
Intelligent Information Management, 2012, 4, 291-295
http://dx.doi.org/10.4236/iim.2012.425041 Published Online October 2012 (http://www.SciRP.org/journal/iim)

Automatic Risk Identification in Software Projects:
An Approach Based on Inductive Learning

Julia Botan Machado, Silvio do Lago Pereira
Department of Information Technology, São Paulo State Technological College—FATEC/SP, São Paulo, Brazil

Email: julia.botan@gmail.com, slago@pq.cnpq.br

Received August 30, 2012; revised October 4, 2012; accepted October 16, 2012

ABSTRACT

Effective risk management is very important to increase the probability of success in software projects. Indeed, like
other types of projects, software projects are also susceptible to various problems that can lead to the cancelation of
their development or to the development of systems that do not meet the client’s requirements. One of the main activi-
ties of risk management is the risk identification, because the list of risks generated in this activity is used all along the
risk control process. Thus, this work proposes the creation of an expert system which is capable of identifying risks in
software projects by using the lessons inductively learned from similar software projects already developed. By using
this proposed expert system, project managers and software developers must be able to avoid errors of the past.

Keywords: Risk Management; Risk Identification; Software Engineering; Expert System

1. Introduction

There are many different definitions of risk in literature.
In this work, risks are defined as future events with some
probability of occurrence and a potential for loss. Every
project is subject to risks and the role of a project risk
manager is to anticipate the risks that can compromise
the successful completion of a project and to plan how to
proceed if they occur, in order to minimize the loss [1].

Effective risk management is crucial for the success of
a project. Notwithstanding, risk identification is a very
hard prediction problem and most software project man-
agers still have great difficulty in performing this task. In
order to overcome this difficulty, this work proposes the
implementation of an expert system capable of identify-
ing risks in software projects, by using lessons induc-
tively learned from similar projects developed in the past.
The assumption is that the experience acquired in previ-
ous projects is the main tool which developers have to
aid them in the management of new similar projects. The
proposed automatic risk identification procedure is based
on the checklist technique [2,3], in which a checklist is
used to verify whether a specific risk can or cannot occur
in a project. In the system, the checklist is represented by
a decision tree [4], built by an inductive learning algo-
rithm [5,6] that works over a database containing char-
acteristics of previous projects and their corresponding
risks pointed out by experts in risk management.

The remaining sections of this paper are organized as
follow: Section 2 defines the problem addressed in this

work; Section 3 presents the concepts and techniques of
artificial intelligence used to implement an expert system
to solve that problem; Section 4 briefly discusses em-
pirical results obtained with the system; and, finally, Sec-
tion 5 presents the final conclusion.

2. Risk Management in Software Projects

Although risk management is not a linear process, often
it is divided into four phases: risk identification, risk as-
sessment, risk response planning, and risk monitoring
and controlling [1]. Clearly, risk identification is the
main phase in this process, since all the other phases de-
pend on the correct identification of the risks. In fact, to
properly manage risks, the first thing that risk managers
should be able to do is to determine what risks can dam-
age its projects and to recognize their characteristics.

Risk identification is particularly important for soft-
ware projects, because this kind of project involves in-
herent uncertainties that are very hard to control, e.g.,
technological innovations and changes in the client’s re-
quirements. Indeed, due to these uncertainties, most
software projects do not comply with the deadline or
budget initially planned for them and, even worse, most
of the products do not meet the client’s expectations in
terms of functionality and quality [7].

Paradoxically, in spite of the fact that most of the pro-
ject failures are closely related to failures in the risk
identification phase, most of project managers and soft-
ware developers still perceive this activity as a useless

Copyright © 2012 SciRes. IIM

J. B. MACHADO, S. DO LAGO PEREIRA 292

and hard extra work and, as soon as they can, they read-
ily forget it [8]. This happens mainly because there are
few tools that can be used to turn this activity easier [9].

To identify risks in new projects, the best practices in
risk management established by PMBOK (Project Man-
agement Body of Knowledge) [10] strongly recommend
the use of historical data, collected during the risk identi-
fication phase for similar projects developed in the past.
However, although most of the organizations have a
large volume of documents about previous projects, the
manual extraction of useful information from this data is
not an easy task.

Thus, the main contribution of this work is to propose
a tool that can aid project managers and software devel-
opers in the task of risk identification and, consequently,
to avoid that so important activity can become over-
looked. More specifically, the proposed tool is an expert
system that can identify risks in new projects, based on
the history of risks already identified in similar projects.

3. The Expert System for Risk Identification

Experts in risk management advice that an effective risk
identification should be performed by taking into account
results of studies done by experts in risk management, as
well as documents about lessons learned during the risk
management process for other similar projects already
concluded [11]. To do so, project risk managers should
collect documents describing projects characteristics and
the corresponding risks identified for them.

By using such a collection of documents, it is possible
to implement a computer system that automatically iden-
tifies risks in new projects, based on the experience ac-
cumulated by human experts in the past. In fact, this is
the very approach adopted in this work, as depicted in
Figure 1. Moreover, at the end of each project, the sys-
tem can update its knowledge base with the new lessons
learned, such that they can be used in future projects (in-
creasing the effectiveness and efficiency of the system).

The background on artificial intelligence and the tech-
niques used to implement this system are succinctly in-
troduced in the next two subsections.

3.1. Inductive Learning of Decision Trees

A decision tree [4] is a data structure, representing a set
of classification rules, which can be used to model induc-
tive learning and decision making abilities. The decision
tree construction emulates a learning process, while its
use emulates a decision making process.

A decision tree is a decision support tool, in the form
of a tree graph, which models decisions and their possi-
ble consequences. A decision tree learning algorithm is a
method used in data mining [12] to create a model that
predicts the value of an output variable, or target variable,
based on the values of input variables. A trivial example
of a decision tree, with only one input variable, is de-
picted in Figure 2. In such tree, each nonterminal node
corresponds to an input variable; the edges leaving a non-
terminal node represent all the possible values of that in-
put variable; and each leaf represents a value of the target
variable, given the values of the input variables repre-
sented by the path from the root to the leaf.

To build a decision tree, an inductive learning algo-
rithm needs to receive as input a set of examples of the
concept that it should learn. Thus, this kind of learning
is called supervised learning. Besides, the set of exam-
ples is often called training dataset. Each example is a
tuple formed by the values of the input variables (al-
ways available) and also the value of the output variable,
or target variable (available only in examples). The idea
is that, by analyzing the correlations among the values
of input and output variables, the learning algorithm can
build a hypothesis that, afterwards, can be used to cor-
rectly predict the target variable value, in cases where
only the input variable values are known. To validate
the efficiency of the decision tree built, another set of
brand new examples, called test dataset, is used. In this
case, the values of the target variable in the examples
are compared with those predicted by the hypothesis.
The efficiency of the decision tree can be given as the
ratio of the number of hits and the number of examples
in the test dataset.

A tree can be built by recursively splitting a training
dataset into subsets based on the values of a selected

Figure 1. The architecture of the expert system.

Copyright © 2012 SciRes. IIM

J. B. MACHADO, S. DO LAGO PEREIRA 293

Does it rain?

Yes No

Take umbrella Don’t take umbrella

Figure 2. A decision tree for the “umbrella problem”.

input variable. The recursion terminates when the subset
at a node has all the same value for the target variable, or
when splitting no longer enhance the predictions. This
process of top-down partitioning is a kind of greedy al-
gorithm, and is the most common strategy for learning
decision trees from data. After construction and valida-
tion, the resulting decision tree can be used to emulate an
efficient making decision process.

To guarantee the efficiency of the decision tree, the
inductive learning algorithm uses the concepts of entropy
and information gain [4] to choose the input variable to
label each nonterminal node. The entropy is a measure
based on the occurrence probability of each possible event
(i.e., values of the input variables). The information gain
represents the estimated reduction on the entropy value
resulting from the partition of the set of examples, ac-
cording to the values of the input variable selected to
label a node.

Formally, entropy and information gain can be defined
as follow. Let E be a training dataset with examples of
the form  1 2, , , ,m x x x y , where each xi is the value of
an input variable vi, for 1 , and y is the target
variable value. Also, for a given input variable vi with k
possible values, let pi be the proportion of tuples in E
where the input variable vi has value xi. The information
gain g for an input variable vi is defined in terms of en-
tropy h as follows:

i m 

  2
1

log
j

i i
i

h E p p


 

     
1

,
i j

i j

k v x

i
j

E
g E v h E h E

E






   v x

The information gain is equal to the total entropy for
an input variable if and only if, for each value of that
variable, the target variable has the same value.

3.2. Expert Systems

In artificial intelligence, an expert system [13,14] is a
computer program that emulates the ability of decision
making of a human expert. In fact, by reasoning over
facts and rules available in a knowledge base, an expert
system is capable of solving very complex problems.

The standard architecture of an expert system (Figure
1) consists of a user interface that allows the communi-

cation with the user, a knowledge base that stores the
knowledge about the specific application domain, and an
inference engine that uses the available knowledge to
solve problems proposed by the user.

In the expert system proposed in this work, the knowl-
edge base is implemented as a set of decision trees (one
tree for each risk) and the inference engine is a procedure
that selects a proper decision tree in the knowledge base
and, by reasoning with the rules encoded on this tree,
decides whether a specific risk can or cannot occur, ac-
cording to the projects characteristics informed by the
user.

The decision trees used to populate the knowledge
base of the expert system are automatically generated by
an algorithm of supervised inductive learning. The in-
ductive reasoning implemented by this algorithm allows
the generation of rules about conditions that necessarily
implies specific risks, by analyzing a set of documents
with lessons learned in previously developed projects.
These rules form, in fact, a predictive model that can be
used to identify risks in new projects.

To identify risks in a new project, all that a risk man-
ager needs to do is to access the user interface of the ex-
pert system and inform the projects characteristics. Then,
the expert system should answer with a list of risks
automatically identified for that project.

4. The Experiment with the Expert System

To verify the effectiveness of the proposed solution for
automatic risk identification, the expert system of Figure
1 was implemented in the Java programming language,
based on the inductive tree learning algorithm ID3 [4].

This section reports some details of the experiment
performed with the system and discusses some empirical
results, as well.

4.1. Knowledge Base Populating

In order to decide whether a new project has a specific
risk, the expert system must use a list of known risks. As
said before, this list can be generated from a collection of
documents describing lessons learned in previous pro-
jects. Basically, there are two types of risk: generic risks,
which threat the most part of projects, and specific risks,
that threat the specific project under evaluation. Generic
risks can be easily detected by the expert system. On the
other hand, the detection of specific risks is more com-
plicated because, if they were not detected in previous
projects, the knowledge of the expert system might be
insufficient to detect their presence in a new project.

Moreover, to compare new projects with previous
projects, and decide whether they are similar or not, the
expert system needs to use a predefined set of character-
istics which are common for all projects. These charac-

Copyright © 2012 SciRes. IIM

J. B. MACHADO, S. DO LAGO PEREIRA 294

teristics must be related with risk categories, so that the
expert system can reason properly.

Documents about 20 real software projects were used
in the experiment performed with the implemented ex-
pert system. These documents were kindly delivered by
their respective project risk managers, who also answered
a questionnaire about their project characteristics and
associated detected risks.

The final characterization of the projects was based on
the following attributes (input variables):
 User involvement;
 Team experience;
 Appropriated team size (relative number);
 Staff geographical distribution;
 Team size (absolute number);
 Project priority;
 Amount of involved systems;
 Amount of involved technological platforms;
 Amount of involved databases;
 Project size (small, medium, large, huge);
 Existence of test/approval environment.

A list of seven generic risks (output variables), present
in most of software projects, was also created:
 Risk of failing to meet the planned deadline;
 Risk of failing to meet the planned cost;
 Risk of generating a low quality product;
 Risk of ill-defined scope;
 Risk of the project cancellation;
 Risk of project postponement;
 Risk of generating a product that does not meet the

needs of the user.
Based on the managers’ answers for 15 projects, and

each one of these generic risks, a set of documents was
formatted to be taken as input (i.e., training dataset) by
the inductive learning module of the expert system. The
resulting trees, built by this module, were used to popu-
late the expert system knowledge base. More precisely, a
set of seven decision trees, one for each one of the con-
sidered generic risks, were generated. An example of
such decision trees is depicted in Figure 3.

Thus, given the characteristics of a specific software
project, the expert system can use the rules extracted
from the decision tree in Figure 3 to inform whether this
project has or not the risk of being cancelled. In this tree,
each internal corresponds to an input variable, whose
value is informed by the user, and each leaf corresponds
to a possible value of the output variable “risk of the
project cancellation”, whose value should be predicted
by the system.

4.2. Empirical Results

To validate the expert system, the remaining 5 projects
were used as a test dataset.

Team experience?

High Low

Yes

No Project priority?

Medium High or Low

Team size?

Yes No

Medium Small or Large

Figure 3. A decision tree for “risk of project cancellation”.

The list of identified risks generated by the expert sys-
tem, for each one of these projects, was compared with
the results obtained through the questionnaire answered
by the risk managers, referred in the last subsection.

In the total, there were performed 35 evaluations (i.e.,
7 risks for each one of 5 projects). It was observed that
the result given by the expert system differed from that
given by the corresponding project manager in only 8
evaluations. Thus, the implemented system presented a
hit-rate of 77.14%. This seems to be a very promising
result.

Furthermore, it is believed that, with a knowledge base
populated with more historical data collected from pre-
viously developed projects, it is possible to increase this
hit-rate even more.

5. Conclusions

This paper proposed an expert system capable of identi-
fying risks in software projects, by using lessons induc-
tively learned from similar projects developed in the past.

To evaluate the effectiveness of the implemented sys-
tem, an experiment involving data about real software
projects was performed. This experiment showed that the
experience acquired in previous projects can really be
used to automatically identify risks in new projects and
to avoid repeat mistakes of the past, as well. Thus, by
using a knowledge base continuously updated with les-
sons learned in concluded projects, the performance of
the expert system will be each time better.

A frailty of the proposed system is that it only can
identify risks already detected in previous projects. So, if
a new project is subject to an unprecedented risk, the
system fails to inform the project manager about this risk.
From this observation, it is important to highlight that the
proposed expert system is a tool that must be used only
to help the project risk manager to perform the risk iden-

Copyright © 2012 SciRes. IIM

J. B. MACHADO, S. DO LAGO PEREIRA

Copyright © 2012 SciRes. IIM

295

tification task. A human expert is still indispensable.

6. Acknowledgements

The authors would to thank CNPq, FAT, and especially
to the project managers who contributed to this research.

REFERENCES
[1] R. K. Wysocki, “Effective Project Management: Tradi-

tional, Agile, Extreme,” 5th Edition, John Wiley & Sons
Ltd., Chichester, 2010.

[2] C. A. R. Morano, C. G. Martins and M. L. R. Ferreira,
“Application of Techniques for the Identification of Risk
in the E & P Ventures,” Engevista, Vol. 8, No. 2, 2006,
pp. 120-133.

[3] H. P. Berger, “Risk Management: Procedures, Methods
and Experiences,” Reliability: Theory & Applications,
Vol. 2, No. 17, 2010, pp. 79-95.

[4] J. R. Quinlan, “Induction of Decision Trees,” Machine
Learning, Vol. 1, No. 1, 1985, pp. 81-106.
doi:10.1007/BF00116251

[5] A. Franco-Arcegaa, J. A. Carrasco-Ochoaa, G. Sánchez-
Díazb and J. F. Martínez-Trinidada, “Decision Tree In-
duction Using a Fast Splitting Attribute Selection for
Large Datasets,” Expert Systems with Applications, Vol.
38, No. 11, 2011, pp 14290-14300.

[6] J. Gao and Z. D. Han, “New Decision Tree Algorithm
with Restrained Factor Involved,” Physics Procedia, Vol.
25, 2012, pp. 1871-1878.
doi:10.1016/j.phpro.2012.03.324

[7] I. Sommerville, “Software Engineering,” 9th Edition,

Addison-Wesley, Boston, 2010.

[8] E. E. Odzaly and P. S. Des Greer, “Software Risk Man-
agement Barriers: An Empirical Study,” Proceedings of
the 3rd International Symposium on Empirical Software
Engineering and Measurement, Washington, 15-16 Oc-
tober 2009, pp. 418-421.
doi:10.1109/ESEM.2009.5316014

[9] J. Dhlamini, I. Nhamu and A. Kaihepa, “Intelligent Risk
Management Tools for Software Development,” Pro-
ceedings of the Annual Conference of the Southern Afri-
can Computer Lecturers’ Association, Eastern Cape, 2-11
July 2009, pp. 33-40.

[10] PMI Standards Committee, “A Guide to the Project
Management Body of Knowledge,” 4th Edition, Project
Management Institute, 2008.

[11] Y. H. Kwak and J. Stoddard, “Project Risk Management:
Lessons Learned from Software Development,” Elsevier
Science, Amsterdam, 2003.
doi:10.1016/S0166-4972(03)00033-6

[12] S. H. Liao, P. H. Chu and P. Y. Hsiao, “Data Mining
Techniques and Applications—A Decade Review from
2000 to 2011,” Expert Systems with Applications, Vol. 39,
No. 12, 2012, pp. 11303-11311.
doi:10.1016/j.eswa.2012.02.063

[13] S. H. Liao, “Methodologies and Applications—A Decade
Review from 1995 to 2004,” Expert Systems with Appli-
cations, Vol. 28, No. 1, 2005, pp. 93-103.
doi:10.1016/j.eswa.2004.08.003

[14] S. Lucci and D. Kopec, “Artificial Intelligence in the 21st
Century: A Living Introduction,” Mercury Learning and
Information, Duxbury, 2012.

http://dx.doi.org/10.1007%2FBF00116251
http://dx.doi.org/10.1016%2Fj.phpro.2012.03.324
http://dx.doi.org/10.1109%2FESEM.2009.5316014
http://dx.doi.org/10.1016%2FS0166-4972%2803%2900033-6
http://dx.doi.org/10.1016%2Fj.eswa.2012.02.063
http://dx.doi.org/10.1016%2Fj.eswa.2004.08.003

