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ABSTRACT

The total spacetime manifold for a Schwarzschild black hole (BH) is believed to be described by the Kruskal coordi-
nates U=u(r,t) and v=v(r,t), where r and t are the conventional Schwarzschild radial and time coordinates re-

spectively. The relationship between r and t for a test particle moving along a radial or non-radial geodesic is well
known. Similarly, the expression for the vacuum Schwarzschild derivative for a geodesic, in terms of the constants of
motion, is well known. However, the same is not true for the Kruskal coordinates; and, we derive here the expression
for the Kruskal derivative for a radial geodesic in terms of the constants of motion. In particular, it is seen that the value

of |du/ dv|(: 1) is regular on the Event Horizon of the Black Hole. The regular nature of the Kruskal derivative is in

sharp contrast with the Schwarzschild derivative, |dt/ dr| = o0, at the Event Horizon. We also explicitly obtain the value

of the Kruskal coordinates on the Event Horizon as a function of the constant of motion for a test particle on a radial

geodesic. The physical implications of this result will be discussed elsewhere.
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1. Introduction

It is known for more than 90 years that the region exterior
to a point mass or the event horizon (r >r, =2m) of a
Schwarzschild Black Hole (BH) can be described by the
vacuum Schwarzschild metric[1,2]:

ds’ = g,dt’ +g,dr’* +9,d6’ +g,d¢> (1)

where g, =(1-2m/r), g, =—(1-2m/r)",g,, =-r?,
and g, = —r’sin?@ (G=c=1). Here, we are working
with a spacetime signature of +1,—1,—1,—1 and r has a
distinct physical significance as the invariant area radius;
i.e. A=4ar’ indicates invariant/scalar area of sym-
metric 2-surfaces. Clearly, then, by definition, the point
mass having A=0 isat r =0, and hence, the scalar r
should continue to be a space-like coordinate even for
r <2m. The coordinate time t too has a physical sig-
nificance as the proper time of a distant inertial observer
S,.At r=2m, ¢, blowsupandas r <2m,the g,

and @, suddenly exchange their signatures and the
metric acquires a signature —1,+1,—1,—1. Such an in-
version of signature appears to be unphysical because (1)
by, definition, r is spacelike and (2) by principle of
equivalance, there must be a local inertial frame where
the metric is Lorenzian with the original signature
+1,-1,-1,-1. Further though, the signature of g,

would change if there would be region beneath the Event
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Horizon, r=2m, the signatures of g, and g,
remain unchanged. Despite such fundamental physical
inconsistencies, in the black hole (BH) paradigm, it is
believed that the EH is merely a coordinate singularity
because the Kretschmann scalar is finite there. But it can
easily be seen that, K, ocm™ [3], and the idea that
Kgy is finite presumes that the integration constant
appearing in the vacuum Schwarzschild solution « =2m,
is finite. However, it has been shown that, though
a=2m>0 is indeed finite for an object with radius
r, > 2m, such as the Sun or a neutron star, o =2m=0
for a neutral point particle with r, =0 [4-7]. Yet, in
order to progress, we ignore this scientific fact and
continue to work in the artificial and incorrect mathe-
matical paradigm of BHs.

The detail dynamics of a “test particle” in the vacuum
external spacetime is well known for a very long time
and discussion on it is contained in practically every text
book or monograpgh on classical General Theory of Re-
lativity (GTR) [1,2]. One of the key aspects for studying
the kinematics of a test particle is the knowledge about
the relevant derivative of the spatial coordinate with the
temporal one. For instance for any geodesic having
angular momentum or not, one knows the details about
the behaviour of the Schwarzschild derivative dr/dt or
dt/dr. And the fact that dt/dr =—oo blows up at the
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Event Horizon restricts the utility of the Schwarzschild
dynamics below the EH. This tantamounts to the well
known fact that the vacuum Schwarzschild metric fails to
describe the spacetime inside r <2m. Some authors,
accordingly, swap the nomenclatures r and t inside
the EH. But this is inconsistent because the location of
the (1) EH is still denoted by r=2m and not by
t=2m and (2) by initial definition, the point mass re-
sidesat r=0 andnotat t=0.

On the other hand, it has been claimed since 1960 that
both the exterior and the interior regions of a BH may be
described by a one-piece coordinate system suggested by
Kruskal and Szekeres [8,9]. In this case too, the nomen-
clatures of r and t remain unchanged for r <2m
unlike what is done by some authors in a desperate move
to uphold the BH paradigm. Though, in the intervening
42 years hundreds of articles have been written on
Kruskal coordinates, and most of the treatises on GTR
too regularly deliberate upon the original work of Kru-
skal and Szekers, the fact remains that sufficient effort
has not been made to study the kinematics of a test
particle in terms of the Kruskal coordinates so that one
could have a better insight and appreciation of the
kinematics inside the EH. Accordingly, here, we would
derive the expressions for the Kruskal derivative du/dv
for a radial geodesic. For the sake of completeness, we
shall start from the usual description about the Kruskal
coordinates and first derive the exact expression for the
value of the Kruskal coordinates on the EH (u, and
vy ) interms of r and t. We shall show here that uy,
and Vv, are always non-zero and finite in general. More
importantly, we shall explicitly show that unlike the
Schwarzschild derivative, the Kruskal derivates are re-
gular on the EH. Apparently this might be in accor-
dance with the singularity free nature of the Kruskal
coordinates. However, in a later paper, we shall show
that this is, ironically, not the case.

2. Kruskal Coordinates

First note that, Kruskal coordinates are defined by pre-
suming that the integration constant appearing in the
vacuum Schwarzschild solution is non-zero in variance
with the actual result that, even though for an object with
r>2m (such as the Sun) m>0, for a point mass
m=0 [3-7]. Yet, in this paper, we ignore this basic dis-
crepency. For the region exterior to the EH (Sectors 1 &

3), the Kruskal coordinates are defined as follows [1,2]:
t

u=f (r)cosh—;

(1) 4m

2

v= fl(r)sinh4t—m; r>2m

where
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r 2 r/4m
f,(r) i(zm 1} € 3)

Here the plus sign corresponds to “our universe” while
the negative sign corresponds to the “other universe” [1,
2]. The “other universe” is a legitimate mathematical
solution of the Schwarzschild problem irrespective of its
observational reality (under the assumption m>0), and
is a time reversed mirror image of “our universe”.

And for the region interior to the horizon (Sectors 2 &
4), we have

. t
u=f, (r)smhm;

v=f (r)coshi‘ r<2m @
? am’
where
f,(r)= i[l —ij g (5)
2m

In terms of u and v, the metric for the entire spacetime
is
32m’

=227 at/2m _
ds’ —e 2 (dv2 duz)

~r*(d6” +d¢’sin’0)

(6)

The metric coefficients are regular everywhere (under
the assumption mM> 0 ) except at the intrinsic singularity
r =0. Since afterall the Kruskal coordinates are defined
using r and t, for a proper understanding of the Kruskal
dynamics, it is necessary to recall the inter-relationship
between the Kruskal and Schwarzschild coordinates for a
radial geodesic.

2.1. Inter Relation between Schwar zschild
Coordinates

For a test particle on a radial geodesic, the angular mo-
mentum is zero, and there is only one conserved quantity,
the energy of the particle (per unit rest mass), E, as
measured by a distant inertial observer:

_dt,
E=(1-2mr) (7)

where S is the proper time. For a massless particle like a
photon, we have E =, otherwise E is finite. For a
radial geodesic, the motion of the particle is determined
by (see Chandrasekhar, p. 98) [10]

dr 3
—=—JE’—(1-2m/r 8
- (i) ®
and

dt E
——— ©
ds 1-2myr
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so that
dt_ E(1-2myr)”
dr E>—(1-2mr)

Clearly as r —2m, dt/dr — —oo . The latter relation
dr/dt =0 may be indicating that the r has a minimum at
2m. But since the minimum of r is r =0, it may be
indicating that, for a point mass 2m=0 [3-6]. However,
we shall ignore this indication in this paper.

Here note that if the particle is released from rest
(dr/ds=0)at r=r, at t=0, from Equation (8), it is
seen that [10]

(10)

E>=(1-2mr) (11
or,
r/2m=(1-E*) (12)

It is convenient to introduce a (cyclic) parameter 7
through

r= rEi(l+cos77)
om (13)
= Ecosz(ﬂ/z) =rcos’(17/2)
Obviously, 7=0 when r =r, and at the EH, we have

I
n=mn, =2arcsinE; r=2m (14)

Now after some manipulation, Chandrasekhar arrived
at the following Equation involving t and 7 [10]:

d_p(n )" eos'(n2) s
dn E(ij cos’(17/2)—cos*(m /2) (13)

This Equation can be integrated to find the exact
relation between t and r for a radial geodesic (actually, even
for non-radial geodesic this Equation would hold good):

32
2t—m= E(Zr_lmj |:%(7]+Sinl])+(1—E2)7]}
(16)
h{tan(?]H /2)+tan(77/2):l
tan (7, /2)—tan(7/2)

The above Equation may also be written without intro-
ducing 7, and E explicitly: (see p. 824 of ref.[1] or p.
343 of ref. [2]):

o |n/ame)” (-0
2m n‘(ri/zm—l)l/z—(ri/r—l)l/z‘

{5 o

We find from Equations (16) and (17) that, as r — 2m

(17)
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from Sector 1, the logarithmic term blows up and
t — oo, which is a well known result. Further Kruskal
coordinates envisage that approach to the EH from the
Sectors III & IV corresponds to t = —o0.

2.2. Kruskal Coordinates on the Event Horizon

In Sectors 1 & 3, Kruskal coordinates obey the relation
Yo coth—— (18)
v 4m

And since r —2m corresponds to t— oo, at the
EH, we have

— =41, r=2m (19)

I

On the other hand, in Sectors 2 and 4, we see

u t

—=tanh— (20)

v 4m
and as r—>2m, t—>two, we are led to the same
Equation (19). In the same limit, r —2m and t — too,
we find that

uy =viy — f? exp% (1)

It might appear that since f (2m)=f,(2m)=0 on
the EH, we would have u, =zv, =0. But this is
incorrect because the temporal part of u and v tends
to blow up much more rapidly on the EH. And one has to
carefully obtain the actual values of u, and v, by
working out appropriate limits

To do so we introduce a new variable

E2
z:ri/2m—1:1_E2 (22)
and, let, in the vicinity of the EH,
r/2m=1+g; >0 (23)
so that
f2(2m)—>e (24)

Then, in the vicinity of the EH, by retaining terms first
order in &, we can rewrite Equation (17) as

r

2 LAl
4mz

r.

22 _ 2| &N
4mz

(o) (o onn)]

As & —0, the logarithmic term in the above ex-
pression becomes

——=1n

(25)
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141- 20 S
A(t) = In|—4M2| _, 1 222 (26)
-1+ 50 i
4mz

Then, using Equations (24) and (26), we find

f2exp(A) > 2 _ ge(1-2myr)—4deE>  (27)
ri
Now considering the other terms in the expression for
t/2m in Equation (25), we find that, in this limit,

uy, = vy, =4e(1-2myr,)

Xe"p{(;—im—ljvz {fm +u—imj(m +sing, )}} 9

In terms of E, we have

W =V = 4eE% exp E{UH +w} (29)
21-E*

One would have u, =v, =0 if E=0 or, if the test
particle is injected fromrest right at the EH. Clearly, this
is unphysical, and thus we see that u, and v, are
non-zero. Further, for a finite value of r,/2m or for
E <1, they are finite too. The finiteness of u and v at
the EH is physically appealing because u and v are
expected to be completely regular at the EH. However
for 1,/2m=o0 or E=1,wefind U =V; =.

On the other hand, since r=r, at t=0, by using the
definition of u and v, we find that the initial values of

2

(30)

1B

and
vV =v'=0 (31)

3. Kruskal Derivative: A Direct Approach

Having shown that u, and Vv, are, in general, non-
zero, we are now in a position to evaluate the Kruskal
derivative, the key ingredient for studying the Kruskal
dynamics for a radial geodesic. We first confine our-
selves to Sector 1. By differentiating f,(r) (Equation
[3]) with r we obtain

df,  4r g/im
dr 2m 4m

Then by directly differentiating Equation (2) by r, we
find that irrespective of the sign of df,/dr , we will have

df f, .
ﬂ=—lcoshL+—1smhLE (33)
dr dr 4m 4m m dr

Interestingly, in all the sectors, we obtain the same

functional form of du/dr. Using Equations (2) and (4)

(r/2m-1)" (32)
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in the foregoing Equation, we see that

du_u o vodt

—=—(1-2m/r) +—— 34

dr 4m( m ) 4mdr 34
On the other hand by differentiating Equations (4) and

(5), we find that

r/4m

df, Fr € -1/2

—< = r/’2m-1 35

dr 2m 4m (/ ) (35)
and

du_dfy Ut o

dr dr iam 4m dm dr

And by using Equations (4) and (35) into the foregoing
Equation, we obtain the same expression (34) for du/dr
in Sectors 2 & 4. Further, using Equation (10) in (34), we
obtain the ultimate expression for

1-2m/r)”
du_(i-2mr) |, e (37)
dr 4m JE —1+2m)r
valid in all the sectors. Similarly, we obtain the ultimate

functional form of dv/dr which is valid for all the
sectors:

dv_(I-ame)T) e (38)
dr 4m JE? —1+2mr

And, the general value of du/dv in any Sector is
obtained by dividing Equation (37) with (38):

y—____ V&
JEX—1+2mr
du_ +2my (39)
v uE

JE —1+2mr

3.1. Kruskal Derivative at the Event Horizon

Since u and Vv are expected to be differentiable smooth
continuous (singularity free) functions everywhere except
at r =0 (under the assumption m>0), and also since
the “other universe” is a mirror image of “our universe”,
we expect that the value of du/dv for any given r must
be the same, except for a probable difference in the
signature, in both the universes. The meaningful way to
find the value of du/dr at the EH will be to concentrate
on the Sectors 2 & 4 for which u, =-v,

du u-v_2u,
N -

— r=2m (40)
v v-u 2v,

The Equation (39) for the Kruskal redivative, however,
tends to yield a “0/0” form at r =2m for Sectors | & 3
having u, =V, . But as mentioned above, we expect
this 0/0 form to acquire the value du/dv=+1 because
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these Scetors are the mirror images of Sectors 2 & 4.
Otherwise the whole idea of having an extended time
symmetric Schwarzschild manifold would be incon-
sistent. Thus, in general, we must have

du/dv=+1; r=2m 41)

despite the 0/0 forms in some sectors. The fact that we
must have du/dv=+1 for the Sectors 1 & 3 can be
reconfirmed in the limiting case of U}, =V;, = for
E=1 or u, =v, =0 for the (unphysical case) E=0
directly by using L’ Hospital’s theorem.

Note that, by this rule, we can write,

i du/dr
u%O(aol)glﬁo(w) dv/dr

m
u~>0(w),v~>0(w) \'

(42)

In any case, from Equation (19), we already know that
u/v=+1 at r=2m. Then we can rearrange the fore-
going Equation as

u—»O(ool)],:\ll’lao(m) dV/dI’ ( )
or,
du
lim — =1 (44)
r—2m dv

4. A Different Route

It may be of some interest to rederive the limiting value
of du/dv by using other generic relationships between
u and V. As before, to avoid 0/0 forms, we work with
Sectors 3 & 4. In particular, in Sector 3, we have

U oth-b (45)
Y 4m

By differentiating this equation w.r.t. v, we obtain

1du u 1 1 dt

——— = 46
vdv V' 4mginh’(t/4m) dv (40)

By recalling that sinh(t/4m)=v/f , we rewrite the
above equation as

du u_—f’1dt

———= 47)
dv. v 4mvdv
Now, from Equations (10) and (38), note that
dt _dtdr_ 4mE (48)

V{E? —1+2m/r —uE
And the limiting value of
dt 4m 4m 2m
JR— % —_— [ —
dv. u-v

r—2m

And since f,(2m)=0, we find from Equation (47)

Copyright © 2012 SciRes.

that

%—%=; F=2m (50)
Or,

du_u_uw _ ..

v v -u, ’ 51

r= 2m(Sectors 3+ 4)

Similarly, for the sake of overall consistency, in
Sectors, 1 & 3, we must have du/dv=+1 at r=2m.

5. A Different Consideration

Actually we could have obtained the above derived
unique result in a relatively simpler manner by diffe-
rentiating the Global Equation

u -V =(r/2m-1)e”" (52)
w.r.t. v:
du r dr
QU——2vy=——g/?m — 53
dv 4m’ dv (53)

First let us note from Equation (38) that in Sectors 2 &
4, the limiting value of

dr 4m(1-2m/r)

E v—u
2m(1-2m/r
—>(—m/)=0; 54)
Y
r—-2m

Then, by using this above Equation in (53), we find

du
UHE:VH; r—2m (55)
so that
W_Ve 0 Som 56)
v v,

6. Conclusions

The Kruskal coordinates were found way back in 1960,
and in the present paper, we have worked out some
aspects of the kinematics of a test particle following a
radial Kruskal geodesic. To attain this we used the
precise value of U, and Vv, as a function of the initial
conditions of the problem r, m or E. It is clearly
found that U =V, is non-zero in general.

We then proceeded to obtain the expression for the
Kruskal derivative in terms of m, E and r. We found
that the Kruskal derivative is regular at the EH unlike the
Scharzschild deivative(s) where dt/dr =—oo at the EH.

In particular du/dv=+1 at the EH if we consider the
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“other universe” whose existence is suggested by the full
Kruskal manifold, and which is a time reversed version
of “our universe”. But, if we move to the “our universe”,
the expected value of du/dv=-1 atthe EH.

The apparent regular nature of the Kruskal derivative
may be seen to be in keeping with the notion that Kruskal
coodinates are free of singularities at the EH. However, in
a subsequent paper, we will delve into this question, and
find out other important features of the Kruskal dynamics
vis-a-vis the well known Schwarzschild dynamics.

Finally, this manuscript is a revision of the Cornell Univ.

Electronic Preprint (arXiv: gr-qc/9909062) which has been
viewed by many readers in the past 13 years.
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