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ABSTRACT 

The phenomenon of the cosmological acceleration discovered in 1998 is usually explained as a manifestation of a hy-
pothetical field called dark energy which is believed to contain more than 70% of the energy of the Universe. This ex-
planation is based on the assumption that empty space-time background should be flat and hence a nonzero curvature of 
the background is a manifestation of a hidden matter. We argue that quantum theory should proceed not from space- 
time background but from a symmetry algebra. Then the cosmological acceleration can be easily and naturally ex-
plained from first principles of quantum theory without involving empty space-time background, dark energy and other 
artificial notions. We do not assume that the reader is an expert in the given field and the content of the paper can be 
understood by a wide audience of physicists. 
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1. Introduction 

The discovery of the cosmological acceleration (see e.g. 
Refs. [1,2]) has ignited a vast discussion on how this 
phenomenon should be interpreted. The results of the 
observations are usually represented in terms of the pa-
rameter which is called the cosmological constant (CC) 
and denoted by Λ. The meaning of this quantity will be 
discussed below. According to Refs. [3,4], the observa-
tional data on the value of Λ define it with the accuracy 
better than 5%. Therefore the possibilities that Λ = 0 or 
Λ < 0 are practically excluded. 

The fact that Λ > 0 is usually explained as a manifes-
tation of a hypothetical field called dark energy. The ex-
planation has its roots in the well known debate between 
Einstein and de Sitter and one of the problems in the de-
bate was whether the curved empty space-time back-
ground has a physical meaning or not. This problem is 
discussed in a vast literature and it encounters serious 
difficulties known as the CC problem or dark energy 
problem. The arguments leading to dark energy are dis-
cussed in detail in Section 2. On the other hand, in Sec-
tion 3 we argue that quantum theory should start not 
from the choice of the space-time background but from 
the choice of a symmetry algebra. Then the cosmological 
acceleration can be easily and naturally explained from 
first principles of quantum theory without involving 
empty space-time background, dark energy and other ar- 
tificial notions. 

We do not assume that the reader is familiar with the 
Einstein equations and de Sitter symmetry. We tried to 
make the presentation of the material as simple as possi-
ble and we believe that the content of the paper can be 
understood by a wide audience of physicists. 

2. Arguments Leading to Dark Energy 

The majority of works dealing with the CC problem pro-
ceed from the assumption that the gravitational constant 
G is the fundamental physical quantity, the goal of the 
theory is to express Λ in terms of G and to explain why 
Λ is so small. For this reason we first discuss whether 
indeed G can be treated as a fundamental constant and 
whether the theory should explain the value of Λ . 

The quantity G defines the gravitational force in the 
Newton law of gravity. Numerous experimental data 
show that this law works with a very high accuracy. 
However, this only means that G is a good phenomeno- 
logical parameter. At the level of the Newton law one 
cannot prove that G is the exact constant which does not 
change with time, does not depend on masses, distances 
etc. 

General Relativity (GR) is a classical (i.e. non-quan- 
tum) theory based on the minimum action principle. We 
will not assume that the reader is familiar with the Ein-
stein equations. The only features of these equations 
which are important for our discussion are the following. 
The left-hand-side of these equations contain quantities 

Copyright © 2012 SciRes.                                                                                 JMP 



F. M. LEV 1186 

describing the properties of space-time—the Ricci tensor 
R , the metric tensor g

 , = 0,1, 2,3 
T

 and the tensor of the scalar 
curvature c , while the right-hand-side 
contains stress energy tensor of matter 

R

 . The Einstein 
equations derived from the minimum action principle 
read  

 4= 8πG c T
1

2 cR g R  

R

 

        (1) 

Therefore G is the coefficient of proportionality be- 
tween the left-hand-side and rihgt-hand-side. General Re- 
lativity cannot calculate G or give a theoretical explana- 
tion why this value should be as it is. A problem arises 
whether the quantity G should be treated as a fundamen- 
tal or phenomenological constant. For example, the quant- 
ity c is usually treated as fundamental and then the 
problem of calculating c does not arise. One can say that 
the value of c is as it is simply because we wish to meas-
ure time in seconds and distances in meters. One might 
think that the quantity G can be treated analogously and 
its value is as it is simply because we wish to measure 
masses in kilograms and distances in meters (in the spirit 
of Planck units). However, treating G as a fundamental 
constant can be justified only if there are strong reasons 
to believe that the Lagrangian of GR is the only possible 
Lagrangian. Let us consider whether this is the case. 

The Lagrangian of GR should be invariant under gen-
eral coordinate transformations and the simplest way to 
satisfy this requirement is a choice when it is propor- 
tional to c . In this case the Newton gravitational law is 
recovered in the nonrelativistic approximation and the 
theory is successful in explaining several well-known 
phenomena. However, the argument that this choice is 
simple and agrees with the data, cannot be treated as a 
fundamental requirement. Another reason for choosing 
the linear case is that here equations of motions are of the 
second order while in quadratic, cubic cases etc. they will 
be of higher orders. However, this reason also cannot be 
treated as fundamental. It has been argued in the litera-
ture that GR is a low energy approximation of a theory 
where equations of motion contain higher order deriva-
tives. In particular, a rather popular approach is when the 
Lagrangian contains a function cf R  which should be 
defined from additional considerations. In that case the 
constant G in the Lagrangian is not the same as the stan-
dard gravitational constant. It is believed that the nature 
of gravity will be understood in the future quantum the-
ory of gravity but efforts to construct this theory has not 
been successful yet. Hence there are no solid reasons to 
treat G as a fundamental constant. 

Special Relativity works with Minkowski space, which 
is also called the space of events. It is very important to 
note that Minkowski space has a physical meaning only 
as a space of events for real bodies. In particular, the 

notion of empty space has no physical meaning since it 
contradicts the physical principle that a definition of a 
physical quantity is a description of how this quantity 
should be measured. In particular, one can discuss how 
coordinates of real bodies can be measured but there is 
no way to measure coordinates of the empty space which 
exists only in our imagination. 

Physicists consider others spaces of events, for exam- 
ple de Sitter (dS) space. It is a set of points characterized 
by five coordinates  , , , ,t x y z u

2 2 2 2 2 2=
 which satisfy the res- 

triction x y z u t R   
= 1c

t

 where R is some pa- 
rameter, we work in units where  and hence time 

 has the same dimension as the spacial coordinates 
 , , ,x y z u . The dS space is invariant under the action of 
the dS group, which contains only conventional and hy-
perbolic rotations. Therefore the action of the dS group 
on dS space does not depend on R at all and, instead of 
the quantities  , , , ,t x y z u  satisfying the above restric-
tion, one can characterize points on the dS space by di- 
mensionless quantities  

 0 1 2 3 4= , = , = , = , =t R x R y R z R u R    

2 2 2 2 2
1 2 3 4 0 = 1       

 

satisfying the restriction . 

An analogy of this situation follows. Suppose that a 
one-dimensional man lives on a circumference in the xy 
plane with the center in the origin and radius R. The man 
does not know that in the two-dimensional world the cir- 
cumference is described by the coordinates  ,x y

2 2 2=
 sa- 

tisfying x y R  since he has no information about 
x ,  and R. However he can measure distances and 
describe the geometry of his one-dimensional world in 
terms of a dimensionless parameter 

y

 0,2π

 0,0,0,0, R

. 
Consider a vicinity of the North pole of dS space as-

suming that the pole has the coordinates . If 
we consider only such points of dS space that u is close 
to R and all the values of  , , ,t x y z  are much less than 
R then in this vicinity, geometry is very close to that of 
Minkowski space. The dimension of the quantities 
 , , ,t x y z  in this vicinity depends on the dimension in 
which R is measured. The curvature of dS space in terms 
of  , , ,t x y z  is 2= 3 R

cR

. Then the experimental re- 
sults [1-3] say that R is of order 1026 m. This discussion 
shows that in dS theory Λ is not present at all; it appears 
only when one wishes to parametrize dS space by di-
mensionful coordinates. Hence the question of why Λ is 
as it is, is not fundamental since the answer is: because 
we want to measure distances in meters. In particular, 
there is no guaranty that Λ will not change with time. 

When the Lagrangian is linear in , the most general 
Einstein equations are not (1) but  

 41
= 8π

2 cR g R g G c T          (2) 

As follows from this expression, in GR the curvature 
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and the metric depend on the presence of matter. In the 
formal limit, when matter disappears, solutions of Equa- 
tion (2) are Minkowski space when  , dS space 
when  and anti-de Sitter (AdS) space when 

= 0
> 0 < 0 . 

In this connection the following extremely important 
question arises. As discussed above, these spaces have a 
physical meaning only as spaces of events for real bodies. 
At the same time, in GR those spaces arise as solutions 
of the Einstein equations when matter is absent. In other 
words, those spaces arise only as empty spaces. Of 
course, in mathematics one can consider different spaces 
without thinking about the physical meaning of empty 
space. But in physics the notion of empty space has no 
meaning. We believe that these remarks show that the 
formal limit of GR when matter disappears is unphysical. 

In textbooks on gravity written before 1998 (when the 
cosmological acceleration was discovered) it is often 
claimed that Λ is not needed since its presence contra-
dicts the philosophy of GR: matter creates curvature of 
space-time, so in the absence of matter space-time should 
be flat (i.e. Minkowski) while empty dS space is not flat. 
As noted above, such a philosophy has no physical 
meaning since the notion of empty space is unphysical. 
That’s why the discovery of the fact that    has 
ignited many discussions. The most popular approach is 
as follows. One can move the term with Λ in Equation (2) 
from the left-hand side to the right-hand one:  

0

 4G c T g
1

= 8π
2 cR g R           (3) 

Then the term with Λ is treated as the stress-energy 
tensor of a hidden matter which is called dark energy: 
 48πG c =DET g  . With the observed value of Λ 
this dark energy contains approximately 75% of the en-
ergy of the Universe. In this approach G is treated as a 
fundamental constant and one might try to express Λ in 
terms of G. The existing quantum theory of gravity can-
not perform this calculation unambiguously since the 
theory contains strong divergences. With a reasonable 
cutoff parameter, the result for Λ is such that in units 
where ,  is of order unity. This result is 
expected from dimensionful considerations since in these 
units, the dimension of G is  while the dimen- 
sion of Λ is 



= = 1c G

2length



21 . However, this value of Λ is 
greater than the observed one by 122 orders of magnitude. 
This problem is called the CC problem or dark energy 
problem. 

length

Several authors criticized this approach from the fol-
lowing considerations. GR without the contribution of Λ 
has been confirmed with a good accuracy in experiments 
in the Solar System. If Λ is as small as it has been ob-
served then it can have a significant effect only at cos-
mological distances while for experiments in the Solar 
System the role of such a small value is negligible. The 

authors of Ref. [5] titled “Why All These Prejudices 
Against a Constant?”, note that even in a special case 
  =c cf R R , the most general form of the Einstein 

equations is as in Equation (2) and so it is not clear why 
we should think that only a special case (1) is allowed. If 
we accept the theory containing a phenomenological 
constant G which is taken from the outside then why 
can’t we accept a theory containing two independent 
phenomenological constants? 

It is also well known since the 1930s that on quantum 
level space-time coordinates are not measurable (see e.g. 
Ref. [6]). Hence on quantum level space-time cannot be 
described by differential geometry. There exist many 
papers the authors of which propose their solutions of the 
CC problem. In the next section we give simple argu-
ments showing that the CC problem does not exist and 
the cosmological acceleration can be easily and naturally 
explained from first principles of quantum theory. 

3. Quantum Approach to Cosmological 
Acceleration 

The usual approach to dS symmetry on quantum level is 
as follows. Since classical dS space is invariant under the 
action of the dS group, in dS quantum theory operators of 
dS angular momenta  

 , = 0,1,2,3,4; =ab ab baM a b M M

 
,

=

ab cd

ac bd bd ac ad bc bc ad

M M

i M M M M   

  

   

ab

 

should satisfy the commutation relations of the dS al- 
gebra 

   (4) 

where   is the diagonal metric tensor such that  
. This approach is in 

the spirit of the well-known Klein’s Erlangen program in 
mathematics. 

00 11 22 33 44= = = = = 1       

44

However, as we argue in Refs. [7,8], quantum theory 
should not be based on classical space-time background 
and the approach should be the opposite. Each system is 
described by a set of independent operators. By defini-
tion, the rules how these operators commute with each 
other define the symmetry algebra. In particular, by defi-
nition, dS symmetry on quantum level means that the 
operators commute according to Equation (4). In semi-
classical approximation, quantum theory can recover re- 
sults obtained by classical one with dS space (see below). 
In that case dS space is meaningful only as a space of 
events for real particles but not as an empty space-time 
background. 

The anti-de Sitter (AdS) symmetry on quantum level 
can be defined analogously but the value of   in 
Equation (4) is 1 instead of –1. Poincare symmetry is a 
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special case of dS or AdS symmetry obtained as follows. 
If R is a parameter with the dimension length and the 
energy-momentum operator P  is defiend as  

4=P M  R 

 ,P M

R



 then in the formal limit  one gets 
commutation relations of the Poincare algebra from Equa- 
tion (4). It is clear that on quantum level dS and AdS 
theories can be constructed without parameters having 
the dimension of length. Such parameters may be used if 
one wishes to interpret the results in classical approxima-
tion or in Poincare limit but they are not fundamental. In 
particular, neither Λ nor G can be fundamental in agree-
ment with the discussion in the preceding section. 

The next step in our construction is the definition of 
elementary particle. Although theory of elementary par-
ticles exists for a rather long period of time, there is no 
commonly accepted definition of elementary particle in 
this theory. In Refs. [7,8] we argue that, in the spirit of 
Wigner’s approach to Poincare symmetry, a general defi-
nition, not depending on the choice of the classical back-
ground and on whether we consider a local or nonlocal 
theory, is that a particle is elementary if the set of its 
wave functions is the space of an irreducible representa-
tion (IR) of the symmetry algebra in the given theory. 
The meaning of IR is that the linear space of all possible 
wave functions cannot be decomposed into a sum of 
spaces where the operators act independently. Hence the 
term “irreducible” can be treated as a mathematical sy- 
nonym of “elementary”. There exists a wide literature 
describing how IRs of the dS, AdS and Poincare algebra 
can be constructed. Such a construction can be used not 
only for describing elementary particles but even for de-
scribing the motion of a macroscopic body as a whole. 
For example, when we consider a system of two macro-
scopic bodies such that the distance between them is 
much greater than their sizes, it suffices to describe each 
body as a whole by using the IR with the corresponding 
mass. 

The following important remarks are in order. In Quan- 
tum Field Theory, Lagrangians and Minkowski space 
play only an auxiliary role for constructing the operators 

 

ab

 for systems of interacting fields. Hence if we 
consider only systems of free particles, neither Lagran-
gian nor Minkowski space is needed. Analogous remarks 
are valid in dS theory. In particular, for describing sys-
tems of free particles, neither Lagrangian nor dS space is 
needed. 

The above notions are sufficient for describing sys- 
tems of free particles in Poincare, dS and AdS quantum 
theories. In particular, in semiclassical approximation 
one can calculate the relative acceleration of two free 
particles in such theories. One might think that since the 
particles are free, their relative acceleration will be zero. 
This is true in Poincare invariant theory but in the dS and 
AdS cases the relative acceleration is not zero. The cal-  

culation of the relative acceleration involves the follow-
ing steps. 

At the starting point we have no space-time and no 
dimensionful parameters. The only information we have 
is how wave functions describing particles under consid-
eration are constructed and how the operators M  act 
on such wave functions. This is the maximum possible 
information in quantum theory. 

The next step is that we introduce a parameter R with 
the dimension length and instead of the dS operators 

4M   work with the energy operator 40=E M R  and 
the momentum operator P such that 4=k kP M R   
 = 1,2,3k t. Then we define classical time  as a para- 
meter describing the evolution according to the Schroed- 
inger equation and define the position operator jr  of 
particle  = 1, 2j  such that it acts on wave functions  j

  p  of particle j in momentum representation as  j

ji  p

a

 (as in standard quantum mechanics). 
A standard quantum-mechanical calculation, which is 

described in detail in Refs. [7,9-11] (where we discussed 
different properties of dS quantum theory), shows that in 
the dS case the classical relative acceleration  of two 
free particles is 2= 3ca r r where  is the classical 
vector of the relative distance between the particles and 

2= 3 R . From the formal point of view, the result is 
the same as in GR on dS space. However, our result has 
been obtained by using only standard quantum-mechani- 
cal notions while dS space, its metric, connection etc. 
have not been involved at all. The derivation clearly de- 
monstrates that R is not a fundamental quantity but 
simply a parameter defining the scale of classical space- 
time coordinates  ,tr

> 0

 (in agreement with the remarks 
in the preceding section). 

4. Conclusion 

In Section 2 we argue that neither G nor Λ can be 
fundamental and the notion of empty space-time back-
ground is not physical. Hence the discussion on whether 
the empty space-time background can be curved or not 
does not have a physical meaning. In Section 3 we argue 
that quantum theory should start not from the choice of 
the empty space-time background but from the choice of 
a symmetry algebra. In view of this approach, space-time 
coordinates have a physical meaning only on classical 
level when they are applied for describing real bodies but 
not for describing the empty space-time background. In 
this approach the data of Refs. [1-3] that , should 
be interpreted not such that the space-time background is 
dS space but that the dS algebra is more pertinent than 
the Poincare or AdS ones. As shown in our Ref. [8] and 
references therein, this opens a radically new approach to 
gravity where the quantity G is not taken from the out-
side but (in principle) can be calculated. The above dis-
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cussion shows that the phenomenon of cosmological ac-
celeration can be easily and naturally explained from first 
principles of quantum theory without involving space- 
time background, dark energy and other artificial notions. 
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