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ABSTRACT 

The total spacetime manifold for a Schwarzschild black hole (BH) is believed to be described by the Kruskal coordi-
nates  and , where r and t are the conventional Schwarzschild radial and time coordinates re-

spectively. The relationship between r and t for a test particle moving along a radial or non-radial geodesic is well 
known. Similarly, the expression for the vacuum Schwarzschild derivative for a geodesic, in terms of the constants of 
motion, is well known. However, the same is not true for the Kruskal coordinates; and, we derive here the expression 
for the Kruskal derivative for a radial geodesic in terms of the constants of motion. In particular, it is seen that the value 
of 

 = ,u u r t  = ,v v r t

d d = 1u v ) is regular on the Event Horizon of the Black Hole. The regular nature of the Kruskal derivative is in 

sharp contrast with the Schwarzschild derivative, d d =t r  , at the Event Horizon. We also explicitly obtain the value 

of the Kruskal coordinates on the Event Horizon as a function of the constant of motion for a test particle on a radial 
geodesic. The physical implications of this result will be discussed elsewhere. 
 
Keywords: Black Hole; Kruskal Coordinates; Spacetime Singularity 

1. Introduction 

It is known for more than 90 years that the region exterior 
to a point mass or the event horizon ( ) of a 
Schwarzschild Black Hole (BH) can be described by the 
vacuum Schwarzschild metric[1,2]:  

> = 2gr r m

2 2 2 2d = d d d dtt rrs g t g r g g 
2       (1) 

where  = 1 2ttg m r ,   1
= 1 2rrg m r   , 2=g r  , 

and 2 2= sing r   ( ). Here, we are working 
with a spacetime signature of 

= = 1G c
1, 1, 1, 1     and r has a 

distinct physical significance as the invariant area radius; 
i.e. 2= 4πA r

= 0A

2m

= 2r m

 indicates invariant/scalar area of sym- 
metric 2-surfaces. Clearly, then, by definition, the point 
mass having  is at , and hence, the scalar r 
should continue to be a space-like coordinate even for 

. The coordinate time t too has a physical sig- 
nificance as the proper time of a distant inertial observer 

. At , rr

= 0r

r 

S g  blows up and as , the tt< 2r m g  
and rrg  suddenly exchange their signatures and the 
metric acquires a signature 1, 1, 1, 1    . Such an in- 
version of signature appears to be unphysical because (1) 
by, definition, r is spacelike and (2) by principle of 
equivalance, there must be a local inertial frame where 
the metric is Lorenzian with the original signature 

. Further though, the signature of 1, 1, 1, 1    rrg  

Horizon, = 2r m , the signatures of 

would change if there would be region beneath the Event 

g  and g  
remain un . Despite such fundam l phys  
inconsistencies, in the black hole (BH) paradigm, it is 
believed that the EH is merely a coordinate singularity 
because the Kretschmann scalar is finite there. But it can 
easily be seen that, 4

EH

changed enta ical

K m  [3], and the idea that 

EHK  is finite presum e integration constant 
ring in the vacuum Schwarzschild solution = 2m

es that th
appea  , 
is finite. However, it has been shown that,  

= 2 > 0m
 though

  is indeed finite for an object with radius 
ch as the Sun or a neutron star, = 2 = 0m> 2br m , su   

utral point particle with = 0br  [4  
order to progress, we ignore this scientific fact and 
continue to work in the artificial and incorrect mathe- 
matical paradigm of BHs. 

The detail dynamics of a

for a ne -7]. Yet, in

 “test particle” in the vacuum 
external spacetime is well known for a very long time 
and discussion on it is contained in practically every text 
book or monograpgh on classical General Theory of Re- 
lativity (GTR) [1,2]. One of the key aspects for studying 
the kinematics of a test particle is the knowledge about 
the relevant derivative of the spatial coordinate with the 
temporal one. For instance for any geodesic having 
angular momentum or not, one knows the details about 
the behaviour of the Schwarzschild derivative d dr t  or 
d dt r . And the fact that d d =t r   blows the up at 
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Event  utility of 

 othe  been laimed since 1960 that 
bo

 Horizon restricts the the Schwarzschild 
dynamics below the EH. This tantamounts to the well 
known fact that the vacuum Schwarzschild metric fails to 
describe the spacetime inside 2r m . Some authors, 
accordingly, swap the nomencla r  and t  inside 
the EH. But this is inconsistent because the location of 
the (1) EH is still denoted by = 2r m  and not by 

= 2t m  and (2) by initial definition oint mass re- 
 = 0r  and not at = 0t . 

On the r hand, it has  c

tures 

, the p
sides at

th the exterior and the interior regions of a BH may be 
described by a one-piece coordinate system suggested by 
Kruskal and Szekeres [8,9]. In this case too, the nomen- 
clatures of r  and t  remain unchanged for < 2r m  
unlike what is done b  some authors in a desperat  
to uphold the BH paradigm. Though, in the intervening 
42 years hundreds of articles have been written on 
Kruskal coordinates, and most of the treatises on GTR 
too regularly deliberate upon the original work of Kru- 
skal and Szekers, the fact remains that sufficient effort 
has not been made to study the kinematics of a test 
particle in terms of the Kruskal coordinates so that one 
could have a better insight and appreciation of the 
kinematics inside the EH. Accordingly, here, we would 
derive the expressions for the Kruskal derivative 

y e move

d du v  
for a radial geodesic. For the sake of completene  
shall start from the usual description about the Kruskal 
coordinates and first derive the exact expression for the 
value of the Kruskal coordinates on the EH (

ss, we

Hu  and 

Hv ) in terms of r  and t . We shall show here t  hat Hu  
 and Hv  are alwa s non-zero and finite in general. M  

importantly, we shall explicitly show that unlike the 
Schwarzschild derivative, the Kruskal derivates are re- 
gular on the EH. Apparently this might be in accor- 
dance with the singularity free nature of the Kruskal 
coordinates. However, in a later paper, we shall show 
that this is, ironically, not the case. 

y ore

2. Kruskal Coordinates 

 are defined by pre- 

crepen

First note that, Kruskal coordinates
suming that the integration constant appearing in the 
vacuum Schwarzschild solution is non-zero in variance 
with the actual result that, even though for an object with 

> 2r m  (such as the Sun) > 0m , for a point mass 
[3-7]. Yet, in this pape ignore this basic dis- 

cy. For the region exterior to the EH (Sectors 1 & 
3), the Kruskal coordinates are defined as follows [1,2]: 

= 0m  r, we 

 

 

1

1

= cosh ;
4

= sinh ;  2
4

t

 
1 2

4
1 = 1

2
r mrf r e

m
   
 

         (3) 

Here the plus sign corresponds to “our universe” while 
th

r

e negative sign corresponds to the “other universe” [1, 
2]. The “other universe” is a legitimate mathematical 
solution of the Schwarzschild problem irrespective of its 
observational reality (under the assumption > 0m ), and 
is a time reversed mirror image of “our universe”. 

And for the region interior to the horizon (Secto s 2 & 
4), we have  

 

 

2

2

= sinh ;
4

= cosh ;  2
4

tu f r
m
tv f r r m
m


      (4) 

where 

 
1 2

4
2 = 1

2
r mrf r e

m
   
 

       (5) 

In terms of u and v, the metric for the entire spacetime 
is  

 
 

3
2 2 2

2 2 2 2

32
d = d d

d d sin

r mm 2s e v u
r

r   

 

 
    (6) 

The metric coefficients are regular everywhere (under 
th

ng 

zschild 

For n a radial geodesic, the angular mo- 

e assumption > 0m ) except at the intrinsic singularity 
= 0r . Since afte e Kruskal coordinates are defined 

usi r and t, for a proper understanding of the Kruskal 
dynamics, it is necessary to recall the inter-relationship 
between the Kruskal and Schwarzschild coordinates for a 
radial geodesic. 

2.1. Inter Relation between Schwar

rall th

Coordinates 

a test particle o
mentum is zero, and there is only one conserved quantity, 
the energy of the particle (per unit rest mass), E, as 
measured by a distant inertial observer: 

 d
1 2

tE m r 
ds

           (7) 

where s is the proper time. For a massless particle like a 
photon, we have =E  , otherwise E is finite. For a 
radial geodesic, the m n of the particle is determined 
by (see Chandrasekhar, p. 98) [10]  

otio

 2d
= 1

r E m u f r
m

tv f r r m
m


        (2) 

where 

2
d

r
s

       (8) 

and 
d

=
d 1 2

t E
s m r

             (9) 
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so that  

 
 

1

2

1 2d
=

d 1 2

E m rt
r E m r




 
        (10) 

Clearly as 2r m , d dt r  . The latter relation 
d d = 0r t  m cating that the r has a minimum at 
2m mum of r i
ind

ay be indi
e mi. But since th ni s = 0r , it may be 

icating that, for a point mass 2 = 0m  [3-6]. However, 
we shall ignore this indication in this paper. 

Here note that if the particle is released from rest 
( d d = 0r s ) at = ir r  at = 0t , from Equation (8), it is 
seen that [10] 

 2 = 1 2 iE m r            (11) 

or, 



  122 = 1ir m E           (12) 

It is convenient to introduce a (cyclic) parameter   
through  

 

   2 2
2

2
2

= 2 = 2cos cos
1 i

m r
E

 


   (13) 

Obviously, 

= 1 cosirr 

= 0  when and at the EH, we have = ir r  

= = 2arcsin ; = 2H E r m        (14) 

ome ion
at the following Equation involving  and 

Now after s manipulat , Chandrasekhar arrived 
t   [10]: 

 
   

1 2 4

2 2

cos 2d
=  

d 2 2 2cos cos
irt E
m


  

 
 
 

  (15) 
H

This Equation can be integrated to find the
relation between t and r for a radial geodesic (actually, even 
for

 exact 

 non-radial geodesic this Equation would hold good): 

   
   
   

3 2
21

= sin 1
2 2 2

irt E E
m m

tan 2 tan 2
ln

tan 2 tan 2
H

H

  

 
 

 
  

  

(16) 

The above Equation may also be written without intro- 
ducing 

          

H  and explicitly: (see p. 824 of ref.[1] or p. 
34

E  
3 of ref. [2]):  

   
   

 

1 2 1 2

1 2

2 1 1

1 sin
2 4

i i

i i

r m r r

r r
m m

1 2 1 2
2 1 1

= ln
2

i ir m r rt
m

  

  

           
    

     (17) 

We find from Equations (16) and (17) that, as 

from Sector 1, the logarithmic term blows up and 
, which is a well known result. Further Kruskal 

 envisage that approach to the EH
s III & IV corresponds to 

zon 

lation 

  

2r m  

t 
coordinates
Sector

2.2. Kruskal 

In

 from the 
=t  . 

Coordinates on the Event Hori

 Sectors 1 & 3, Kruskal coordinates obey the re

= coth
4

u t
v m

               (18) 

And since 2r m  correspond ts to   , at the 
 have EH, we

= 1; =

2 a

2Hu r m        (19
Hv

) 

other hand, in Sectors On the nd 4, we see 

= tanh
4v m

        (20) 

and as r 

u t

, we are led to 
2r 

      

m , the same 
 limit, m

that 

2
(19). 

t  
In the sameEquation 

we find 
 and t   , 

2 2 2
1= expH H

tu v f    
2m

   (21) 

ght appear that since 
 we wo  have 

to
ain the actual

It mi 2f

he EH
values of 

  = 2 = 0m f m  on 1 2

. A e has 

the EH, uld = = 0H Hu v . But this is 
incorrect because the temporal part of u  and v  tends 
to blow up much more rapidly on t nd on  
carefully obt  Hu  and Hv  by 

g out appropriate lim
so we introduce a new

workin
To do 

its 
 variable 

2

2
= 2iz r

E
      (22) 

and, let, in the vicinity of the EH, 

1 =
1

m 
E


2 = 1 ; 0r m       (23) 

so

   

 that 

 2 2if m      

H, by retai

          (24) 

Then, in the vicinity of the E ning terms first 
order in  , we can rewrite Equation (17) as 

1 2 1 2

1 2 1 2

1
4

= ln

1
4

i

i

rz z
t m z

rm z z





 
1 2

sin
2 1 4

i ir r
m m

2
m z

   
 
  


  




      

  (25) 




      

As 0  , the logarithmic term in the above ex- 
on becomes pressi
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 
1 1 84= ln ln
1 1

4

i

i i

r
mzmzA t

r r
mz



 

 


 
      (26) 

Then, using Equations (24) and (26), we find 

   2 2
1

8
exp = 4 1 2 = 4i

i

emzf A e m r eE
r

      (27) 

Now considering the other terms in the expression for 
2t m  in Equation (25), we find that, in this limit, 

 

 

2 2

1 2

= = 4 1 2

exp 1 sin
2 4

H H i

i i
H H H

u v e m r

r r
m m

  



              
      

  (28) 

In terms of E, we have  

2 2 2

2

sin
= = 4 exp 

2 1 E 

e would have = = 0H Hu v  if = 0E  or, if t

H H
H H Hu v eE E 


 

   (29) 

On he test 
particle is injected
is unphysical, and t  see that 



 from rest
hus we

 right at the EH. Clearly, this 

Hu  and Hv  are 
non-zero. Further, te value for a fini  of 2ir m  

 and v
v

Howe

or for 
< 1E

th
ex
for 

, they are finit e  at 
e EH is physically ap b  and  are 

r . ver 

e too. The finit
pealing 

 regula

ness of 
ecause u
 at the E

u

Hpected to be completely
2 =ir m   or   = 1E , we find 2 2

H Hu v= =  . 
usinOn the other ha

definition of  and , we find that the i itial values of  
nd, since =r ri  at   = 0t , by g the 

u v n

 
2

2 2
2

= = 2 1 =
1i i

Eu u r m
E




    (30) 

and 
2 2= = 0iv v             31) 

3. Kruskal Derivative: A Direct Approach 

Ha

(

ving shown that Hu  and Hv

sic. 
rentiating

 are general, non- 
zero, we are now in a position to evaluate the Kruskal 
derivative, th key in redient for studying the Kruskal 

, in 

e 
dynamics for a ra ode We first con
selves to Sector 1. diffe

g
dial ge
 By 

fine our- 
  1f r  (Equation 

[3]) with r we obtain  

 
4

1d
=   2

d 2 4

r mf r e r m
r m m




we 

1 2
1


        (32) 

Then by directly differentiating Equation (2) by r, 
find that irrespective of the sign of 1d df r , we will have 

1 1dd d
= cosh sinh  

d d 4 4 4 d

f fu t t t
r r m m m r

    (33) 

Interestingly, in all the sectors, we ob n the same 
functional form of 

tai
d du r . Using Equations (2) and (4) 

in the foregoing Equation, we see that 

  1d d
= 1 2  

d

t
r

     (34) 
d 4 4

u u vm r
r m m

 

On the other hand by differentiating Equations (4) and 
(5), we find that 

 
4

1 22d
=   2 1

d 2 4  

r mf r e r m
r m m




    

an

   (35) 

d 

2 2dd d
= sinh c

d d 4 4

f fu t t t
r r m m

 osh  
4 dm r

  (36) 

And by using Equations (4) and (35) into the
Equation, we obtain the same expression (34) for 

 foregoing 
d du r  

in
e expression for   

 Sectors 2 & 4. Further, using Equation (10) in (34), we 
obtain the ultimat

  1

2

1 2d
=

d 4 1 2

m ru vu
r m E m

  
 
   

E

r

valid in all the sectors. Similarly, we obtain the ultimate 
functional form of 

 (37) 

d dv r  which is valid for 
sectors: 

all the 

  1

2

1 2d
=

d 4 1 2

m rv uEv
r m E m r

  
 
   

 (38) 

 d du v  
37) with 

And, the general value of in any Sector is 
obtained by dividing Equation ( (38): 

2 1 2d
=

d

E m ru
uEv
 

         (39) 

2 1 2

vEu

v
E m r




 

3.1. Kruskal Derivative at the Event Horizon

Since u and v are expected to be differentiable smooth 
co

 also since 
universe” is a mirror im  “our universe”, 
hat the value of 

 

ntinuous (singularity free) functions everywhere except 
at = 0r  (under the assumption > 0m ), and
the “other 
we expect t

age of
d du v  for a

bable di
he m

ny given r must 
e, except for a pro

 in both the universes. T eaningful way to 
fin  value of 

be the sam
signature,

d the

fference in the 

d du r  at the EH o concentrate 
on Sectors 2 & 4 for which 

will be t
= the H Hu v  

2d
= = 1; = 2Huu u v r m

     (
d 2 Hv v u v

The Equation (39) for the Kruskal redivative, however, 
tends to yield a “0/0” form at =r m for Sectors 1 & 3 
having =

40) 

2  

H Hu v . But as mentioned above, we expect 
this 0/0 form to acquire the   value d d = 1u v   because 
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these Scetors are the mirror images of Sectors 2 & 4. 
Otherwise the whole idea of having an extended time 
symmetric Schw ild manifold would be incon- 
sistent. Thus, in general, we must 

arzsch
have 

d d = 1; = 2u v r m        

despite the 0/0 forms in some sectors. The fact that we 
m

 (41) 

ust have d d = 1u v   for the Sectors 1 & 3 can be 
reconfirmed in the limiting case of 2 2= =H Hu v   for 

= 1E  o = 0H  for the (unphysical case) = 0E  
directly by using L’ Hospital’s theore

Note that, by this rule, we can write, 

   

r
m

 =Hu v
. 

   0 , 0 0 , 0

d d
=lim lim

d du v u v

u u r
v v r       

   (42) 

In any case, from Equation (19), we already know that 
= 1u v   at . Then we can rearr= 2r m ange the fore- 

going Equation as 

   0 , 0

d d
= 1lim

d du v

u r
v r   

 (43) 

or, 

          

2

du
= 1lim

dr m v
                (44) 

4.

It may b ome in

 A Different Route 

e of s terest to rederive the limiting value 
of d du v  by using other generic relationships between 
u and v. As before, to avoid 0/0 forms, we work with 
Sectors 3 & 4. In particular, in Sector 3, we have 

= coth
4

u t
v m

               (45) 

By differentiating this equation w.r.t. v, we obtain 

 2
=

dv v v
 

2

1 d 1 1 d
 

4 4 dsinh

u u t
m t m v

    (46) 

By recalling that   1sinh 4 =t m v f , we rewrite the 
abo ation as ve equ

2
1d 1 d

=
d 4 d

fu u t
v v m v v


           (47) 

Now, from Equations (10) and (38), note that 

2

d d d 4
= =

t t r mE
   

d d d 1 2v r v v E m r uE  
(48) 

And the limiting value of 

d 4 4 2
==

d

2
H HH

t m m
v u v u u u

r m


 



   (49) 

And since , we find from Equation (47) 

that 

m

 1 2 = 0f m

d
= 0; = 2

dv v
u u r m         (50) 

Or, 


d

= 2  S

v v
r m 

d
= = = 1;

ectors 3 4

H

H

u u u
u





          (51) 

Similarly, for the sake of overall consiste
Sectors, 1 & 3, we must have 

ncy, in 
d d = 1u v   at 

5. nt Consi

ally we could have obtained the above derived 
unique result in a relatively simpler ma
rentiating the Global Equation 

= 2r m . 

 A Differe deration 

Actu
nner by diffe- 

 2 2 2= 2 1 r mu v r m e          (52) 

w.r.t. v: 

2
2

d d
2  2 =  

d d4
r mu r ru v e

v vm
        (53) 

First let us note from Equation (38) that in Sectors 2 & 
4, the limiting value of 

 

 

4 1 2d m m rr 


d
2 1 2

= 0;
H

v v u
m m r

v




           (54) 

2r m

Then, by using this above Equation in (53), we find 

d
= ; 2

dH H
uu v r
v

  m        (55) 

so that 

d
=

d

vu
v v

= 1; 2H

H

r m 


     (56) 

6. Conclusions 

The Kruskal coordinates were found w
and in the present paper, we have worked out some 
aspects of the kinematics of a test particle following a 
ra he 
precise

ay back in 1960, 

dial Kruskal geodesic. To attain this we used t
 value of Hu  and Hv  

 ir
as a function of the initial 

conditions of  or
found that 

the problem
2 2

, m  E . It is clearly 
=H Hu v  

eeded
is no  ge

hen  to e e sion for the 
Kruskal derivative in terms of  and r. We found 
that the Kruskal derivative is re e EH
Scharzschild deivative(s) wher

n-zer
 obtai

o in
n th

neral. 
xpresWe t  proc

m , 
gu

e 

E
lar at th  unlike the 
d dt r =   at the EH. 

In particular d d = 1u v   at the EH if we consider the 
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ose existence is suggested by the full Kreitler, Ed., Focus on Black Hole Research, Nova, New 

,” Advances in Space Re-
 pp. 2917-2919. 

“other universe” wh
York, 2006. 

[4] A. Mitra, “On the Non-Occurrence of Type I X-Ray Bursts 
from the Black Hole Candidates
search, Vol. 38, No. 12, 2006,

Kruskal manifold, and which is a time reversed version 
of “our universe”. But, if we move to the “our universe”, 
the expected value of d d = 1u v   at the EH. 

The apparent regular nature of the Kruskal derivative 
may be seen to be in keeping with the notion that Kruskal 
coodinates are free of singularities at the EH. However, in 
a subsequen  we will delve into this question, and 
fin

doi:10.1016/j.asr.2006.02.074 

[5] A. Mitra, “Quantum Information Paradox: Real or Ficti-
tious,” Pramana, Vol. 73, No. 3, 2009, pp. 615-620. 
doi:10.1007/st paper, 12043-009-0113-9

d out other important features of the Kruskal dynamics 
vis-a-vis the well known Schwarzschild dynamics. 

Finally, this manuscript is a revision of the Cornell Univ. 
Electronic Preprint (arXiv: gr-qc/9909062) which has been 
vie  readers in t

 

s, Vol. 50, 
. 

ole, 
ysics and Space Science, 

[6] A. Mitra, “Comments on ‘The Euclidean Gravitational 
Action as Black Hole Entropy, Singularities, and Space 
Time Voids’,” Journal of Mathematical Physic
No. 4, 2009, Article ID: 042501

wed by many he past 13 years. 

REFERENCES 
[1] C. W. Misner, K. S. Thorne and J. Wheeler, “Gravita-

tion,” Freeman, San 973. 

[7] A. Mitra, “The Fallacy of Oppenheimer Snyder Collapse: 
No General Relativistic Collapse at all, No Black H
No Physical Singularity,” Astroph
Vol. 332, No. 1, 2011, pp. 43-48. 
doi:10.1007/s10509-010-0578-5 

[8] M. D. Kruskal, “Maximal Extension of Schwarzschild 
Metric,” Physical Review Letters, Vol. 119, No. 5, 1960, 

 Fransisco, 1

[2] S. L. Shapiro and S. A. Teukolsky, “Black Holes, White 
Dwarfs and Neutron Stars: The Physics of Compact Ob-
jects,” Wiley, New York, 1983. 
doi:10.1002/9783527617661 

[3] A. Mitra, “Black Holes or Eternally Collapsing Objects: 
A Review of 90 Years of Misconceptions,” In: 

pp. 1743-1745. 

[9] P. Szekeres, “On the Singularities of a Riemannian Ma- 
nifold,” Math. Debreca., Vol. 7, 1960, p. 285. 

[10] S. Chandrasekhar, “The Mathem
Holes,” Clarendron, Oxford, 1983. P. V. 

atical Theory of Black 

 


