arg min ,

      arg min
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

 

i  and ipp  are probabilities of the cells  1i i  
under the Poisson and Geometric true distribution re-
spectively. 

,C C

We consider various sets of experiments in which data 
are generated from the mixture of a Poisson and Geomet-
ric distribution. These two distributions are mixture of a 
Poisson and Geometric distribution. These two distribu-
tions are calibrated so that their two means are close (4 
and 5 respectively). Hence the DGP (Data Generating 
Process) is generated from M(π) with the density 

       0.2Geomπ π 4 1 πm Pois   

where π (π  [0, 1] is specific value to each set of ex-
periments. In each set of experiment several random 
sample are drawn from this mixture of distributions. The 
sample size varies from 20 to 300, and for each sample 
size the number of replication is 1000. In each set of ex-
periment, we choose two values of the parameter h = 1 
and h = 1 2 , where h = 1 corresponds to the classic Hel-
linger distance. The aim is to compare the accuracy of 
the selection model depending on the parameter setting 
chosen. In order a perfect fit by the proposed method, for 
the chosen parameters of these two distributions, we note 
that most of the mass is concentrated between 0 and 10. 
Therefore, the chosen partition has eight cells defined by 
    , 1, ,7 1, 1i iC C i   , i i   and   7 8, 7,C C   

represents the last cell. We choose different values of π 
which are 0.00, 0.25, 0.535, 0.75, 1.00. 

Although our proposed model selection procedure 
does not require that the data generating process belong 
to either of the competing models, we consider the two 
limiting cases π = 1.00 and π = 0.00 for they correspond 
to the correctly specified cases. To investigate the case 
where both competing models are misspecified but not at 
equal distance from the DGP, we consider the case π = 
0.25, π = 0.75 and π = 0.5 second case is interpreted si-
milarly as a Geometric slightly contaminated by a Pois-
son distribution. The former case correspond to a DGP 
which is Poisson but slightly contaminated by a Geomet-
ric distribution. In the last case, π = 0.535 is the value for 
which the Poisson  ˆ

ˆ ,hD P G
PH

H   and the Geometric 

 ˆ
PH

H p  family are approximatively at equal di-
tance to the mixture m(π) according to the penalized Hel-
linger distance with the above cells. 

ˆ,hD P G



ˆ

Thus this set of experiments corresponds approxima-
tively to the null hypothesis of our proposed model se-
lection test h. The results of our different sets of 
experiments are presented in Tables 1-5. The first half of 
each table gives the average values of the minimum pe-
nalized Hellinger distance estimator PH ˆ  and PHp , the 
penalized Hellinger goodness-of-fit statistics  

   ˆ
ˆ ,

PH

h
HD P G

  and ˆ
ˆ,

PH

h
H pD P G





ˆ

, and the Hellinger  

indicator statistics h. The values in parentheses are 
standard errors. The second half of each table gives in 
percentage the number of times our proposed model se-
lection procedure based on h favors the Poisson 
model, the Geometric model, and indecisive. 

The tests are conducted at 5% nominal significance 
level. In the first two sets of experiments (π = 0.00 and π 
= 1.00) where one model is correctly specified, we use 
the labels “correct, incorrect” and “indecisive” when a 
choice is made. The first halves of Tables 1-5 confirm 
our asymptotic results. 

They all show that the minimum penalized Hellinger 
estimators PH



  and ˆ PH  converge to their pseudo-true 
values in the misspecified cases and to their true values 
in the correctly specified cases as the sample size in-
creases. With respect to our h, its diverges to – or 
+ at the approximate rate of 

p


n





 except in the Table 5. 
In the latter case the h statistic converges, as ex-
pected, to zero which is the mean of the asymptotic N(0, 
1) distribution under our null hypothesis of equivalence. 

With the exception of Tables 1 and 2, we observed a 
large percentage of incorrect decisions. This is because 
both models are now incorrectly specified. In contrast, 
turning to the second halves of the Tables 1 and 2, we 
first note that the percentage of correct choices using 

h statistic steadily increases and ultimately con-
verges to 100%. 
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Table 1. DGP = Pois(4). 

n 20 30 40 50 300 

P̂  0.210(0.03) 0.195(0.03) 0.197(0.02) 0.205(0.02) 0.201(0.01) 

  3.950(0.40) 4.090(0.4) 4.015(0.31) 4.015(0.28) 4.0115(0.13) 

DHP (Pois) h = 1 0.133(0.07) 0.081(0.05) 0.059(0.03) 0.042(0.03) 0.037(0.01) 

 h = 1/2 0.096(0.04) 0.064(0.03) 0.048(0.02) 0.034(0.02) 0.03(0.01) 

DHP (Geom) h = 1 0.391(0.28) 0.348(0.12) 0.208(0.09) 0.282(0.10) 0.271(0.05) 

 h = 1 2



 0.278(0.07) 0.262(0.08) 0.242(0.06) 0.236(0.06) 0.231(0.03) 

h h = 1 2



 –3.67(2.14) –4.32(2.69) –4.34(2.38) –4.83(2.52) –4.97(2.18) 

 
Correct 

Indecisive 
Incorrect 

77% 
23% 
00% 

87% 
13% 
00% 

92% 
08% 
00% 

96% 
04% 
00% 

100% 
00% 
00% 

h h = 1 –3.61(3.03) –3.98(2.48) –3.73(2.29) –4.16(2.35) –4.25(1.87) 

 
Correct 

Indecisive 
Incorrect 

70% 
30% 
00% 

79% 
21% 
00% 

83% 
17% 
00% 

86% 
17% 
00% 

93% 
07% 
00% 

 
Table 2. DGP = Geom(0.2). 

n 20 30 40 50 300 

P̂  0.196(0.04) 0.213(0.03) 0.203(0.02) 0.203(0.02) 0.201(0.01) 

  3.920(1.0) 4.206(0.89) 4.109(0.67) 4.009(0.58) 4.035(0.34) 

DHP (Pois) h = 1.0 0.356(0.14) 0.309(0.10) 0.271(0.09) 0.253(0.08) 0.244(0.07) 

 h = 0.5 0.281(0.1) 0.273(0.07) 0.254(0.07) 0.246(0.07) 0.237(0.02) 

DHP (Geom) h = 1 0.150(0.06) 0.089(0.05) 0.053(0.03) 0.039(0.02) 0.033(0.01) 

 h = 1 2



 0.103(0.04) 0.267(0.03) 0.044(0.02) 0.035(0.02) 0.027(0.98) 

h h = 1 2



 1.880(1.43) 2.560(1.37) 3.020(1.25) 3.340(1.14) 3.40(1.03) 

 
Correct 

Indecisive 
Incorrect 

36% 
64% 
00% 

62% 
38% 
00% 

77% 
23% 
00% 

84% 
16% 
00% 

92% 
08% 
00% 

h h = 1 1.710(1.07) 2.260(1.05) 2.760(0.96) 3.01(0.65) 4.19(0.32) 

 
Correct 

Indecisive 
Incorrect 

36% 
64% 
00% 

62% 
38% 
00% 

77% 
23% 
00% 

84% 
16% 
00% 

92% 
08% 
00% 

 
Table 3. DGP = 0.75 × Geom(0.2) + 0.25 × Pois(4). 

n 20 30 40 50 300 

P̂  0.213(0.13) 0.197(0.12) 0.208(0.08) 0.202(0.05) 0.202(0.01) 

  4.160(0.72) 3.910(0.55) 4.180(0.55) 3.970(0.43) 4.022(0.21) 

DHP (Pois) h = 1 0.546(0.13) 0.472(0.1) 0.412(0.09) 0.402(0.08) 0.367(0.06) 

 h = 1 2  0.344(0.07) 0.340(0.05) 0.320(0.05) 0.311(0.05) 0.304(0.03) 

DHP (Geom) h = 1 0.150(0.06) 0.089(0.05) 0.053(0.03) 0.039(0.02) 0.033(0.01) 

 h = 1 2



 –3.67(2.62) –4.32(2.53) –4.34(2.47) –4.83(2.27) –5.37(2.01) 

h h = 1 2



 1.220(1.02) 1.820(0.89) 2.080(1.12) 2.370(0.99) 3.102(0.84) 

 
Geom 

Indecisive 
Pois 

23% 
77% 
00% 

40% 
60% 
00% 

50% 
50% 
00% 

64% 
36% 
00% 

81% 
19% 
00% 

h h = 1 0.840(1.29) 0.831(1.27) 0.845(1.16) 0.967(1.05) 1.131(0.78) 

 
Geom 

Indecisive 
Pois 

17% 
80% 
03% 

15% 
83% 
02% 

19% 
89% 
02% 

22% 
77% 
01% 

33% 
66% 
01% 
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Table 4. DGP = 0.75 × Pois(4) + 0.25 × Geom(0.2). 

n 20 30 40 50 300 

P̂  0.213(0.03) 0.212(0.03) 0.210(0.02) 0.206(0.02) 0.203(0.01) 

  4.110(0.43) 4.090(0.31) 3.970(0.28) 4.020(0.26) 4.019(0.17) 

DHP (Pois) h = 1 1.779(0.45) 1.634(0.30) 1.650(0.28) 1.570(0.24) 1.520(0.21) 

 h = 1 2  1.443(0.24) 1.473(0.21) 1.520(0.20) 1.500(0.18) 1.483(0.14) 

DHP (Geom) h = 1 2.055(0.35) 1.870(0.25) 0.053(0.03) 0.039(0.02) 0.033(0.01) 

 h = 1 2



 1.640(0.15) 1.660(0.15) 1.700(0.14) 1.690(0.13) 1.632(0.10) 

h h = 1 2



 –2.40(1.27) –2.44(1.1) –2.49(1.08) –2.77(1.01) –2.89(0.92) 

 
Geom 

Indecisive 
Pois 

00% 
38% 
62% 

00% 
37% 
63% 

00% 
32% 
68% 

00% 
27% 
83% 

00% 
21% 
79% 

h h = 1 –2.18(1.37) –2.37(1.33) 2.31(1.16) –2.66(1.18) –2.83(1.06) 

 
Geom 

Indecisive 
Pois 

00% 
48% 
52% 

00% 
45% 
55% 

00% 
46% 
54% 

00% 
30% 
70% 

00% 
24% 
76% 

 
Table 5. DGP = 0.535 × Pois(4) + 0.465 × Geom(0.2). 

n 20 30 40 50 300 

P̂  0.196(0.06) 0.204(0.05) 0.211(0.03) 0.213(0.207) 0.204(0.01) 

  3.968(0.61) 3.962(0.46) 3.981(0.374) 4.023(0.309) 4.011(0.11) 

DHP (Pois) h = 1 2.869(0.63) 2.600(0.46) 2.582(0.36) 2.525(0.38) 2.311(0.25) 

 h = 1 2  2.633(0.30) 2.492(0.28) 2.369(0.27) 2.302(0.26) 21.142(0.17) 

DHP (Geom) h = 1 2.867(0.52) 2.682(0.37) 2.553(0.30) 2.495(0.26) 2.237(0.12) 

 h = 1 2



 2.157(0.21) 2.200(0.20) 2.263(0.20) 2.287(0.19) 2.237(0.12) 

h h = 1 2



 –0.079(1.04) 0.038(1.05) 0.182(0.99) 0.334(1.10) 0.442(0.67) 

 
Geom 

Indecisive 
Pois 

03% 
92% 
05% 

04% 
92% 
04% 

05% 
93% 
02% 

10% 
88% 
02% 

13% 
88% 
01% 

h h = 1 0.186(1.14) 0.248(1.64) 0.378(0.90) 0.452(0.86) 0.617(0.73) 

 
Geom 

Indecisive 
Pois 

05% 
92% 
03% 

06% 
90% 
04% 

04% 
95% 
01% 

09% 
90% 
01% 

11% 
88% 
01% 

 
The preceding comments for the second halves of Ta-

bles 1 and 2 also apply to the second halves of Tables 3 
and 4. 

In all Tables 1-4, the results confirm, in small samples, 
the relative domination of the model selection procedure 
based on the penalized Hellinger statistic test (h = 1 2



) 
than the other corresponding to the choice of classical 
Hellinger statistic test (h = 1), in percentages of correct 
decisions. Table 5 also confirms our asymptotics results: 
as sample size increases, the percentage of rejection of 
both models converges, as it should, to 100%. 

In Figures 1, 3, 5, 7 and 9 we plot the histogram of 
datasets and overlay the curves for Geometric and Pois-
son distribution. When the DGP is correctly specified 

Figure 1, the Poisson distribution has reasonable chance 
of being distinguished from geometric distribution. 

Similarly, in Figure 3, as can be seen, the Geometric 
distribution closely approximates the data sets. In Figures 
5 and 7 two distributions are close but the Geometric 
(Figure 5) and the Poisson distributions (Figure 7) does 
appear to be much closer to the data sets. When  = 
0.535, the distribution for both (Figure 9) Poisson dis-
tribution and Geometric distribution are similar, while 
being slightly corresponding to the ordinary Hellinger 
distance. As expected, our statistic divergence h di- 
verges to – (Figures 2 and 8) and to + (Figures 4 and 
8) more rapidly symmetrical about the axis that passes 
through the mode of data distribution. This follows from 
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Figure 1. Histogram of DGP Pois(4) with n = 50. 
 

 

Figure 2. Comparative barplot of h depending n. 
 

 

Figure 3. Histogram of DGP-Geom(0.2) with n = 50. 

 

Figure 4. Comparaison barplot of h depending n. 
 

 

Figure 5. Histogram of DGP = 0.75 “Geom + 0.25” Pois 
with n = 50. 
 
the fact that these two distributions are equidistant from 
the fact that these two distributions are equidistant from 
the DGP and would be difficult to distinguish from data 
in practice. 

The preceding results in tables and the Theorem (5.5) 
confirm, in Figures 2, 4, 6 and 8, that the Hellinger indi-
cator for the model selection procedure based on panel-
ized hellinger divergence statistic with h = 0.5 (light bars) 
dominates the procedure obtained with h = 1 (dark bars) 
when we use the penalized Hellinger distance test than 
the classical Hellinger distance test. Hence, Figure 10 
allows a comparison with the asymptotic (0, 1) ap-
proximation under our null hypothesis of equivalence. 
Hence the indicator 1/2, based on the penalized Hel-
linger distance is closer to the mean of (0, 1) than is the 
indicator 1. 

N


N


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Figure 6. Comparative barplot of h depending n. 
 

 

Figure 7. Histogram of DGP = 0.25 × “Geom + 0.75” Pois 
with n = 50. 
 

 

Figure 8. Comparative barplot of h. 

 

Figure 9. Histogram of DGP = 0.465 “Geom + 0.535” Pois 
with n = 50. 
 

 

Figure 10. Comparative barplot of h depending n. 
 
7. Conclusion 

In this paper we investigated the problems of model se-
lection using divergence type statistics. Specifically, we 
proposed some asymptotically standard normal and 
chi-square tests for model selection based on divergence 
type statistics that use the corresponding minimum pe-
nalized Hellinger estimator. Our tests are based on test-
ing whether the competing models are equally close to 
the true distribution against the alternative hypotheses 
that one model is closer than the other where closeness of 
a model is measured according to the discrepancy im-
plicit in the divergence type statistics used. The penalized 
Hellinger divergence criterion outperforms classical cri-
teria for model selection based on the ordinary Hellinger 
distance, especially in small sample, the difference is 
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expected to be minimal for large sample size. Our work 
can be extended in several directions. One extension is to 
use random instead of fixed cells. Random cells arise 
when the boundaries of each cell ci depend on some un-
known parameter vector , which are estimated. For 
various examples, see e.g., Andrews [37]. For instance, 
with appropriate random cells, the asymptotic distribu-
tion of a Pearson type statistic may become independent 
of the true parameter o under correct specification. In 
view of this latter result, it is expected that our model 
selection test based on penalized Hellinger divergence 
measures will remain asymptotically normally or chi- 
square distributed. 
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