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ABSTRACT 

Cosmological Models frequently suggest the existence of physical, quantities, e.g. dark energy, we cannot yet observe 
and measure directly. Their values are obtained indirectly setting them equal to values and accuracy of the associated 
model parameters which best fit model and observation. Apparently results are so accurate that some researchers speak 
of precision cosmology. The accuracy attributed to these indirect values of the physical quantities however does not 
include the uncertainty of the model used to get them. We suggest a Confidence Level Estimator to be attached to these 
indirect measurements and apply it to current cosmological models. 
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1. Introduction 

Models of physical systems, including Cosmological 
Models, contain a number of free parameters associated 
to an equal number of measurable, independent, physical 
quantities (“observable” in the following) which charac- 
terize the system. Comparing measured values of the 
observables and allowed values of the parameters one 
can test a model, i.e. validate, improve or falsify it [1]. 

When a model introduces new parameters associated 
to observables previously ignored or never observed, 
searching and measuring the new observables is manda-
tory. 

Some observables can be measured directly (e.g. gal-
axy redshift) or through a serie of definite, model inde-
pendent, intermediate steps (e.g. object distance by par-
rallax). Let’s call them direct measurements. 

Other observables (e.g. Dark Energy density we will 
discuss in the following), cannot yet be measured directly. 
We get their values looking to secondary observables 
linked in a way we presume we know to the primary ob-
servable we are interested in. Let’s call them indirect 
measurements. The reliability of indirect measurements 
depends therefore on the accuracy of the link model, 
preferably an “ad hoc” model, with a reduced number of 
parameters, especially made for the particular observable 
we intend to measure, but in some cases it is the Model 
itself we want to test.  

Present days cosmological models give a fair descrip-
tion of the birth and evolution of the Universe using six 
free parameters. Mostly of the associated observables are 
however measured indirectly.  

In the following we discuss first the error bars associ-

ated to direct and indirect measurements of observables, 
then introduce an estimator (Confidence Level Estimator) 
to quantify the confidence we can attach to indirect 
measurements. We then briefly review present day most 
common Cosmological Models and apply to their pa-
rameters and observables our Confidence Level Estima-
tor. 

2. Observables: Expected and Measured 
Values 

Results of independent direct measurements of an ob- 
servable  X  give a serie X  of data which, analyzed 
by classical statistical methods (see for instance [2]) give 
mean value X  and standard deviation me  of X . We 
call them measured values of X . 

When X  must be measured indirectly we collect by 
direct observation or from data in literature values of 
secondary observables associated to X , specify the 
model of the link between X  and those secondaries and 
attach to X the value of the associated model parameter 

XM  which best fits model and values of the secondary 
observables. When considering Cosmological Models the 
best fitting procedure is usually made by Montecarlo 
methods: one repeats the evaluation of XM  with a 
random choice of the Model parameters and gets a 
distribution of XM  values around a value ME , which 
optimizes the fit. We then set MX E  and attach to it a 
dispersion ex  equal to the width of the distribution of 
the XM  values around ME  which encompasses 68% 
of the values. We call them expected values. However 

ex  does not include information on how reliable is the 
model of the link between primary and secondary ob- 
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servables therefore is different from me . If we are ex- 
tremely confident in the model we can set me ex 


. If 

not we must write me ex pr  where    pr  is a 
sort of systematic error which accounts for Model un- 
certainty. 

2.1. Single Parameter Model 

Let’s begin with a Model with just one parameter M. We 
call  the distribution, around  P X MX , of the directly 
measured values X of the observable and  P E  the 
distribution, around ME

 

, of the values attributed to para- 
meter M. Most often  and  are gaussian P X  P E

 2 22

2
=  meX XM

me

e
 1

2π
P X

 

       (1) 

 2 22
=  exE EMP E e

2

1

2π ex




 

         (2) 

when 

     M M me exX E   

  P E

  

P X  and  overlap marginally and the Model 
does not describe properly the physical system associated 
to the observable. 

When 

 3M MX E me ex 

 

   

P X  and P E  begin to overlap and the Model may 
be more descriptive of the physical system. 

For models and priors1 not too far from the real world 

 M ME X

  P E

                 (3) 

and differences between  and  can be en- 
tirely attributed to differences between 

P X
M
ex  and M

me , 
so we can write 

=M M M
me ex pr    

Evaluating pr  is far from obvious. We introduce 
instead 

, = 1 =
M M
pr ex

l M M M
me me


C


 



= 0

             (4) 

and call it Confidence Level Estimator of the observable 
associated to M. 

For direct measurements pr  therefore  
always. For secondary measurements ,l M  be- 
cause ex me

, = 1l MC
0 1C 

  1. ,l M  suggests that Model, priors 
and observation do not conflict therefore the Model offer 
a convenient way for improving 

C

MX . When ,l M  
Model and priors cannot be used for improving  

and very probably do not offer a completely correct de- 
scription of the real world.  

More formal derivations of ,l M  are possible. In Ap- 
pendix A we propose a derivation  from the Bayes 
Theorem. 

C

,l mC

2.2. Multiparameter Model 

For a model with m  independent parameters we can 
write: 

0C 
MX

,
=1

1
=  

m

l il M
i

C C
m


C
m

 P X

               (5) 

as a collective estimator of the set of Model parameters. 
It is the average of the 

, il M
, (see Equation (4)), as- 

sociated to the Model  parameters. Its value is also 
indicative of Model and priors qualities. 

Small values of Confidence Levels obtained by Eq- 
uations (4) and (5) cannot be used to falsify the Model 
used to get them. Falsification in fact occurs only when 
the two probability distributions  and  P E  do 
not overlap at all. When this is the case condition (3) and 
Equations (4) and (5) do not hold anymore. 

3. Cosmological Models 

The almost serendipitous discovery of the Cosmic Micro- 
wave Background in 1964 [3]: 1) marked the end of a 
famous revised version of the Steady State Model, 
proposed in 1948 by Bondi, Gold and Hoyle [4,5], in 
spite of its capability of preserving fundamental constants 
of physics and avoiding singularities during the Universe 
expansion; 2) boosted the class of the Big Bang Models 
(e.g. [6]). Difficulties of this class of models, like the ini- 
tial singularity and the problem of “causal connections”, 
were soon solved by the inclusion of the Inflation theory 
(see for instance [7]) with the additional bonus of gaining 
the possibility of estimating the spectrum of the primor- 
dial fluctuations, necessary to explain the birth of the 
matter condensations which characterize the present day 
Universe (for a review see for instance [8]); 3) triggered 
new cosmological observation of the CMB which, in 
about thirty years, confirmed that the CMB has: a) planc- 
kian spectrum ([9-11] and references therein); b) a small 
degree of anisotropy with a characteristic angular power 
spectrum ([12-14] and references therein); c) an even 
smaller degree of linear polarization ([15-18] and refer- 
ences therein).  

So gradually the Standard Big Bang Model ([6]) 
emerged, whose more important parameters were: Hub- 
ble constant oH , Universe matter density  (in units 
of critical density 


 2= 3 8πc oH G ) and primordial 

Helium Hydrogen ratio. 
In the same years other no-CMB based cosmological 

observations went on. They: 1) provided large samples of 

1In different applications meaning and content of prior may be different
here and in the following prior will indicate just the ranges of allowed 
variability of the Model parameters. 

Copyright © 2012 SciRes.                                                                                 JMP 



G. SIRONI 

Copyright © 2012 SciRes.                                                                                 JMP 

1218 

1000Z 

high redshift Supernovae (see for instance the Supernova 
Cosmological Project [19]), used to obtain better estimates 
of matter density and upper limit to the value of the 
cosmological constant); 2) showed the existence of dark 
matter at various astrophysical sites (for a review see for 
instance [20]); 3) detected Baryon Acoustic Oscillations 
(BAO) in the ordinary matter distribution with an angular 
power spectrum similar to the angular power spectrum of 
the CMB ([21] and references therein); 4) got the dis- 
tances of objects at very large Z using new standard can- 
dles (SNIa and GRB) (e.g. [22,23] and references therein). 
Not to mention the results of numerical experiments (N- 
body simulations) on the formation and evolution of mat- 
ter condensations (e.g. [24]). 

The whole set of CMB and no-CMB observations sug- 
gests that: 1) the geometry of the Universe is euclidean 
(flat) or very close to it [25]; 2) recombination of nuclei 
and electrons at  was followed by partial rei- 
onization of the matter when stable matter condensations 
formed (e.g. [26] and references therein); 3) after dece- 
lerating, the Universe is now going through re-accele- 
ration (e.g. [27]). 

To account for these effects new cosmological para- 
meters were introduced: 1) b , dm  and   , the 
abundances (in unit of critical density c ) of barionic 
matter, dark matter and dark energy; 2)  , the optical 
thickness of the Universe at reionization; 3) sA  and sn , 
the amplitude and spectral index of the fluctuations; 4) 

8  an indicator of the galactic matter distribution. Add- 
ing them to the Standard Big Bang Model the Concor- 
dance or  Model emerged [28,29]. It is char- 
acterized by six independent parameters plus a number of 
derived parameters, combinations of the independent ones. 
Usually o

-CD M

H , b , dm ,    , sA  and sn , are assumed 
as free parameters. Among the derived parameters are 
age of the Universe 1univ o , critical density cT  H   of 
matter-energy, Dark Energy density,  (in unit of 

c ), reionization red shift ionZ  and 8 . 
Usually observation gives combinations of the obser- 

vables associated to the above parameters. To disen- 

tangle them it is common practice to fit the Concordance 
Model to the full set of CMB and no-CMB data and 
extract the parameters values which best fit observation. 
Calculations are made by Montecarlo methods [30] using 
Markov chains to implement the stochastic procedure 
with the addition of priors which constrain the variability 
of the model parameters. Common choices are = 1  
(perfectly euclidean Universe) and b dm=     . 
By this method one gets the expectation values of the 
model parameters and their dispersion, (set equal to the 
width of the distribution of the calculated values E which 
encompasses 68% of the values) and attach them to the 
associated observables. 

The procedure, now well established, is usually re- 
peated whenever new data are added to the preexisting 
data base of observations. Very probably it will be re- 
peated when the new CMB data presently being collected 
by the Planck mission will be released [31]. Table 1 and 
Table 2 show expectation values ME  and dispersion 

M
ex  of free and derived parameters M of the Con- 

cordance Model in literature [18,32,34]. Because dif- 
ferent authors use different combinations of parameters 
and/or different units of measure, for uniformity of pre- 
sentation in Tables 1 and 2, when necessary, the listed 
quantities have been obtained transforming the data in li- 
terature (preserving the published value of the combina- 
tion). 

In the same table are listed, when available, mean 
value M M

meX  and standard deviation   of direct mea- 
surements X of the observable associated to M. 

It appears that for five, out of six, free parameters of 
the Concordance Model direct measurements of the asso- 
ciated observable are poor or not yet available. In par- 
ticular observation gives only large intervals inside which 
measured values of the density of Dark Matter and Dark 
Energy can lay. These intervals coincide with the variab- 
ility range of the parameters used in Monte Carlo studies 
of the Concordance Model [18]. The only exception is 
the Hubble constant for which accurate measurements 
now exist [33]. 

 
Table 1. -Concordance Model: expectation values, measured values and confidence level of model parameters (from 
[34,18] see text). 

-Λ CDM

Parameter/Observable  ME  Expec. Value MX lC Meas. Value  Conf. Level 

Hubble Constant (km/sec Mpc) oH  1.3

1.470.4
 74.2 3.6   0.38 

Barionic Matter Density b 0.0456 0.0016 0.005 0.1 2< 2 10     

Dark Matter Density dm 0.227 0.0014 0.006 1    3< 2 10  

Optical Thickness at Reionization   0.087 0.0014 0.01 0.80 3< 2 10    

Scalar Fluctuations Amplitude sA  0.088 9

0.092(2.441  10 ) 
  ? ? 

Scalar Spectral Index sn 0.963 0.012 0.5 1.5 2< 2 10     
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Table 2. -Concordance Model: expectation values 
of derived parameters (from [18,34] see text). 

-Λ CDM 0.07lC 

Parameter/Observable  Expected Value 

Dark Energy Density   0.015

0.0160.728
  

Reionization Red Shift ionZ  10.4 1.2  

Galactic Fluctuations Amplitude 8  0.809 0.024

913.75 0.11) 10

 

Universe Age (years) ot (  

 
The above values of M

ex  are so small that today is 
common practice to speak of Precision Cosmology (e.g. 
[35,36]) and very probably they will be further reduced 
when the Planck results will appear. A caveat is however 
necessary: generally M M

ex me   and in some cases 
M M
ex me  . So when model assumptions fail, M

ex  
might be optimistic and the stated precision of inference 
might understate the actual uncertainty of the observable. 

4. Discussion 

Analysis of cosmological observation and deduction of 
cosmological parameters in literature not always explic-
itly refers to Bayesian statistics so the language used is 
not necessarily the one which would be used by a Bayes-
ian statistician (see [37] and references therein) Bayesian 
statistics however can provide useful hints at least about: 

1) Dispersion of the priors (see for instance [38] and 
references therein). In its more common implementations 
the Concordance Model sets the very stringent limits 

b dm  . Assuming a Bayesian point of 
view there is therefore a risk that the priors on 

 = 1   
 , b , 

dm  and   are underdispersed, undermining the va- 
lidity the analysis results. Therefore these limits probably 
have to be relaxed.  



2) Robustness of the results (see for instance [39] and 
references therein). The results so far published do not 
show evidence of oscillations of the values of the Con-
cordance Model parameters around their expectation val- 
ues, confirming that from a Bayesian point of view these 
results are robust. 

But our Confidence Level Estimators hold also outside 
the borders of Bayesian Statistics. Expression (14) has 
been in fact obtained also on empirical basis (see Equa-
tion (4)). 

So we will use our Estimators to evaluate the weight 
we can attach to observables and cosmological parame-
ters provided by the Concordance Model, no matter if the 
procedures the authors ([18,32,34] and references therein) 
used to get them are fully Bayesian or not. 

The last Column of Table 1 shows the Confidence 
Levels of the Concordance Model free parameters, cal-
culated by Equation (4) and approximation (3). For the 
whole Model, Equation (5) gives  

 

They do not falsify the Concordance Model (the dis-
tributions of the expected values of all the parameters of 
the Concordance Model are well inside the uncertainty 
intervals of the measured values). 

However, with the exception of the Hubble constant, 
the differences ex me   of the parameters are so large 
that pr  (see Section 2) and the role played by Model 
and priors can’t be neglected. So we cannot assume the 
expectation values of some parameters of the Concor-
dance Model as representative of the values of the asso-
ciated observables, for instance when studying astro-
physical situations where dark matter, dark energy, if 
present, are important. 

This leaves open the possibility of considering other 
Models of the Universe different from the Concordance 
Model which is based on the strong double condition 

b dm = = 1   = 1. We can for instance keep    
and relax the condition b dm =    , assuming a 
different recipe of the Universe composition, e.g. without 
or with a reduced quantity of Dark Energy, an exigency 
remarked also very recently (see for instance the com-
ments by [40]). In fact: 1) no direct evidence for the ex-
istence of Dark Energy has been so far obtained; 2)in 
literature there are models which show the possibilities 
of producing effects similar to those attributed to the 
presence of Dark Energy, through inhomogeneities of the 
matter distribution (e.g. [41]). The work on these Models 
is still in progress. We cannot yet apply to them the same 
procedure used with the Concordance Model and extract 
expectation values for their parameters. Comparison of 
their Confidence Levels with the Confidence Levels of 
Table 1 will probably become possible in the near future. 

Meanwhile, it is necessary: 1) to improve direct meas-
urements of all the observables associated to the Con-
cordance Model parameters, aiming at i iX ME

i i
 and 

me ex  i for all the parameters , and/or 2) to get in- 
dependent evidence of existence and weight of  , the 
Dark Energy density.  

The above conclusions remain also if one adds to the 
set of preexisting data results of new indirect evaluations 
of the Cosmological Parameters more recently published 
(e.g. [34,42]). Probably they will not change until new 
direct measurements or indirect measurements based on 
other independent models will appear. 

5. Conclusions 

The use of Montecarlo methods and Bayesian Statistics 
to analyze the enormous quantity of data of cosmological 
interest which are continously poured by ground and 
space observations is almost unavoidable. However Mon- 
tecarlo and Bayesian Methods are based on assumption 
(models and priors) whose statistical weight should be 
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added, but rarely is added, to the the quoted accuracies of 
the parameter expectation values. 

Researchers who currently use these methods are 
aware of that and warning has been already put forward 
(e.g. [36,43]). Unfortunately general public and profes-
sionals not involved in cosmological observations may 
be unaware of it, misinterpret the results of model simu-
lations and attribute weights above their real values to 
models. Forgetting it may stop or reduce support to stud-
ies of other models not yet excluded by observation. 

This situation is common to other fields of pure and 
applied research (e.g. unification of fundamental forces, 
string theories, elementary particle models, models of 
climate evolution and so on). The Confidence Level Es-
timator we propose can be used to avoid misunderstand-
ings and preserve possibilities of pursuing alternatives 
lines of research also in these fields. 

6. Acknowledgements 

We acknowledge the support of MIUR (Italian Ministry 
of University and Research), CNR (Italian National Coun- 
cil of Research), PNRA (Italian Program for Antarctic Re- 
search) and (Italian Space Agency) to studies and obser-
vations of the CMB properties. 

REFERENCES 
[1] K. Popper, “Conjecture and Refutations: The Growth of 

Scientific Knowledge,” Taylor and Francis, Abingdon, 1989.  

[2] P. R. Bevington and K. D. Robinson, “Data Reduction and 
Error Analysis for the Physical Sciences,” McGraw-Hill, 
London, 1992.  

[3] A. A. Penzias and R. A. Wilson, “A Measurement of Ex- 
cess Antenna Temperature at 4080 Mc/s,” Astrophysical 
Journal, Vol. 142, No. 7, 1965, pp. 419-421.  
doi:10.1086/148307 

[4] H. Bondi and T. Gold, “The Steady State Theory of the 
Expanding Universe,” Monthly Notices of the Royal As- 
tronomical Society, Vol. 108, No. 2, 1948, pp. 252-270.  

[5] F. Hoyle, “A New Model of the Expanding Universe,” 
Monthly Notices of the Royal Astronomical Society, Vol. 
108, No. 3, 1948, pp. 372-382.  

[6] P. J. E. Peebles, “Principles of Physical Cosmology,” Prin- 
ceton University Press, Princeton, 1993.  

[7] A. H. Guth, “The Inflationary Universe,” Perseus Book, 
Reading, 1997.  

[8] R. B. Partridge, “3K: The Cosmic Microwave Background 
Radiation,” Cambridge University Press, Cambridge, 1995.  
doi:10.1017/CBO9780511525070 

[9] D. J. Fixsen and J. C. Mather, “The Spectral Results of 
the Far Infrared Absolute Spectrophotometer on COBE,” 
Astrophysical Journal, Vol. 581, No. 12, 2002, pp. 817- 
822. doi:10.1086/344402 

[10] G. F. Smoot, et al., “Low Frequency Measurements of the 
Cosmic Bacground Radiation Spectrum,” The Astrophy- 

sical Journal Letters, Vol. 291, No. 4, 1985, pp. L23-L27.  
doi:10.1086/184451 

[11] M. Zannoni, et al., “TRIS I: Absolute Measurements of 
the Sky Brightness Temperature at 0.6, 0.82 and 2.5 GHz,” 
Astrophysical Journal, Vol. 688, No. 11, 2008, pp. 12-23.  
doi:10.1086/592133 

[12] C. L. Bennett, et al., “Four-Year COBE DMR Cosmic Mi- 
crowave Background Observations: Maps and Basic Re- 
sults,” Astrophysical Journal, Vol. 464, No. 6, 1996, pp. 
L1-L4. doi:10.1086/310075 

[13] D. Larson, et al., “Seven-Years Wilkinson Microwave 
Anisotropy Probe (WMAP) Observations: Power Spectra 
and WMAP-Derived Parameters,” The Astrophysical Jour- 
nal Supplement, Vol. 192, No. 16, 2011, pp. 1-19.  

[14] R. B. Friedman, et al., “Small Angular Scale Measure- 
ments of the Cosmic Microwave Background Tempera- 
ture Power Spectrum from QUaD,” Astrophysical Journal, 
Vol. 700, No. 8, 2009, pp. L187-L191.  
doi:10.1088/0004-637X/700/2/L187 

[15] A. Kogut, et al., “Five-Year Wilkinson Microwave Ani- 
sotropy Probe (WMAP) Observations: Temperature-Po- 
larization Correlatioin,” The Astrophysical Journal Sup- 
plement, Vol. 148, No. 9, 2003, pp. 161-173.  
doi:10.1086/377219 

[16] F. Piacentini, et al., “A Measurement of the Polarization- 
Temperature Angular Cross-Power Spectrum of the Cos- 
mic Microwave Background from the 2003 Flight of 
BOOMERANG,” Astrophysical Journal, Vol. 647, No. 8, 
2006, pp. 833-839. doi:10.1086/505557 

[17] G. Polenta, et al., “The BRAIN CMB Polarization Ex- 
periment,” New Astronomy Reviews, Vol. 51, No. 3, 2007, 
pp. 256-259. doi:10.1016/j.newar.2006.11.065 

[18] M. L. Brown, et al., “Improved Measurements of the Tem- 
perature and Polarization of the Cosmic Microwave Back- 
ground from QUaD,” Astrophysical Journal, Vol. 705, 
No. 4, 2009, pp. 978-999.  
doi:10.1088/0004-637X/705/1/978 

[19] S. Perlmutter, et al., “Measurements of Omega and Lambda 
from 42 High Redshift Supernovae,” Astrophysical Jour- 
nal, Vol. 517, No. 6, 1999, pp. 565-586.  
doi:10.1086/307221 

[20] G. Bertone, D. Hooper and J. Silk, “Particle Dark Matter: 
Evidence, Candidates and Constraints,” Physics Reports, 
Vol. 405, No. 1, 2005, pp. 279-390.  
doi:10.1016/j.physrep.2004.08.031 

[21] W. J. Percival, et al., “Baryon Acoustic Oscillations in the 
Sloan Digital Sky Survey Data Release 7 Galaxy Sam- 
ple,” Monthly Notices of the Royal Astronomical Society, 
Vol. 401, No. 2, 2010, pp. 2148-2168.  
doi:10.1111/j.1365-2966.2009.15812.x 

[22] N. Panagia, “High Redshift Supernovare: Cosmological 
Implications,” Nuovo Cimento B, Vol. 120, No. 6, 2005, 
pp. 667-680.  

[23] G. Ghirlanda, G. Ghisellini and C. Firmani, “Gamma Ray 
Bursts as Standard Candles to Constrain the Cosmologi- 
cal Parameters,” New Jersey Postal History Society, Vol. 
8, No. 7, 2006, pp. 123-124.  

[24] M. Macció, et al., “Coupled Dark Energy: Constraints 

Copyright © 2012 SciRes.                                                                                 JMP 

http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1017/CBO9780511525070
http://dx.doi.org/10.1086/344402
http://dx.doi.org/10.1086/184451
http://dx.doi.org/10.1086/592133
http://dx.doi.org/10.1086/310075
http://dx.doi.org/10.1088/0004-637X/700/2/L187
http://dx.doi.org/10.1086/377219
http://dx.doi.org/10.1086/505557
http://dx.doi.org/10.1016/j.newar.2006.11.065
http://dx.doi.org/10.1088/0004-637X/705/1/978
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x


G. SIRONI 

Copyright © 2012 SciRes.                                                                                 JMP 

1221

from N-Body Simulations,” Physical Review D, Vol. 69, 
No. 12, 2004, pp. 123516-123540.  
doi:10.1103/PhysRevD.69.123516 

[25] P. de Bernardis, et al., “Multiple Peaks in the Angular 
Power Spectrum of the Cosmic Microwave Background 
Significance and Consequences for Cosmology,” Astro- 
physical Journal, Vol. 564, No. 1, 2002, pp. 559-666.  
doi:10.1086/324298 

[26] P. Valageas and J. Silk, “The Reheating an Reionization 
History of the Universe,” Astronomy & Astrophysics, Vol. 
347, No. 7, 1999, p. 20.  

[27] A. G. Riess, et al., “Observational Evidence from Super- 
novae for an Accelerating Universe and a Cosmological 
Constant,” The Astronomical Journal, Vol. 116, No. 9, 
1998, pp. 1009-1038.  

[28] J. P. Ostriker and P. J. Steihardt, “Cosmic Concordance,” 
1995, arXiv:astro-ph/9505066v1.  

[29] M. Kowalski, et al., “Improved Cosmological Constraints 
from New, Old and Combined Supernova Data Sets,” As- 
trophysical Journal, Vol. 686, No. 10, 2008, pp. 749-778.  
doi:10.1086/589937 

[30] D. P. Landau and K. Binder, “A Guide to Monte-Carlo 
Simulations in Statistical Physics,” Cambridge University 
Press, Cambridge, 2009.  
doi:10.1017/CBO9780511994944 

[31] Planck Science Team, “Planck Science Team Home,” 2012. 
http://www.rssd.esa.int/index?project=Planck  

[32] E. Komatsu, et al., “Five-Year Wilkinson Microwave 
Anisotropy Probe Observations: Cosmological Interpreta- 
tion,” The Astrophysical Journal Supplement, Vol. 180, 
No. 2, 2009, pp. 330-376.  
doi:10.1017/CBO9780511994944 

[33] A.G. Riess et al., “A Redetermination of the Hubble Con-
stant with the Hubble Space Telescope from a Differential 
Distance Ladder,” Astrophysical Journal, Vol. 699, No. 7, 
2009, pp. 539-563. doi:10.1088/0004-637X/699/1/539 

[34] E. Komatsu, et al., “Seven-Year Wilkinson Microwave 
Anisotropt Probe (WMAP) Observations: Power Spectra 
and WMAP-Derived Parameters,” The Astrophysical Jour- 

nal Supplement, Vol. 192, No. 18, 2011, pp. 1-47.  

[35] J. R. Primack, “Precision Cosmology,” New Astronomy Re- 
views, Vol. 49, No. 5, 2005, pp. 25-34  

[36] S. L. Bridle, O. Lahav and J. P. Ostriker, “Precision Cos- 
mology? Not Just Yet ...,” Science, Vol. 299, No. 3, 2003, 
pp. 1532-1533. doi:10.1126/science.1082158 

[37] J. Joyce, “Bayes Theorem,” In: E. N. Zalta, Ed., The Stan-
ford Encyclopedia of Philosophy, The Metaphysics Re-
search Lab, Stanford, 2008.  
http://plato.stanford.edu/entries/bayes-theorem/ 

[38] J. K. Ghosh, M. Delampady and T. Samanta, “An Introduc- 
tion to Bayesian Analysis,” Springer, New York, 2006.  

[39] J. O. Berger, et al., “Bayesian Robustness,” IMS, Hay- 
ward, 1996.  

[40] A. Cho, “A Recipe for Cosmos,” Science, Vol. 330, No. 
12, 2010, pp. 1615-1616.  
doi:10.1126/science.330.6011.1615 

[41] L. Amendola, R. Gannouji, D. Polarski and S. Tsyikawa, 
“Condition for the Cosmological Viability of f(R) Dark 
Energy Models,” Physical Review D, Vol. 75, No. 8, 2007, 
pp. 83504-83560. doi:10.1103/PhysRevD.75.083504 

[42] J. Dunkley, et al., “The Atacama Cosmology Telescope 
Cosmological Parameyters from the 2008 Power Spec- 
trum,” Astrophysical Journal, Vol. 739, No. 9, 2011, pp. 
52-72. doi:10.1088/0004-637X/739/1/52 

[43] R. G. Vishwakarma and J. V. Narlikar, “A Critique of 
Supernova Data Analysis in Cosmology,” Research in 
Astronomy and Astrophysics, Vol. 10, No. 1, 2010, pp. 
1195-1198. 

[44] R. Swinburne, “Introduction to Bayes’s Theorem,” In: R. 
Swinburne, Ed., Bayes’s Theorem, Oxford University Press, 
Oxford, 2002, pp. 1-55.  

[45] S. J. Press, “Bayesian Statistics,” Wiley, New York, 1989.  

[46] AA.VV., “Bayes Theorem,” In: R. K. Bock, K. Bos, S. 
Brandt, J. Myrheim and M. Regler, Eds., Formulae and 
Methods in Experimental Data Evaluation, EPS-CERN, 
Geneva, 1984, p. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1086/324298
http://dx.doi.org/10.1086/589937
http://dx.doi.org/10.1017/CBO9780511994944
http://dx.doi.org/10.1017/CBO9780511994944
http://dx.doi.org/10.1088/0004-637X/699/1/539
http://dx.doi.org/10.1126/science.1082158
http://dx.doi.org/10.1126/science.330.6011.1615
http://dx.doi.org/10.1103/PhysRevD.75.083504
http://dx.doi.org/10.1088/0004-637X/739/1/52


G. SIRONI 1222 

 
Appendix A: Derivation of Cl,M from the 
Bayes Theorem 

Let’s assume (see Section 2.1): 
1)  set of “old” or preexisting, model indepen- 

dent, measurements of an observable;  
 O

2) N

 P O

 P N

 set of “new”, model dependent, measure- 
ments of parameter M associated by the model to the 
observable;  

3)  likelihood function of the “old” measure- 
ments O; 

4)  likelihood function of the “new” measure- 
ments N;  

5)  P O N  posterior conditional probability of O 
given N;  

6)  P N O  conditional probability of N, given O, 
produced by Model and prior. 

These quantities are linked by the Bayes Theorem (see 
for instance [[38,44-46] and references therein) which 
reads: 

           = P O N P N P N O P O        (6) 

We introduce 

   
 

 
 

   
 2

*P O P N

P N

 = d ,

 
 =  = =

 

P O N P O
R M

P NP N O
    (7) 

The numerical value of 

I R M M





              (8) 

is proportional to the overlapping of  and P O  P N

I 
 0 1C

 P O

, 
a measure of the correlation degree of direct and indirect 
measurements (when  and  do not over- 
lap ). Properly normalized it gives a number 

,l M  we can assume as our confidence level 
indicator of the indirect measurements. 

 P O  P N
0


 P N  For gaussian distributions of  and 

2 2

= exp 2 dex me ex

me exme

M M
x


 





          I     
       

  

Mwhere =me MM X  M, =ex MM E  .  
When 

 ,M ME X

 

                  (9) 

2

2  exp
2

ex

me eq

M
R M


 

 
  

  
          (10) 

and 

   d  = 2πex ex
eq

me me

I g M M
  
 




 

me ex

     (11) 

M M Mwith     
2 2

2
2 2

 
=

  
me ex

eq
ex me

 
 

 

.              (12) 

2

2
= exp ,

2 eq

M
g M



 
 
  

           (13) 

Normalization to the area  covered by  2π eq
 g M , gives  

, = =
2π

ex
l M

meeq

I
C


             (14) 



identical to our empirical expression (4). 
 P O  and When P N = 1C

ex me

 coincide ,l M . When 
  0C  > 1C

<
 ,l M . ( ,l M , excluded because 

ex me   (see Section 2), would imply models and 
priors which produce results worse than direct or pre- 
existing measurements). 
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