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ABSTRACT

The present paper is mainly concerned with several new types of fixed point theorems in different spaces such as cone
metric spaces and fuzzy metric spaces. By using these obtained fixed point theorems, we then prove the existence and
uniqueness of the solutions to two classes of two-point ordinary differential equation problems.

Keywords: Expansive Mapping; Cone Metric Space; Fuzzy Metric Space; Two-Point Ordinary Differential Equations

1. Introduction

The theory of the fixed point has important applications
in fields such as differential equations, equilibrium pro-
blems, variational inequality, optimization problems,
maxmin problems etc. (cf. Klaus Deimling [1], Congjun
Zhang [2] for example), which has attracted many
scholars’ attention and became a hot topic in mathe-
matics and applied mathematics field for a long time. In
recent decades, many new types of fixed point theorems
have been proposed (see [3-6] and the reference therein)
and the generalizations of the existing ones have been
dramatically developed in many ways. In [7], Long-
Guang Huang and Xian Zhang have introduced the
notion of cone metric spaces and proved some fixed
point theorems of contractive mappings on cone metric
spaces. For fixed point theorems in fuzzy metric spaces,
see [8-12]. In [13-16], some scholars have proved the
fixed point theorem in partial order metric space, and
applied them to prove the existence and uniqueness of
the solution to the two-point ordinary differential equa-
tion problems. Inspired by the recent progress in this
fields, we will study in the present paper the existence
and uniqueness of the fixed point for some special mapp-
ings in cone metric spaces and fuzzy metric spaces as
well as their applications to the following two-point or-
dinary differential equations.
Problem (1):

{u'(t):f(t,u(t)), te[0,7].

Copyright © 2012 SciRes.

where 7>0, f:IxR— R is a continuous function
satisfying some conditions which will be given explicitly
later.

Problem (2):
{x'(t) = f(t,x)+g(t,x), te [O,T]
x(O) = Xy,

where 7>0, f:IxR— R is a continuous function
satisfying some conditions which will be given explicitly
later.

The paper is organized as follows. For the reader’s
convenience, we recall in Section 2 some definitions and
lemmas in cone metric spaces and fuzzy metric spaces
that will be used in the sequel. Section 3 is devoted to the
investigation on the existence and uniqueness of the
fixed point for some special mappings in cone metric
spaces and fuzzy metric spaces. In last section, two-point
ordinary differential equation problems are studied by
using the results obtained in Section 3 and the existence
and uniqueness of the solutions to such equations is
established.

2. Preliminaries and Abstract Results

We recall in this section some definitions and lemmas in
cone metric spaces and fuzzy metric spaces that will be
used in the sequel.

Definition 1 [6]. Let (X,d) be a metric space and
f amapping from X to X.Forany ze X, define
f°z=z, f'z=f(f"'z) for n>=1. The sequence
{/"} is called the orbit of fand " the n iterate of .
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Definition 2. A function f: [O,oo) - [O,oo) is called
an w-function if it is a monotone increasing function and
satisfies that f(0)=0 and for any &> 0, there exists
M>0,suchthat f(t)<e,forevery re(e,M).

For example: f(x)=(1/10)x, defined on [0,), is
an w-function.

Definition 3 [7]. Let X be a nonempty set. Let E
be a real Banach space, K a cone of E satisfying
intk =& , where intK denotes the interior of X .
Define a partial order = on E based on X as fo-
llows: for any x,yeE , ys>=x if and only if
y—xe K ,while y>x means y>x and y=x,and
y>=>=x means y—xeintk . And the following con-
vention is assumed: x<y ifandonlyif y>x, x=y
ifandonlyif x<y and y<x.

If amapping d: X xX — E satisfies:

1) d(x,y)zO, for all x,yeX,d(x,y):O if and
onlyif x=y;
2)d(x,y)=d(y,x), forall x,yeX;
3)d(x,y)=<d(x,z)+d(z,y), forall x,y,zeX,
then d is called a cone metric on X and (X,d) is
called a cone metric space with respect to the Banach
space E andthecone K in E.

Definition 4 [2]. 1) A cone K ina Banach space E
is called normal, if there exists a number M > 0 such that
for all x,yeK , O=<x=<y implies "x”SM"y" ,
where @ is the zero element of the Banach space E.
The smallest M satisfying that inequality is denoted by
M", and it is called the normal constant of K ; 2) A
cone K in a Banach space E is called regular if
every increasing sequence which is bounded from above
is convergent. That is, if {x,} is sequence such that
x<x,<--<x,<---<y forsome yekFE,then thereis
x € E such that ||xn —x" - 0(n - oo) .

Remark 1. 1) For any normal cone K in a Banach
space E, M exists and M " >1(see [2]); 2) Equivalently,
a cone K is regular if and only if every decreasing
sequence which is bounded from below is convergent. It
is well known that a regular cone is a normal cone.

Definition 5 [7]. Let (X,d) be a cone metric space
with respect to a Banach space E and a cone K in
E.Let {x,} beasequencein X (see[7]).

1) {x,} is called a convergent sequence with limit
x, if for any c e E, there exists n, € N such that for
every n>n,, d(x,,x)<<c holds. In this case, we

denote the limitof {x,} by limx, =x,or

x, > x(n—> o).

2) {x,} is called a Cauchy sequence on X, if for
any ce E with 0<c¢, there exists n, € N such that
foreach m,n>ny,d(x,,x,)~<<c holds.

3) We call X a complete cone metric space with
respect to the Banach space £ andthecone K in E,
if every Cauchy sequence is convergentin X .
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Remark 2. If K is a normal cone, then {x,} con-
verges to x if and only if d(x,,x)—>6, as n—>x.
{x,} is a Cauchy sequence on X if and only if
d(x,,x,)—>0 as mn—>o (see[7]).

Definition 6 [7]. Let (X,d) be a cone metric space
with respect to a Banach space E and a cone K in
E . If for any sequence {x,} in X, there exists a sub-

sequence {xnk} of {x,}, such that {xnk} is conver-

gent in X . Then the cone metric space (X,d) is said
to be sequentially compact.

Definition 7 [9,10]. A binary operation *: 0, 1] [0,1]
is called a continuous #-norm, if the following conditions
are satisfied: 1) * is associative and commutative; 2) *
is continuous; 3) a*1=a forall a[0,1];4)
ax*b<c*d whenever a<c and b<d , for each
a,b,c,d €[0,1]. If it only satisfies conditions 1), 2) and
4), then it is called a z-norm.

Four typical examples of continuous #-norms are
a*,b= __a for

max {a,b, A}
0<A<l1 and a*;b=ab, ax,b=max{a+b-1,0}.

Definition 8 [9,10]. Let X be an arbitrary non-
empty set. Let * be a continuous -norm and M a fuzzy
seton X? x(O,oo) . If the following conditions satisfy:

1) M(x ¥, t) >0;

ax b= min{a,b} ,

2) M(x,y,t)=1 ifandonlyif x=y;
3) M(x,y,t)=M(y,xt);
4) (xyt)*M(y,Zs)<M(xzt+S)

5) M(x,y,.):(0,00)—[0,1] is continuous, for any
x,y,z€X and 1,5>0, then the 3-tuple (X,M,*) is
called a fuzzy metric space.

Remark 3. Forany x,ye X,

M (x,p,.):(0,0) >[0,1] is a non-decreasing function
(see [9,10]).

Definition 9 [9,10]. Let (X,M,*) be a fuzzy metric
space and M a fuzzy set on X?x[0,00). M is said to
satisfies the n-property on X2 x(0,) if

Iim[M(x,y,k”t)]l =1 whenever x,ye X,k>1 and

p>0.

Definition 10. Let (X,M,*) be a fuzzy metric space
and M a fuzzy set on sz[o,oo). M is said to
satisfies the 7 — property on sz(o,oo) if
limM (x,y,k"t)=1 forall x,yeX and k>1.

Definition 11 [11]. A function f:R" — R" is said
to satisfy ¢-condition, if fis a strictly increasing fun-
ction satisfying f{0) = 0 and [|im/"(¢)= for any

n—0

>0, where /" ()= 1 (/" (2)).
Remark 4. If a function f:R" — R' satisfies the
¢ —condition, then the following inequalities hold (see
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[11]):

1) f(¢)>¢,forall 1>0;

2) f"(t)> f"H(e)>--> f(t)>1, foreach
n=1,2,--- andforall r+>0.

Definition 12. Let (X, M,*) be a fuzzy metric space,
the fuzzy set M is said to have ¢ — property whenever

|imM(x,y,f”t):1 forall x,yeX where

fiR" —> R" satisfying the ¢—condition.

Definition 13 [9,10]. Let (.X,M,*) be a fuzzy metric
space and M afuzzy seton X?x[0,0).

1) A sequence {x,} in X is said to fuzzy-conver-
gent to a point xeX , if limM(x,,x,¢)=1 for all
t>0. e

2) A sequence {x,} in X is called a fuzzy-Cauchy
sequence, if for each 0<&<1 and >0, there exists
nyeN , such that M(x,,x,,)>1-¢ for each
m,nzn,.

3) A fuzzy metric space is called fuzzy-complete, if
every fuzzy-Cauchy sequence is fuzzy-convergent.

Definition 14 [9,10]. Let (X, M,*) be a fuzzy metric
space. The fuzzy set M is said to be fuzzy-continuous
on X?x(0,), wheneverany {(x,,y,.,)} in
X?x(0,90) which fuzzy-converges to
{(x,y,t)} e X? x(O,oo) implies

IimM(xn,yn,t"): M(x,y,t) .

Remark 5. M is a continuous function on X x[0,)
(see [9,10]).

Definition 15 [12]. Let (X,M,*) be a fuzzy metric
space and M the fuzzy set on X?x[0,:0). Denote by
Hy(X) the set of all compact subsets of X and define
afunction H,, :Hy(X)xH,(X)x(0,0)—(0,0) by

H,, (A,B,t)=min{infM (a,B,t),infM (A,b,t)
beB

aci

forany 4,Be H,(X) andany >0, where
M(a,B,t) = supbeBM(a,b,t) and

M (4,b,t) =sup, M (a,b,t).

Lemma 1 [6]. Let (X,d) be a complete metric
space, f:X — X, for the n iterate of f (n>1),
the following statements hold:

1) If f" has a unique fixed point, then f has a
unique fixed point.

2) If there exists ze X, such that the orbit of 1~
convergesto z, then the orbitof f convergesto z.

3) If the orbit of f" is a bounded sequence, then the
orbit of f isabounded sequence.

Lemma 2. Let (X,d) be a complete metric space
and 7 an expansive and surjective mapping on X,
then T has a unique fixed point.

Proof. We claim first that 7 is injective. To show
this claim, assume, by the way of contradiction, that
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there exist x, # y, € X such that T(x,)=T(y,)e X .
Since x,#y,€X , then d(x,,,)>0 holds. Since
T is an expansive mapping, it implies
d(T(x,),T(¥,))>0. It contradicts to T'(x,)=T7(y,),
that is, d(T(x,),T(y,))=0, which implies 7 is a
bijection. Hence 7™ exists and is a contraction mapping.
By the contractive mapping priciple, there exists a unique
X, € X ,suchthat 77 (x,)=x, € X , thatis

xy =T (x,) € X . The proof is complete.

Lemma 3 [5]. Let (.X,d) be a complete metric
space and f a self mapping on X. If the following con-
dition satisfies, for any & >0, there exists 6 >0, such
that ¢<d(x,y)<e+o5 implies d(f(x),f(y))<e,
then f'has a unique fixed point £ on X, and
lim/" (x)=¢ forany xeX .

Lemma 4 [7]. Let (X,d) be a sequentially compact
cone metric space with respect to a Banach space FE
and a regular cone K in E . Suppose a mapping
T:X — X satisfies the contractive condition:
d(Tx,Ty)—<d(x,y), for all x,yeX,x#y, then T
has a unique fixed pointin X .

Lemma 5 [4]. Let (X,d) be a compact metric space
and 7 aself mappingon X . Assume that
12d(x,Tx) < d(x,y) implies d(Tx,Ty) < d(x,y) for
any x,ye X ,then T has a unique fixed point.

Lemma 6 [9,10]. Let (X,M,x) be a fuzzy metric
space, ax*b>ab for all a,be[0,1] and M satisfy
n—property. Let {x,} be a sequence in X such that for
all neN, M(x,,x,.,k)>M(x,,x,t) for every

n?n+l?

0<k<1,then {x,} isaCauchy sequencein.X.

3. The Existence Theorem of Fixed Points

In this section, we apply the concepts and lemmas pro-
vided in Section 2 to prove some existence theorems of
fixed points for some mappings. These results will be
used in the following section.

Theorem 1. Let (X,d) be a complete metric space
and f:X — X a surjective mapping. If there exist
peN and h>1 such that

d(fp(x),fp(y))zhd(x,y) €))]

holds for any x,y e X, then there exists a unique fixed
point of f.

Proof. Foreach y e f?(X),since f isa surjective,
then there exists ze f(x), such that f(z)=y, in the
same way, there exist xe X ,such that f(x)=z, ie.
there exists xe.X, such that f?(x)=y. We deduce
by induction that f”(x) is also surjective, which
combining (I) shows that f”(x) is an expansive
mapping. By Lemma 2, there exists a unique fixed point
of f7(x), then we know by Lemma 1 that there exists a
unique fixed point of f. The proof is complete.

Remark 6. It is obvious that we can get Lemma 2
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from Theorem 1. An example satisfying Theorem 1 is
given below.
Example 1. Define f:R— R by

X .
——,ifx <0;

f(x)=1 5

—10x,ifx > 0,

it is clear that 1 is a surjective self-mapping on R and
fi(x)=2x. f? satisfies condition (1), ie. p=2,
then f has a fixed point, 0 is the fixed point in this
example.

Theorem 2. Let (X,d) be a sequentially compact
cone metric space with respect to a Banach space E

and anormal cone K in E with normal constant M".

Assume that 7 is a self mapping on X and satisfies

1 . .
for any x,yeX, W"d(x,Tx)"<”d(x,y)” implies
|d(7x, 7v)| <|d(x.»)| ., then 7 has a unique fixed
point.

Proof. We claim first that S=0 where g is
defined by

A =int [d (7).

Using reduction to absurdity, we suppose £>0.
Since (X,d) is sequentially compact, we deduce from
the definition of 4 that there exists a sequence {x,}
such that

"d(xn,Tx" )" - ﬂ(n - oo)
and
(xn,Txn ) - (5,77)(11 - 00)

for some &,7 e X . Observe that the normal constant
M™ >1, there exists n, >0 such that for any n>n,
the inequality

1
= ld e, 7] <o )

holds, which combining the given conditions shows that
forany n=>n,,

”d (Txn,Tﬂ)” < "d(xn,?])".

By calculations we then have
Hd(rn,rzn)‘ <|d (. 7n)| = tim, .. |d(7x,.77)|
<lim,_,, |d(x,.7)| = B

which contradicts to the definition of S

We prove next that 7 has a fixed point. We proceed
once more by using reduction to absurdity and suppose
that 7'has no fixed point. Then for each ne N,

1
0< W”d(xn,Txn)

< "d (xn Ix, )",
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which implies that for each ne N,
“d(Txn,szn )H < "d(xn,Tx" )"

By the triangle inequality in cone metric spaces, we
have

d(&,7%x, )< d(& T, ) +d(Tx,, T, ),
then,
d(f,szn)

< lim* “(d (&.7x,)+d(7x,. T2, ))
< ,!T;‘CM* ("(d (& Tx, )" + "d (xn Tx, ))")

= M*||d(§,77)+d(§,77)" =0.

We claim that at least one of the following two in-
equalities should be hold:

et <locm <),

lim
n—>0

1
W"d (xn,Txn) < "d(xn,cf)”,

otherwise, we reach a contradiction by the following
calculations:

[d (e, 7, ) < M |(d(x,, &)+ |d (7, €))|
< [Z_A;“d (e, 775, )| 5l e, )||j
< d G T+ Sl e, )| = 0 7, )
If the first inequality of the above two holds, then
a7 < (Jo(e.7x, )| +|d(re s, )|)
<M (”d (&.77%, )” +[d(& 1, )||)

—0(n—> ),
if the the other one holds, then
lace 7)< ar(Jace. s, ) +a(re. 7))
<M (Ja(& 1, )|+ o (6, )]
—0(n— ),

which show that 7& =& in each case, and the proof of
the existence of the fixed point is complete.

We finally prove the uniqueness of the fixed point.
Suppose ve X,v=u and Tv=v.Since

1
Z—N*"d(u,Tu)" =0< "d (u,v)" , then

ﬂd(u,Tv)Uf ||d(Tu,Tv)||<||d(u,v)J|, we reach a contra-
iction which completes the proof.

Remark 7. In [7], Long-Guang Huang and Xian
Zhang have established a fixed point theorem in a se-
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quentially compact cone metric space with respect to a
Banach space £ and a regular cone K in E (see
Lemma 4), where the mapping 7: X — X satisfies the
contractive condition. In [4], Tomonari Suzuki has
established a fixed point theorem in a compact metric
space where the mapping 7 satisfying a condition
similarly to condition (II) of theorem 2 (see Lemma 5).
Observe that any regular cone is always normal,
Theorem 2 is established under a different and weaker
condition when comparing with Lemma 4 and generalize
the results of Lemma 5 from compact metric spaces to
sequentially compact cone metric spaces.

Theorem 3. Let (X,M,x) be a complete fuzzy
metric space, where * is definedby a=*b=ab forany
a,be[0,1] and M afuzzy seton X*x(0,) satisfying
¢- property. For a surjective function f:X — X, if for
any x,ye X,x=#y,the following inequality holds

M(f (%), (9).0) =M (x.2.6(1)). (1)

then f has a fixed point on X . If inequality (I) is
strict, then f has a unique fixed pointon X .

Proof. By choosing y = f(x), we deduce from (I1)
that forany xe X,

M(f (x),f*(x).t) 2 M (.1 (x),9(1) (11 -
Proceed by introduction on n, we have forany ne N
M7 (x), 1" (x),0) 2 M(f" (2), 7 (2).6(0)).
Forany »n>m, we have

M(f" (x). /" (x).1)
>M (f"’l (X),f " (x).9(1)
=M (" (x), S ()07 (1)) 2
(f" I (3). (). 1)
- onns
Observe that M satisfies ¢- property, then
limM (£ (x), " (x).¢)
> Lig;M(f"*m (x),x.¢" (1)) =1,

which shows that { 1" (x)ﬁ is a fuzzy-Cauchy sequence.
Since (X,M,*) is complete, there exists x, € X, such
that
|imM(f" (x),xo,t) =1.
Then by (I1) and the nondecreasing property of M, we
have
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forany x,ye X,x=y.Since

!mM(f’l(x),xo,t)Il,
IimM(f’”l(x),f(xO),t) =1.

n—o

We therefore deduce

i " (x)= £ (x0) = 5,
which shows f has a fixed pointon X .
If there exist x,,x; € X,x, # x; such that
£ (x0) =X, f (x5) = xy , then by condition (11),

M (i) = (£ 3). £ (5.1
>M(xo,xé,¢(t))ZM(xO,xé,t).

It is a contradiction, hence x, =x;. We have now
proved the uniqueness which complete the proof.

Corollary 1. Let (X,M,*) be a complete fuzzy
metric space and f:X — X a bijective mapping,
where * is defined by axb=ab for any a,b€[0,1]
and M a fuzzy set on X?x(0,0) satisfying ¢-
property. If forany x,ye X,x#y,

M(f(x). £ (¥):6(6)) < M (x3:1),

then f'has a fixed point on X . If the above inequality is
strict, then f'has a unique fixed pointon X .

Proof. Since f is bijective, f™:X — X exists and
satisfies forany x,ye X,x=y,

M) 2 (0),) = M (5, 31)
> M(f(x)./(»).8(t))-

By Theorem 3, we know ' has fixed point, and the
fixed point of /' is the same as that of £, then f has
fixed point on X . If the inequality is strict, then the
proof is the same as that in Theorem 3.

Corollary 2. Let (X,M,*) be a complete fuzzy
metric space, where * is definedby ax*b=ab forany
a,be[0,1] and Mafuzzyseton X°x(0,) satisfying
r- property, and f:X — X a surjective mapping
satisfying

M (). (3), k) M (3,300,

for any x,yeX,x#y, ke(0,1). Then f has a fixed
pointon X . If the inequality is strict, then fhas a unique
fixed pointon X .

Proof. Let ¢(¢)=1ks, 0<k <1, then by Theorem 3
we can easily propose the results of Corollary 2. We omit
the details.

Example 2. Assume X =R,
M by

te(0,0), and define

—d(x,y)
M(x,y,t):e ro
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clearly M satisfies z-property. For any f satisfies the
conditions of Corollary 2, i.e.

“A(/(x)./()  —d(x)
e kt >e !

we have d(f(x),f(y))<kd(x,y) for any ke(0,1),
hence f is a contraction mapping which has a fixed

pointon X .
In the following, we show an example to demonstrate

the conditions in Corollary 2 are only sufficient condition,

not necessary conditions.
Example 3. Assume X =R,
M by

1e(0,), and define

M(x,y,t) = ),

Obviously M (x,y,t) is a fuzzy set which doesn’t
have z- property, hence it can’t be judged by Corollary
3. Butif f is a contraction mapping, a fixed point still
existon X.

Theorem 4. Let (X,M,*) be a complete fuzzy
metric space, where * is definedby a=*b=ab forany
a,be[0,1] and M a fuzzy set on X*x(0,) satis-
fying ¢- property. F:X —2* is a compact set-
valued mapping, satisfies forany x,ye X,

Hy, (F(x).F(3),0)2 M (x,.3,0(0))

then F hasafixed pointon X .

Proof. By the choice axioms (see [6]), there exists a
single-valued function f:X — X, such that
f(x)eF(x) forany xe X .Then foreach
x, 0 € X, there exist
X, = [ (%) e F(x),»
tion of H,,, we have

M(f (), f (1)) = M (x;,,.0)
>H, (F(xl,)F(yl),t) ZM(xl,yl,¢(z))_

Theorem 3 shows that f* has a fixed point y, € X,
ie. yo=f(y)eF(y), which is also a fixed point of
F on X.

Corollary 3. Let (X,M,*) be a complete fuzzy
metric space and M a fuzzy set on X? ><(0,oo) satis-
fying 7- property. F:X —2* is a compact set-
valued mapping satisfying for every x,ye X,

H, (F(x),F(y),kt)ZM(x,y,l),O<k<1.

= f(»)eF(y). By the defini-

Then F has afixed pointon X.

4. Applications to Differential Equations

This section is concerned with the proof of the existence
and uniqueness of the solutions to the two-point ordinary
differential equations by using the fixed point theorems
obtained in Section 3. The following are the main results.

Theorem 5. Assume that f:7xR— R is a continu-
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ous function. If there exists A >0 such that the follow-
ing inequalities

0< f(ty)+Ay=[ f(t.x)+Ax]<Ao(y-x), (IV)

hold for any x,yeR with y>x, where o is an
w-function, then Problem(1) has a unique solution.
Proof. Problem (1) is equivalent to the integral equa-

tion
= J'OTG(t,s)[f(s,u(s))+ﬂu(s)JdS,

where

eﬂ.(TJrsft)

T , 0<s<t<T;
e -1
G(t,s) = 2ot
:”—1’ “0<t<s<T.
Define
c([0.7],R) > C([0,T],R),

by

(Fu)(e) = [ G(t,5)[ f (s,u(s))+ Au(s) ] ds.

Note that if «eC([0,7],R) is a fixed point of F,
then u<C([0,7],R) is a solution to Problem (1).
Define a order relation in C([0,7],R) by u<v ifand
only if wu(t)<v(r) for every te[0,T], for every
u,ve C([0,T],R) . Denote by
d(“aV):SUp,e[o,Tﬂ”(f) v(t)| forany
u,veC([0,T],R) the distance in C([0,T],R). For
each u > v, by the left side of (IV),

S(t,u)+Au> f(t,v)+Av. Since G(t,s)>0, for each
(t,s)e[O T]x[O T] t>s,

(Fu IG (¢,s [f( (S))+/1u(s)st
> IOG t,s [f(s,v(s))+/1v(s)]ds = (Fv)(t),

which shows that F is monotone increasing. For any
u>v,if e<d(u,v)<e+5,then

)= (Fv)(1)

d(Fu,Fv) < sup| (Fu)(

te[0,7]

< supj

1€[0,7]
|f Su
< supj

te[O T

< sup.[

te[O T

+/1u( ) f(s,v(s))—/iv(s)|ds
t s /la)(u(s)—v(s))ds

ﬂa)(d(u(s),v(s)))ds.

Since w(¢) isaincreasing function, then
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a)(d(u(s),v(s)))Sa)(d(u,v)) for u>v,and
d(Fu Fv <t§[l£]j ﬂw(d( ( ),v(s)))ds

S/la)(d(u v) SupJ. G(t,s)ds

1€[0,T]

1 l i(T+s—t)
= Jo(d 2z
o(afun) s [ 2e

S/Ia)(d (u,v))M—_

Sa)(d(u,v)).

By the definition of w(r), for each £>0, there
exists M >0 such that
8<d(u,v)<M, a)(d(u,v))<5, let 6=M-¢>0,
hence &<d(u,v)<e&+35, (d(u,v))<e. It demon-
strates d(Fu,Fv)<e. By Lemma 3, F has a unique
fixed point, and limF" (u,)=u for each

uy € C([0,T],R), u is the fixed point of F, ie. the
solution of Problem (1).

Assume «(t) is a lower solution of Problem (1), we
can prove as Theorem 3.1 in [13] to obtain the uni-
queness of the solution.

Remark 8. Contrasted with some related results in
[13-15], the conditions in Theorem 5 is relatively clearer.

Theorem 6. Assume that f:I/xR—> R is a con-
tinuous function. If there exists A >0 such that for any
x,y€ R with y>x,the following inequalities

OSf(t,y)—f(t,x)+g(t,y)—g(t,x)
S/l?](y—x) (V)

hold, where 7 is an w-function, then the solution of
Problem (2) exists.

Proof. Problem (2) is equivalent to the following
integral equation

X t) =X, +L§f(s,x(s))

Define

ds+ _[;g(s, x(s))ds.

C([0.7];R) > C([0.T];R)
by
(Fu t xo+_[f su +g(s u( ))ds,
forany u(z,x)eC([0,7];R). Note that
ueC([0,T];R) isa fixed point of F, then
ueC([0,T];R) is asolution of Problem (2). For

u,veC([0,T];R), we define u<v if and only if
u(r)<v(t) forany re[0,T]. Denote

d(u,v)= sup[E[OYT]|u(t)— v(t)|, for u,ve C([O,T];R) .
Then by (V), forany u>v,

Copyright © 2012 SciRes.

f(tu)= f(1,v),
S (tu(s))+ g (tu(s))= £ (1v(s) + 2 (6v(s)),

which implies
(Fu x0+ff su +g(s u( ))ds

> X, +I0f s,v(s))+g(s,v(s))ds = (Fv)(t),

and

d(Fu, Fv) < sup | (Fu)( (Fv)(t)|
te[OT]
< sup

sup J;[f(su(s))—f(s v(s))]ds
+J.t[g s,u(s) —g s,v(s))}ds

< sup I /177 ) v(s))ds (0<k<1)
te[O T]
<sup|| 4 ds|.
te [OE]J. 77 )) ’
By the definition of function @, let & =¢TA>0,

there exists M >0, such that

& < d(u,v) < gT/”L,a)(d(u,v)) <g/, there exists 6>0,
suchthat M =&+ ,then ¢ < d(u,v) <g+d,

77(d( ))<51 and

sup J' /177 (u, v))ds

1€[0,7]

< sup j Aeds <2T Ae, = .

1€[0,7]

By Lemma 3, F has a unique fixed point, and
limF" (u,)=u for any u, e C([0,T];R), u is a fixed

point of F, which is also a solution of Problem (2). The
proof is complete.

Define 6:R— R satisfying for any
u,ve C([O,T];R) ,

0(Au(s))—-0(Av(s))
> f(s,u(s))—/lu(s)—(f(s,v(s))—/lv(s)),
then we have the following theorem:
Theorem 7. Let (X,M,*) be a complete fuzzy

—d(x,y)
metric space, M (x,y,f)=e !

ditions hold:
1) For any x,yeR,x;ty,ke(O,l),

M(H(x),ﬁ(y),kt)zM(x,y,t);

. If the following con-

2)Forany x<y,
0< f(t,y)+Ay—[ f(t.x)+Ax],

then the solution of Problem (1) is unique.

Proof. By example 2, while M (x,y,t)=e ' , a
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mapping satisfying the above conditions is a contraction
mapping, i.e. € is a contraction mapping. Then we can
proceed the proof with the same arguments as that in
Theorem 5.

Remark 9. If we replace condition (1) by the in-
equality in Example 2 or Example 3 as well as the corre-
sponding expression of M, then Theorem 7 can also
make sure the uniqueness of the solution of Problem (1).

Define h:R — R satisfying for any
u,veC([O,T];R),

h(/lu (S)) - h(/tv(S))
> [/ () ~(765:v(5))]
g (su(s)) [ (sv(5))],

then we have the following theorem:
Theorem 8. Let (X,M,*) be a complete fuzzy
—d(x.»)
metric space, M (x,y,f)=e !

conditions hold:
1)forany x,yeR,x#y and ke(0,1),

M(h(x),h(y),kt) ZM(x,y,t);
2) forany x<y,
0< f(t,y)—f(t,x),O < g(t,y)—g(t,x),
then the solution of Problem (2) exists.

. If the following two

—d(x,y)
Proof. By Example 2, while M (x,y,t)=e ' , a
mapping satisfying the conditions above is a contraction
mapping, hence /4 is a contraction mapping. Then we can
proceed the proof with the same arguments as that in
Theorem 6 and complete the proof.

5. Conclusion

The paper is devoted to several new types of fixed point
theorems in different spaces such as cone metric spaces
and fuzzy metric spaces together with their applications.
We have also proved the existence and uniqueness of the
solutions to two classes of two-point ordinary differential
equation problems by using these obtained fixed point
theorems.
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