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ABSTRACT 

The various physical mechanisms governing the dynamics of streamflow processes act on a seemingly wide range of 
temporal and spatial scales; almost all the mechanisms involved present some degree of nonlinearity. Against the back-
drop of these issues, in this paper, attempt was made to critically look at the subject of Autoregressive Conditional Het-
eroscedasticity (ARCH) or volatility of streamflow processes, a form of nonlinear phenomena. Towards this end, 
streamflow data (both daily and monthly) of the River Benue, Nigeria were used for the study. Results obtained from 
the analyses indicate that the existence of conditional heteroscedasticity in streamflow processes is no paradox. Too, 
ARCH effect is caused by seasonal variation in the variance for monthly flows and could partly explain same in the 
daily streamflow. It was also evident that the traditional seasonal Autoregressive Moving Average (ARMA) models are 
inadequate in describing ARCH effect in daily streamflow process though, robust for monthly streamflow; and can be 
removed if proper deseasonalisation pre-processing was done. Considering the findings, the potential for a hybrid 
Autoregressive Moving Average (ARMA) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH)- 
type models should be further explored and probably embraced for modelling daily streamflow regime in view of the 
relevance of statistical modelling in hydrology. 
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1. Introduction 

When modelling hydrologic time series, the focus usu-
ally is on modelling and predicting the mean behaviour, 
or the first order moments, and rarely, is it concerned 
with the conditional variance, or their second order mo-
ments; although unconditional season-dependent vari-
ances are usually considered. The increased importance 
played by risk and uncertainty considerations in water 
resources management and flood control practice, as well 
as in modern hydrology theory, however, has necessi-
tated the development of new time series techniques that 
allow for the modelling of time varying variances. It is 
not hard to find evidence to argue that a time series with 
random appearance might be nonlinear dynamic; but it 
suffices to note that the difficulty is in telling what kind 
of nonlinear dynamics. 

To a large extent, one can think of heteroscedasticity 
as time-varying variance (i.e., volatility); in this regard, a 
univariate stochastic process is said to be homoscedastic 
if variances of the time series are constant. The “con-
ditional” term as used in the definition of Autoregres-
sive Conditional Heteroscedasticity (ARCH) or Gener-
alised Autoregressive Conditional Heteroscedasticity 

(GARCH)-type models, implies a dependence on the 
observations of the immediate past, while autoregressive 
describes a feedback mechanism that incorporates past 
observations into the present. Thus, GARCH can be de-
scribed as a mechanism that includes past variances in 
the explanation of future variances. It allows users to 
model the serial dependence of volatility, as it takes into 
account excess kurtosis (i.e., fat tail behaviour), which is 
very common in hydrologic processes, and volatility 
clustering. Volatility clustering as used here depicts a 
phenomenon in which large changes tend to follow large 
changes, and small changes tend to follow small changes. 
In either of these cases, the changes from one period to 
the next are typically of unpredictable sign or orientation. 
Basically, the concept of volatility suggests a time-series 
model in which successive disturbances, although uncor-
related, are nonetheless serially dependent. A time series 
with the ARCH property has two basic components: 
conditional mean, and a conditional variance function; 
thus, the nonlinearity in the series may probably come 
from the nonlinearity of the conditional variance. 

ARCH-type models can generate accurate forecasts of 
future volatility, especially over short horizons, therefore 
providing a better estimate of the forecast uncertainty 
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which is available for water resource management and 
flood control [1]; as such, ARCH-type models could be 
very useful for hydrologic time series modelling. Some 
proposals on new models [2] to reproduce the asymmet-
ric periodic behaviour with large fluctuations around 
large streamflow and small fluctuations around small 
streamflow are available. These fluctuations though, ba-
sically can be handled with the conventional time series 
models that take season-dependent variance into account, 
such as Periodic Autoregressive Moving Average (PAR- 
MA) models and deseasonalised Autoregressive Moving 
Average (ARMA) models. However, little attention has 
been paid so far by the hydrologic community to test and 
model the possible presence of the ARCH effect with 
which large fluctuations tend to follow large fluctuations, 
and small fluctuations tend to follow small fluctuations 
in streamflow series [1]. Besides the recognised physical 
sources, such as the mechanisms involved in the rain-
fall-runoff transformation, some other sources can be 
identified from the streamflow series itself; for instance, 
issues of heteroscedasticity or volatility, nonlinear de-
terministic chaos and fractals. In this regard therefore, it 
is imperative to realise that both conditional heterosce-
dasticity and asymmetric seasonality in the mean and 
variance could also be probable sources of nonlinearity 
within the overall context of nonlinear determinism itself 
[1,3,4]. 

Against the backdrop of all this, the objective of this 
study, patterned after Wang et al. [1], is to test for the 
existence of ARCH effect in both the daily and monthly 
streamflow series of the River Benue, Nigeria. In addi-
tion, if there is the existence of ARCH effect, propose 
an ARMA-GARCH error model for the daily streamflow 

series since the ARCH theory admits non-normality of 
the unconditional distribution of the data. Thus, with the 
assumption of normality of the conditional distribution, 
an ARCH-type structure could be built to capture the 
time-dependent variances. The idea to restrict the model-
ling exercise to a low timescale is because of the short 
length of the monthly series. 

2. Materials and Methods 

2.1. Data Base 

In this study, historical time series for gauging stations at 
the base of the River Benue (i.e., Lower Benue River 
Basin) at Makurdi (7˚44' N, 8˚32' E), Nigeria was used. 
A total of 26 years (1974-2000) water stage and daily 
discharge data were collected. The average daily dis-
charges were then aggregated to monthly discharge val-
ues; both data regimes were used as appropriate in the 
study. To achieve this, discharge rating curve was used 
to convert the stage data to the corresponding discharge 
values. Figure 1 below shows the Benue River and its 
traverse; indicated too, is the study location, i.e., Ma-
kurdi. 

Both Figures 2 and 3 show the irregular flow pattern 
of the streamflow processes; i.e., daily and monthly time 
resolutions. The irregular flow pattern derives from the 
implications of seasonality. The study area experiences 
two distinct seasons, the wet and dry seasons respectively. 
Because seasonality impacts greatly on the behavioural 
pattern of flow vis-a-vis anthropogenic factors, prior to 
model development, data pre-processing was done as re- 
ported in the later sections of the study. 

 

 

Figure 1. Map of Nigeria showing the River Benue and the study location. 
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Figure 2. Time series plot of the daily streamflow. 

 

 
Figure 3. Monthly discharge series plot. 

 
2.2. Tests for ARCH Effect 

The detection for the ARCH effect of a streamflow series 
is actually a test of serial independence applied to the 
serially uncorrelated fitting error of some model, usually 
a linear stochastic autoregressive (AR) model. Suppose a 
stochastic process Yt is generated by an AR(p) process: 
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to ensure, that the conditional variance is positive. The 
process Yt is called AR(p) with ARCH(k) errors. It is 
important to note that the conditional variance function 
might be complicated for a long series, which means that 
k in Equation (3), the lag of the conditional variance 

 2 , is large. If this situation exists, the computation 
becomes increasingly burdensome and interpretation, dif- 
ficult. To resolve this problem, the generalized ARCH 
(i.e., GARCH) [5] was proposed; this takes the form as in 
Equation (5). 
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where, t jh   are lagged unconditional variances and 

0 0, 0, 1, , 0, 1, ,i ji k j g             (6) 

to ensure, positive variances exist. Realistically, GAR- 
CH(k,g) is an infinite order ARCH process with a ra-
tional lag structure imposed on the coefficients. The ba-
sic assumption in testing for ARCH effect is that linear 
serial dependence inside the original series is removed 
with a well fitted pre-whitening model and too, that any 
remaining serial dependence must be due to some non- 
linear generating mechanism, which is not captured by 
the model. In this regard, the feature of interest here is 
the conditional heteroscedasticity, and that it is possible 
to show that the nonlinear mechanism remaining in the 
pre-whitened streamflow series, namely, the residual se- 
ries, can be well interpreted as autoregressive conditional 
heteroscedasticity [1]. 

Thus to test for the ARCH effect, linear stochastic 
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models: Deseasonalised ARMA(20,1) and AR(11) were 
developed for both the daily and monthly streamflow 
processes, respectively. Before model fitting, both stream- 
flow processes were logarithmically transformed and de- 
seasonalised based on classical harmonic analysis [6]. 
Before applying ARCH tests to the residual series, to 
ensure that the null hypothesis of no ARCH effect is not 
rejected due to the failure of the pre-whitening linear stoc- 
hastic models, it is important to check the goodness-of-fit 
of the models. Figures 4 and 5 clearly show that the lin-
ear stochastic models fit the respective streamflow regimes 
appropriately, as there are no significant serial correlations 

present in the residual. 
Despite this though, while the residuals seemed statis-

tically uncorrelated according to the autocorrelation func- 
tion (ACF) values (i.e., Figures 4 and 5), Figure 6 shows 
that the autocorrelation values are not identically distrib-
uted; that is, the residuals are not independent and iden-
tically distributed over time. This situation, basically, con- 
notes volatility, a common behaviour of GARCH proc-
ess. 

It has been noted that some of the series modelled by 
linear stochastic models exhibit autocorrelated squared 
residuals [7]. Figure 7 attests to this assertion. 

 

 

Figure 4. ACF of residuals from ARMA(20,1) model for daily flow. 
 

 

Figure 5. ACF of residuals from AR(11) model for monthly flow. 
 

 
(a)                                                        (b) 

Figure 6. Segments of the residual series from (a) ARMA(20,1) for daily flow; (b) AR(11) formonthly flow. 

Copyright © 2012 SciRes.                                                                                OJMH 



Conditional Heteroscedasticity in Streamflow Process: Paradox or Reality? 83

 
(a)                                                           (b) 

Figure 7. Autocorrelation functions of the squared residuals from (a) ARMA(20,1) model fordaily flows and (b) AR(11) 
model for monthly flows. 

 
Though, the residuals seemed almost uncorrelated over 

time, the squared residuals are clearly correlated (Figure 
7). The autocorrelation structures of both squared resid-
ual series still exhibit traces of strong seasonality. The 
physical implication of this is that the variance of resid-
ual series is conditional on its past history; that is, the 
residual series may probably exhibit ARCH effect. 

Thus to test for the presence or otherwise of ARCH 
effect, the Engle’s Lagrange Multiplier (LM) test and 
Ljung-Box-Pierce Q-test for a departure from random-
ness based on autocorrelation function of the data series 
were adopted and implemented using MATLAB routines. 
The test statistic for LM test is given by TR2, where R is 
the sample multiple correlation coefficients computed 
from the regression of 2

t on a constant, and 

1 q
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2     T is the sample size. Under the null hy-
pothesis that there is no ARCH effect, the test statistic is 
asymptotically distributed as Chi-square distribution with 
q degrees of freedom. On the other hand, Ljung-Box- 
Pirece test is a modification of the Box-Pierce test. The 
Ljung-Box-Pirece test for ARCH effect takes a look at 
the autocorrelation function of the squares of the pre- 
whitened data, and tests whether the first L autocorrela-
tions for the squared residuals are collectively small in 
magnitude. For fixed, sufficiently large L, the Ljung-Box- 
Pierce Q-statistic is defined according as 
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where, N is the sample size, and  2 2
kr   is the squared 

sample autocorrelation of squared residual series at lag k. 
Like the Engle’s LM test, under the null hypothesis of a 
linear generating mechanism for the data, namely, no 

ARCH effect, the test statistic is asymptotically  2x l  
distributed. 

2.3. Modelling Framework and Development 

Attempts have been made by several researchers [1,8-10] 
to model both economic series and hydroclimatic proc-
esses by combining ARMA models with ARCH errors. 
The same framework was adopted in this study; here, the 
daily streamflow process was modelled by using ARMA- 
GARCH regime. In this regard, the ARMA-GARCH 
model employed can be interpreted as a direct combina-
tion of an ARMA model which was used to model the 
mean behaviour and the ARCH, for ARCH effect in the 
residual series from the model. The general GARCH 
(p,q) model for the conditional variance of innovations 
is: 
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where, t  denotes a real-valued discrete time stochastic 
process, p and q represent the order of the GARCH(p,q) 
conditional variance model; k is a constant, GARCH: 
represents the p-element coefficient vector Gi, and 
ARCH: represents the q-element coefficient vector Aj. 
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Since there is obvious presence of seasonality in the 
residuals of the daily streamflow under discourse, to pre- 
serve the seasonality in the variance of the residuals, the 
ARCH model was fitted to deseasonalised residual series. 
As a result, the ARMA-GARCH model with seasonal 
deviations was adopted. This model takes the form: 
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where, s  is the seasonal standard deviation of t  and 
s is the season number depending on which season the 
time t, belongs to; for daily flow series, s ranges from 1 
to 366. GARCH models can be treated as ARMA models 
for squared residuals; thus, its order was determined 
based on the method for selecting the order of ARMA 
models; the traditional model selection criteria such as 
Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) were used for selecting the mod-
els. 

According to the AIC, ACF and PACF structures, two 
GARCH models were found suitable; GARCH(0,7), i.e., 
ARCH(7) and GARCH(2,1) models. These models were 
selected based on the smallest AIC value for each of the 
cases considered. Hence, the preliminary ARMA-GAR- 
CH models fitted to the daily streamflow is composed of 
ARMA(20,1)-ARCH(7), and ARMA(20,1)-GARCH(2, 
1). On the basis of model parameter parsimony and sig-
nificance, the latter was preferred. The model building 
process was done using the GARCH Tool Box in MAT- 
LAB. The parameter and AIC values for these models ob- 
tained during model fitting process were as follows, i.e., 
1) and Table 1 in 2) below. 

1) ARMA(20,1)-ARCH(7) Model 
PARAMETERS: c = 0.027344; k = 0.77497; ARCH(1): 
0.32992; ARCH(2): 0.14675; ARCH(3): 0.000; ARCH 
(4): 0.018271; ARCH(5): 0.046449; ARCH(6): 0.00895; 
ARCH(7): 0.03078; AIC: 27718.76; BIC: 27783.17 

2) ARMA(20,1)-GARCH(2,1) Model 
AIC: 27897.55; BIC: 27933.33 

3. Results and Discussion 

3.1. ARCH Effect 

Tables 2 and 3 and Figure 8, show the Engle’s LM test 
for the residuals from both ARMA(20,1) and AR(11) for 
daily and monthly flow series. 

As reported in Tables 2 and 3, H = 0 and H = 1, both 
respectively indicate that when the H = 0, it implies that 
no significant correlation exists in the series and by 
extension, no ARCH effect, especially with the p- 
values greater than zero; similarly, H = 1 means there 
is presence of significant correlation and by implica-
tion, existence of the ARCH effect. From the results as 
shown in Tables 2 and 3, and Figure 8, the Engle’s 
LM test for the residuals indicate the existence of 
ARCH effect in the AR-MA (20,1) model for daily 
flow, whereas the null hypothesis of no ARCH effect 
is accepted for the residuals of the AR (11) model for 
monthly flow; Figure 8(a) clearly illustrates that there 
is no significant autocorrelation left in the monthly 
flow residuals. 

Figure 9 and Tables 4 and 5 report the results of the 
Ljung-Box-Pierce test for ARCH effect. Based on the 
Ljung-Box test, the null hypothesis of no ARCH effect is 
rejected for the residuals from ARMA(20,1) of the daily 
flow, whereas the result is to the contrary for the residu-
als from AR(11) of the monthly flow series; this result 
confirms that there is no significant autocorrelation left 
in the monthly flow residuals. 

On the whole, based on the test statistics in the two 
cases, it is clear that there is existence of conditional het-
eroscedasticity in the residual series from linear model 
(ARMA(20,1)) fitted to deseasonalised logarithmic-trans- 
formed daily streamflow process; but for monthly flow, the 
deseasonalisation pre-processing has successfully removed 
the seasonal variance in the monthly flow series, as indi-
cated by both the Engle’s LM and Ljung-Box tests for 
ARCH effect on the residuals of the AR(11) fitted to it. 
From the results, it is important to note that the higher 
the time frequency, the greater both the test statistics 
(i.e., Ljung-Box and Engle’s LM) exceeds the critical 
value. 

 
Table 1. ARMA(20,1)-GARCH(2,1) model fitting. 

Parameters Parameter value Standard error T-statistic 

c 0.024815 0.007292 3.4030 

k 0.40224 0.010867 37.0157 

GARCH(1) 0.38711 0.033451 11.5725 

GARCH(2) 0.11266 0.020453 5.5084 

ARCH(1) 0.26198 0.011499 22.7824 
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Table 2. Engle’s LM test (Daily flow). 

H p-value Statistic Critical value 

1 0 474.1550 11.0705 

1 0 475.9527 18.3070 

1 0 475.7151 24.9958 

1 0 475.4720 31.4104 

1 0 475.2284 37.6525 

1 0 475.9792 43.7730 

 
Table 3. Engle’s LM test (Monthly flow). 

H p-value Statistic Critical value 

0 0.9826 0.7068 11.0705 

0 0.9996 1.1879 18.3070 

0 1.0000 2.0770 24.9958 

0 1.0000 2.3988 37.6525 

0 1.0000 5.6110 43.7730 

 
Table 4. Ljung-box-pierce test (Monthly flow). 

H p-value Statistic Critical value 

0 0.3247 5.8140 11.0705 

0 0.5384 8.9336 18.3070 

0 0.6431 12.4714 24.9958 

0 0.8292 14.0262 31.4104 

0 0.9009 16.4467 37.6525 

0 0.4843 29.6377 43.7730 

 
Table 5. Ljung-box-pierce test (Daily flow). 

H (×103) p-value (×103) Statistic (×103) Critical value (×103) 

0.0010 0 1.4185 0.0111 

0.0010 0 1.5199 0.0183 

0.0010 0 1.5285 0.0250 

0.0010 0 1.5333 0.0314 

0.0010 0 1.5335 0.0377 

0.0010 0 1.5339 0.0438 
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(a)                                                            (b) 

Figure 8. Engle’s LM test for residuals from (a) AR(11) model for monthly flow and (b) ARMA(20,1) model for daily flow. 
 

 
(a)                                                     (b) 

Figure 9. Ljung-Box Q-test for the residuals from (a) AR(11) model for monthly flow and (b) ARMA(20,1) model for daily 
low. f  

 
3.2. Model Development is still presence of weak autocorrelation. Tables 6-10 and 

Figure 12 show the test results for ARCH effect on the 
standardised residuals from both ARMA(20,1)-GARCH 
(0,7) and ARMA(20,1)-GARCH(2,1) models; the test re- 
sults indicate very clearly that the ARCH effect has been 
removed. 

If the ARMA-GARCH model is successful in modelling 
the serial correlation in the conditional mean and condi-
tional variance, there should be no autocorrelation left in 
both the residuals and the squared residuals standardised 
by the estimated conditional standard deviation. Figure 
10 shows segments of the seasonally standardised resid-
ual series from the ARMA(20,1) model and its corre-
sponding conditional standard deviation sequence esti-
mated with GARCH(2,1) model. The standardisation of 
the residual series from the ARMA(20,1) model was ef-
fected by dividing by the estimated conditional standard 
deviation sequence. The autocorrelations of the stan-
dardised residuals and the corresponding squared stan-
dardised residuals are as plotted in Figure 11. Figure 11 
shows that even though there is no autocorrelation in 
the squared residuals (Figure 11(b)), which implies that 
the ARCH effect has been removed, but in the non- 
squared standardised residuals (Figure 11(a)), there 

Because the GARCH is designed to deal with the con-
ditional variance behaviour, rather than mean behaviour, 
the weak autocorrelation still present in the non-squared 
residual series must have arisen from the seasonally 
standardised residuals of the ARMA-GARCH building 
process. However, since tests for ARCH effect re-
vealed that the model passed the test; i.e., the null hy-
pothesis of no ARCH effect is accepted, there is no 
further need at this juncture to re-fit the data. Despite this 
though, it should be noted that a wrongly-specified ARMA 
model may lead to unclear structure in the autocorrelations 
and partial autocorrelations of the residual series; a 
wrongly-specified ARMA model has little explanatory  
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Figure 10. GARCH(2,1) model fitted to the seasonally standardised residuals from ARMA(20,1) model for daily flow; Note: 
(a) Returns as used here represent the observed residuals, i.e., seasonally standardised residuals; (b) Innovations stand for 
the residuals from the GARCH(2,1) model fitted to the observed residuals. 

 

 
(a)                                                         (b) 

Figure 11. Autocorrelation functions of (a) standardised residuals, and (b) squared standardised residuals from ARMA(20,1)- 
GARCH(2,1) model. 

 

 
(a)                                           (b) 

Figure 12. Tests for ARCH effect: (a) Ljung-Box test and (b) Engle’s LM test for standardised residuals from ARMA(20,1)- 
GARCH(2,1) model for daily flow. 
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Table 6. Engle’s LM test on standardised residuals from ARMA(20,1)-ARCH(7) model. 

H p-value Statistic Critical value 

0 0.9977 0.2976 11.0705 

0 1 0.6625 18.3070 

0 1 0.8043 24.9958 

0 1 1.0346 31.4104 

0 1 1.2507 37.6525 

0 1 1.4973 43.7730 

0 1 1.6467 49.8018 

0 1 2.1191 55.7585 

0 1 16.9850 61.6562 

0 1 17.1048 67.5048 

 
Table 7. Engle’s LM test on squared standardised residuals from ARMA(20,1)-ARCH(7). 

H p-value Statistic Critical value 

0 1 0.0049 11.0705 

0 1 0.0101 18.3070 

0 1 0.0159 24.9958 

0 1 0.0219 31.4104 

0 1 0.0278 37.6525 

0 1 0.0337 43.7730 

0 1 0.0391 49.8018 

0 1 0.0445 55.7585 

0 1 0.2716 61.6562 

0 1 0.2768 67.5048 

 
Table 8. Ljung-Box test on squared standardised residuals from ARMA(20,1)-GARCH(2,1). 

H p-value Statistic Critical value 

0 0.9998 0.1016 11.0705 

0 0.9994 1.2859 18.3070 

0 0.9999 1.4629 24.9958 

0 1 1.7031 31.4104 

0 1 1.9330 37.6525 

0 1 2.2076 43.7730 

0 1 2.3689 49.8018 

0 1 2.7212 55.7585 

0 0.9996 19.4602 61.6562 

0 1 19.6100 67.5048 

Copyright © 2012 SciRes.                                                                                OJMH 



Conditional Heteroscedasticity in Streamflow Process: Paradox or Reality? 

Copyright © 2012 SciRes.                                                                                OJMH 

89

Table 9. Engle’s LM test on standardised residuals from ARMA(20,1)-GARCH(2,1). 

H p-value Statistic Critical value 

0 0.9998 0.1016 11.0705 

0 0.9994 1.2800 18.3070 

0 1 1.4682 24.9958 

0 1 1.7083 31.4104 

0 1 1.9303 37.6525 

0 1 2.2049 43.7730 

0 1 2.3619 49.8018 

0 1 2.6969 55.7585 

0 1 19.2312 61.6562 

0 1 19.3707 67.5048 

 
Table 10. Engle’s LM test on squared standardised residuals from ARMA(20,1)-GARCH(2,1). 

H p-value Statistic Critical value 

0 1 0.0059 11.0705 

0 1 0.0106 18.3070 

0 1 0.0168 24.9958 

0 1 0.0232 31.4104 

0 1 0.0295 37.6525 

0 1 0.0358 43.7730 

0 1 0.0415 49.8018 

0 1 0.0476 55.7585 

0 1 0.3389 61.6562 

0 1 0.3445 67.5048 

 
power in all instances. In addition, a GARCH model may 
be better disposed to capture observed nonlinear dynam-
ics, and a tendency to reduce serial dependence and lep-
tokurtosis, it could become inadequate to model the gen-
erating mechanism in the flow process if the autocorrela-
tions of the squared residual process of the series decay 
so slowly. As reported in Bera and Higgins [11], the third 
moment for a regular ARCH process is zero; therefore, 
unconditional distributions of the series must be symmet-
ric. Though, the conventional ARCH or GARCH model 
is able to capture the excessive kurtosis, as usually the 
case in most hydrological time series, it cannot capture 
asymmetry. 

3.3. Pre-Whitening Linear Stochastic Models 

Linear stochastic models like SARIMA, deseasonalised 
ARMA, and periodic models are the most commonly 
used in modelling hydrological processes. Considering 

model formulation in terms of the constitutive equation, 
though the seasonal variation in the variance present in 
the original time series can be dealt with basically by the 
deseasonalisation approach, neither of the SARIMA and 
ARMA models take into account the seasonal variation 
in variance of the residual series; it is primarily due to the 
fact that the innovation series is assumed to be inde-
pendent and identically distributed. Hence, both SARI- 
MA and deseasonalised models cannot capture the AR- 
CH effect usually observed in the residual series [1]. 

In contrast, the periodic model, which is another ver-
sion of ARMA models, which is fitted to separate sea-
sons, allows for seasonal variances in not only the origi-
nal series but also the residual series. Periodic models 
have a high potential to perform better than both SARIMA 
and deseasonalised ARMA models in capturing the 
ARCH effect since it takes into account season-varying 
variances [1]. But however, while seasonal variances might 
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be sufficient for describing ARCH effect in monthly flow 
series, because in monthly flows, it is caused by seasonal 
variances, the contrary is the case with daily flow series. 

4. Conclusions 

It is obvious from available literature that discussions on 
the nonlinear mechanism, conditional heteroscedasticity 
in hydrological processes have been very austere. Model- 
ling data with time varying conditional variance could be 
attempted in various ways, non-parametric and paramet-
ric. Towards this end, the parametric approach was adopt- 
ed here. The existence of the ARCH effect was verified 
in the residual series from linear models fitted to the 
monthly and daily streamflow processes. Following from 
the tests, it is shown that the ARCH effect is caused by 
seasonal variation in the variance for monthly flows, but 
seasonal variation in variance can only partly explain the 
ARCH effect in daily streamflow. It is also evident that 
the traditional seasonal ARMA models are inadequate in 
describing ARCH effect in the daily streamflow process; 
though, PARMA model is adequately robust in describ-
ing monthly flows by considering season-dependent va- 
riances. In the light of this, and taking the seasonal vari-
ances inspected in the residuals from linear stochastic 
models fitted to the daily flow series into consideration, 
the idea of an ARMA-GARCH model with seasonal com- 
ponents is worth exploring. 

The ARMA-GARCH model is basically a combination 
of an ARMA model, which is used to model the mean 
behaviour, and GARCH model, the ARCH effect in the 
residuals from the ARMA model. Thus, to preserve the 
seasonal variation in variance in the residuals, the ARCH 
model should not be fitted directly to the residual series, 
but rather, to seasonally standardized residuals. Because 
the ARCH effect in daily streamflow could mainly arise 
from perturbations in daily hydroclimatic variations, the 
spread in the use that may accrue from developing an 
ARMA-GARCH model could be limited. Despite this 
though, because the relationship regime between runoff 
and rainfall on one hand, and rainfall and temperature on 
the other is complex to capture precisely by any model, 
and too, the non-availability of large enough rainfall data, 
the accuracy of weather forecasts could be limited. Thus, 
the potential of an ARMA-GARCH model should be 
explored and probably embraced for modelling daily stream- 

flow, at least in terms of the relevance of statistical mod-
elling in hydrology. 
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