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ABSTRACT 

Crystal structures of several naturally occurring minerals are known to contain various deformities such as cones, cyl-
inders, and tapered hollow cylinders with different apex angles, which have been described as solid and hollow cones, 
“cups”, “lampshades” as well as rolled cylindrical planes. The present study was undertaken to determine how these 
different shapes within a crystal structure can be explained. Since the usual method of observing them is by either X-ray 
and electron diffraction or electron microscopy, we investigated Fourier transforms of these forms, which were consid- 
ered in terms of spirals with varying radii. Three types of spirals were considered, namely: 1) Archimedean spiral; 2) 
Involute of a circle or power spiral and 3) Logarithmic spiral. Spiraling caused the radius r to be modified by a factor 
f(θ), so that r becomes rf(θ), where f(θ) = θ for Archimedean helix, θn for power helices like θ1/2 for Fermat’s helix, θ–1 
for hyperbolic helix and eθ or e–θ for logarithmic helix, r and θ being co-ordinates of the map on which the helix has to 
be drawn, f(θ) is unaffected by the magnitude of r. Expressions have been derived that explain the diffraction of struc- 
tures containing the distortions described above, and bring all of these phenomena under one “umbrella” of a compre- 
hensive theory. 
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1. Introduction 

Even in the early days of the study of minerals by elec-
tron microscopes, it was realized that minerals like chry- 
solite and halloysite shows additional cylindrical struc- 
tures with spirals [1]. Jagodzinski and Kunze [2-4] also 
observed this phenomenon, which was confirmed by 
Honzo and Mihama [5] who observed small fragments of 
Halloysite under electron microscope and found that they 
were wrapped with spirals of tubular stacks. According 
to Waser [6], these sheets were formed by bending and 
twisting three-dimensional crystallite into curvaceous 
shapes. Similar was the observation of Whittaker [7] who 
found that the spirals were of the type of involutes of 
circles. The spirals were also mentioned by Waser [6] 
although his calculations were on the basis of parallel 
coaxial tubes. Conventional theory utilize parallel coaxial 
tube model confirmed by the observation of Haanstra [8] 
and Sumio Iijima [9] that carbon tubules are formed by 
coaxial carbon sheets, helically rolled up. However, later 
discovery of graphitic cones and boron nitride cones 

[10-13] showed that instead of parallel cylinders, there 
may occur coaxially rolled-up cylinders, as well as taper- 
ing cylinders, sometimes ending into sharp cones, some- 
times into hollow tapering cylinders, and sometimes end 
ing into various angles. The various forms assumed by 
nanotubes include isolated cones [12], disordered aggre- 
gates of cones [10], multilayered cones with different ap- 
ex angles [14,15], as well as stacked closed cones, also 
called stacked lampshades. Among naturally occurring 
minerals, Halloysite [16], Cylindrite [17], tochilinites [18] 
etc form cylindrical morphology. The cylindrical mor-
phology of terrestrial Tectialinite has been described by 
Jambor [19] as resembling a rolled up newspaper. 

The aim of the present paper is to determine how the 
different shapes can be explained. Since the usual me- 
thod of observing them is by either X-ray and electron 
diffraction or electron microscopy, as the first essential 
step to be considered, we investigate Fourier transforms 
of the various forms. 

2. Preliminary Considerations 

Spirals can, in preliminary considerations be of two 
types—two dimensional or three dimensional. For two 
dimensional helices, it may be mentioned that it is a 
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curved arc which refuses to close—contrary to a circle 
which closes. A circle is a two-dimensional curve, every 
point on which is equidistant from the center. Hence, if 
one starts from any point on the circular path in the same 
direction and continues in that direction, one will finally 
arrive in the same point from where one started. Mathe-
matically, the operation is given by a sin 2πr or a cos 2πr, 
and is described by the equations 

sin 2πx a r  

and 

cos 2πy a r  

so that 
2 2  2x y a  

However, if there is a distortion on a circle, which 
prevents a point moving on a given circle from returning 
to the same point on this circle or the sphere on complet-
ing one turn of each circle—either by increasing or de-
creasing the radius of the circle at that point—the circle 
is said to have been spiraled. Thus, spiraling results from 
a change in the magnitude of the radius by a factor f(θ), 
where θ is the angle by which the particle moves on the 
arc of the spiral. 

Similar considerations are valid for an ellipse. There, 
the ellipse represented by sinx a   and cosy b  
will be spiraled as  cos x af  and  sin y bf  
and every point on the ellipse will change with every 
value of θ. Similarly, there can be three dimensional spi-
rals—spherical, spheroidal, elliptical, ellipsoidal, cylin-
drical, etc. where, say, x and y are functions of z or vice 
versa. For example,  cos ,x a z ,  sin ,y b z , z 
= z represents a circular, cylindrical helix. 

In the present case under consideration, solid and hol-
low rods, solid and hollow cones, as well as solid and 
hollow tapering cylinders ending into different apex an-
gles—can all be treated as two-dimensional problems 
and hence involving two-dimensional helices. Vigodsky 
[20] had categorized three types of two-dimensional 
helices, involving three main types of spirals, namely: 1) 
Archimedean spiral; 2) Involute of a circle or power spi-
ral and 3) Logarithmic spiral. Ferris [21] had later given 
mathematical expression for these three types of spirals 
as follows: 

1) The Archimedean spiral:  

r a  

a being constant independent of r and θ. The curve is 
described in terms of polar coordinates r and θ.  

2) The power spiral: 

 nr a  

a and n are constants independent of r and θ, the polar 
coordinates of the term, n constant—either positive or 

negative.  
3) The Logarithmic Spiral: 

r ae  

a constant as above, and e the base of Napierian loga-
rithm. In all the three cases, θ can be positive or negative.  

Here, we will determine how the different shapes with- 
in a crystal structure can be explained. Since the usual 
method of observing them is by either X-ray and electron 
diffraction or electron microscopy, as the first essential 
step to be considered, we investigate Fourier transforms 
of the various forms. The optimum Fourier transform of 
a general spiral structure should be able to explain the 
growth and formation of almost all crystalline objects. 

3. Theory 

3.1. Fourier Transform of a Solid Circular  
Cylinder 

Let the solid circular cylinder of radius r and length l be 
described by the equation 

cos and sin ,x r y r z z     

and the corresponding reciprocal lattice is given by  

cos , sin ,H S K S l l     

The corresponding Fourier transform of the cylinder is 
given by 

    exp 2π cos dF i rS lz v    





    (1) 

It is known that 

  2π

0
exp 2π cos exp d 2π 2πn

ni rS in i J rS     (2) 

so that 

2π

00
exp 2π cos d 2πJ 2πi rS rS        (3) 

Thus 

    
 

2π

0

2π

0

exp 2π cos exp d

exp 2π cos d

F S i rS ilz r

i rS r

 

 

 

 




 

neglecting the term in z. 

 2π

00
2π 2π dJ rS r r              (4) 

Now, it is known that 

     
   

1

1

1

2π 2π d 2π

2π 2π

m

m

m

M

J rS rS rS

rS J rS







       (5) 

Putting m = 0 

        0 12π 2π d 2π 2π 2πJ rS rS rS rS J rS  
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   0
0

2π
2π d 2π

J rS
J rS Sr r

S
        (6) 

3.2. Fourier Transform of a Hollow Circular  
Cylinder 

Let the hollow circular cylinder have external and inter-
nal radii r1 and r2, respectively. Proceeding as in the pre-
vious case, we have 

   
   

2

1
0

1 1 1 2 1 2

2π 2π d

2π 2π

r

r
F S J r r r

r J r S r J r S

S







       (7) 

Equations (6) and (7) are the same as in Oster and Riley 
[22]. 

3.3. Fourier Transform of a Solid Cylindrical  
Cone 

In Figure 1, let the cone have a radius r, height H and 
apex angle 2φ. So the radius changes from 0 at the apex 
to r at the base. Note: 

tanr H   

So, according to Equation (4) 

   

 
 

00

00

0

2π 2π d

2π 2π tan sec 2 d

2 2π

r

r

F S J rS r r

J H S H

J pS pdp

  














 

where tanp H   
Hence 

     2 2π 2π tan
2π 2π

J Sp SH
F S

S S


      (8) 

3.4. Fourier Transform of a Hollow Cone 

The hollow cone may be of two kinds. It may be poin- 
ted—i.e. the outer cone may end at an apex point O 
whose height from the base of the cone is H and the apex 
angle is 2φ, while for the inner cone, the apex angle is 2ω, 
the height remaining the same. In Figure 2, the outer 
radius r1 of Equation (7) is H tan φ and the inner radius, 
the radius r2 of Equation (7) is H tan ω. For this case, 

 
  1 1tan 2π tan tan 2π tan

SF S

H J SH H J SH     
 (9) 

The hollow cone may be truncated at a height (H − h) 
above the base of the cone. In this case, the Equation (9) 
will be modified by replacing H by (H − h). Other similar 
shapes can easily be considered in the light of the above 
discussions. 

φ H 

Solid Cone 
 

Figure 1. Diagrammatic representation of a solid cone of 
height H and apex angle 2φ. 
 

 

Figure 2. Diagrammatic representation of a hollow cone 
with the outer cone ending at an apex point O whose height 
from the base of the cone is H and the apex angle is 2φ, 
while for the inner cone, the apex angle is 2ω, the height 
remaining the same. Alternately, the hollow cone may be 
truncated at a height (H − h) above the base of the cone. 

3.5. Effect of Spiraling on Fourier Transform 

We have described in Equations (6)-(9) the Fourier trans- 
forms of solid circular cylinders, hollow circular cyliders, 
solid and hollow cones, both tapered and pointed end. 
These are the shapes and sizes of carbon and boron ni-
tride inclusions in carbon dusts as observed under elec- 
ztron microscope. Now let us consider what happens 
when these are spiraled. Spiraling causes the radius r to 
be modified by a factor  f  , so that r becomes  rf  , 
where  f   = θ for Archimedean helix, θn for power 
helices like θ1/2 for Fermat’s helix, θ−1 for hyperbolic 
helix and eθ or e−θ for logarithmic helix, r and θ being 
co-ordinates of the map on which the helix has to be 
drawn,  f   is unaffected by the magnitude of r.  

Thus, in Equation (6), r, in Equation (7), r1 and r2, in 
Equations (8) and (9), H will be affected by the spiraling 
effect.  

Solid circular cylinder, 
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 
  1 12π

2π
J Sr f

F S
S


        (10) 

Hollow circular cylinders 

 
     1 1 1 1 2 22πS 2πSr J r f r J r f

F S
S

 
    (11) 

For solid cylindrical cones, 

 
  1 2π

2π
J SHf

F S
S


            (12) 

And for hollow cylindrical cones 

    

  

1

1

tan 2π tan

tan 2π tan

H
F S J SH f

S
H

J SH f
S

 

 

 

 









     (13) 

4. Discussions 

A weathering environment can cause secondary crystal- 
line structures in minerals either through alterations in 
the primary structure or through precipitation of a soluble 
species [23]. Clay minerals including kaolinite and hallo- 
ysite are particularly susceptible to this sort of weather- 
ing, which leads to distortions in the original structure. 
Kaolinite and halloysite are 1:1 dioctahedral phyllosili- 
cates with the difference that halloysite structure contains 
H2O molecules in the interlayer (Al2Si2O5(OH)4·2H2O) 
[23] Unlike kaolinite, which is planar, halloysite is ob- 
served in tubular or rolled structures, which is believed to 
relieve structural strains that arise as a result of a misfit 
between octahedral and tetrahedral sheets. Trioctahedral 
chrysolite has a similar structure (Mg3(Si2O5)(OH)4), 
except that it curls in the opposite direction due to the 
smaller dimension of the Al3+ octahedron in halloysite 
relative to the Mg2+ octahedron in chrysolite. Early elec- 
tron micrographic studies revealed the presence of sec- 
ondary structures in these minerals, describing halloysite 
to consist of hollow rods or rolled sheets 10 - 15 µm in 
length, with numerous examples of rolls within rolls [1]. 
Electron micrographs and diffraction diagrams of chry- 
solite revealed a tubular form of rolled sheet crystal as 
well [5]. Jagodzinski and Kunze found evidence of a 
helical and spiral structures in chrysolite, that may be 
described in terms of radial and axial dislocations [3]. 

Other structures have also been found in crystal mor- 
phologies. During the deposition of carbon by pyrolysis 
of carbon monoxide above 1800˚C, a columnar growth of 
carbon could be induced by β-SiC crystals which could 
be visualized as stacked from parallel layers of carbon 
atoms in a hexagonal graphite network bent into a cone 
mantle with a top angle of about 141˚C [8]. Sumio Iijima 
reported the preparation of finite carbon structures, simi- 
lar to fullerenes, consisting of needle like tubes, com- 

prising of coaxial tubes of graphitic sheets where the 
carbon-atom hexagons are arranged in a helical fashion 
about the needle axis [9]. Later studies generated nano- 
meter-sized carbon cones by vapor condensation of car- 
bon atoms on a graphite substrate [10], while others re- 
ported generation of carbon structures consisting of 
graphitic microstructures with total disinclinations that 
are multiples of +60˚, due to the presence of pentagons 
within the hexagonal structure, resulting in the formation 
of carbon cones [11], or horn-shaped sheaths of single 
walled graphene sheets [12]. Graphite nano and micro- 
cones were found in the pores of commercial glassy car- 
bon, growing along with cylindrical multiwalled nano- 
tubes and graphite polyhedral crystals [14]. Tubular 
graphite cones synthesized using a chemical vapor depo- 
sition method were found to be composed of cylindrical 
graphite sheets; a continuous shortening of the graphite 
layers from the interior to the exterior makes them cone 
shaped [15]. Other structures that have been described 
include stacked closed cones (stacked cups), stacked 
open cones (stacked lampshades) and cone-helix struc- 
tures (see [24] and references therein). 

The secondary structures were found not only in car-
bon particles but also in other compounds such as boron 
nitride which consist of an ordered stacking of seamless 
conical shells [13]. Cylindrite, a lead, tin, antimony and 
iron sulfosalt, contains two types of sheets: hexagonal 
and tetragonal, with the structure changing systematically 
from the core to the periphery of the crystals. At the core, 
the sheets are parallel to each other whereas further from 
the core, the sheets diverge giving rise to cylindrical 
structures [17]. Similarly, the dominant morphology for 
tochilinites (1 Fe0.9S.1.67 [(Mg,Fe)(OH)2]) are filled and 
hollow cylinders [18], which has also been described as a 
rolled-up newspaper [19].  

Multiple investigators have attempted to explain the 
secondary structures by X-ray diffraction studies and its 
mathematical analysis. Early studies, as exemplified by 
the theoretical discussion set forth by Waser [6] studied 
Fourier transforms and scattering intensities of discrete 
tubular objects as well as concentric cylinders, but failed 
to take into account the spiral cylinders that were ob-
served as well. Many studies discussed the X-ray diffrac-
tion phenomena to be expected from a tubular structure 
in which the wall consists of a succession of equally 
spaced layers mutually ordered in the direction parallel to 
the cylinder axis [2-4,7], however, till now, no compre- 
hensive study that takes into consideration all the differ- 
ent types of structures has been effectively conducted. 
The majority of studies reported in the literature take into 
consideration the parallel coaxial tube model popularized 
by Waser [6]. However, molecular modeling and struc- 
tural analyses compared to reported experimental obser- 
vations showed that neither parallel coaxial tubes nor 
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stacked cone models could explain the wide variety of 
apex angles observed for nanofibers and related struc- 
tures [24]. One the other hand, cone-helix models al- 
lowed for a variety of apex angle structures and were 
applicable for nanofibers [24].  

In 1975, we had attempted to explain the structure of 
halloysite [16] in the light of a theory of diffraction by 
curved crystals developed by us [25-27]. It was con- 
cluded that metahalloysite had a lath-like cylindrival 
structure and the kaolin layers were considered to be ar- 
ranged parallel to one another but shifted parallel to 
themselves [16]. Although the values of the lattice pa-
rameters were satisfactory, recent identifications of the 
secondary structures have rendered necessary the devel- 
opment of a theory which would explain not only perfect 
cylinders or coaxial cylinders but also helical and spiral 
structures. The special case of the theory of diffraction at 
small angles of scattering by a cylindrically constructed 
structure has recently been developed and general ex- 
pressions for 2 and 3 dimensional cylindrically curved 
crystallites have been obtained [28]. The aim of the pre- 
sent paper was to extend these calculations to the condi- 
tions of helices and spirals which would explain the dif- 
fraction of structures containing the distortions described 
above, and to bring all of these phenomena under one 
“umbrella” of a comprehensive theory. This has been 
achieved in Equations (10)-(13) which show the specific 
cases of Equations (6)-(9) when the radius of the circle is 
variable.  

In summary, in this paper, various types of spiral 
structures have been defined and classified—and their 
effect on tubular objects in the form of Fourier Trans- 
forms have been discussed. The observation under elec- 
tron microscopes and similar devices of cones, cylinders, 
tapered hollow cylinders with various apex angles spe- 
cifically in the cases of carbon and boron nitride powders 
have been explained. 
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