

On Certain Properties of Trigonometrically ρ -Convex Functions

Mohamed Sabri Salem Ali

Department of Mathematics, Faculty of Basic Education, PAAET, Shamiya, Kuwait Email: mss_ali5@yahoo.com

Received March 30, 2012; revised April 29, 2012; accepted May 11, 2012

ABSTRACT

The aim of this paper is to prove that the average function of a trigonometrically ρ -convex function is trigonometrically ρ -convex. Furthermore, we show the existence of support curves implies the trigonometric ρ -convexity, and prove an extremum property of this function.

Keywords: Generalized Convex Functions; Trigonometrically *ρ*-Convex Functions; Supporting Functions; Average Functions; Extremum Problems

1. Introduction

In 1908, Phragmén and Lindelöf (See, e.g. [1]) showed that if F(z) is an entire function of order $0 < \rho < \infty$, then its indicator which is defined as:

$$h(\theta) = h_F(\theta) = \limsup_{r \to \infty} \frac{\log |F(re^{i\theta})|}{r^{\rho}}, \ (\alpha \le \theta \le \beta)$$

has the following property:

If $0 < \rho(\beta - \alpha) < \pi$, and $H(\theta)$ is the function of the form

$$H(\theta) := A \cos \rho \theta + B \sin \rho \theta$$

(such functions are called sinusoidal or ρ -trigonometric) which coincides with $h(\theta)$ at α and at β , then for $\alpha \le \theta \le \beta$ we have

$$h\left(\theta\right) \leq H\left(\theta\right).$$

This property is called a trigonometric ρ -convexity ([1,2]).

In this article we shall be concerned with real finite functions defined on a finite or infinite interval $(a,b) \subset \mathbb{R}$.

A well known theorem [3] in the theory of ordinary convex functions states that: A necessary and sufficient condition in order that the function $f:(a, b) \to \mathbb{R}$, be convex is that there is at least one line of support for fat each point x in (a, b).

In Theorem 3.1, we prove this result in case of trigonometrically ρ -convex functions. In Theorem 3.2, we prove the extremum property [4] of convex functions in case of trigonometrically ρ -convex functions. And

finally in Theorem 3.3, we show that the average function [5] of a trigonometrically ρ -convex function is also trigonometrically ρ -convex.

2. Definitions and Preliminary Results

In this section we present the basic definitions and results which will be used later , see for example ([1,2], and [6-9]).

Definition 2.1. A function $f:(a, b) \to \mathbb{R}$ is said to be trigonometrically ρ -convex if for any arbitrary closed subinterval [u, v] of (a, b) such that

 $0 < \rho(v-u) < \pi$, the graph of f(x) for $x \in [u, v]$ lies nowhere above the ρ -trigonometric function, determined by the equation

$$H(x) = H(x; u, v, f) = A\cos\rho x + B\sin\rho x$$

where A and B are chosen such that H(u) = f(u), and H(v) = f(v).

Equivalently, if for all $x \in [u, v]$

$$f(x) \le H(x) = \frac{f(u)\sin\rho(v-x) + f(v)\sin\rho(x-u)}{\sin\rho(v-u)}.$$
(1)

The trigonometrically ρ -convex functions possess a number of properties analogous to those of convex functions.

For example: If $f:(a,b) \to \mathbb{R}$ is trigonometrically ρ -convex function, then for any $u, v \in (a,b)$ such that $0 < \rho(v-u) < \pi$, the inequality $f(x) \ge H(x; u, v, f)$ holds outside the interval (u, v).

Definition 2.2. A function

$$T_u(x) = A\cos\rho x + B\sin\rho x$$

is said to be **supporting function** for f(x) at the point $u \in (a, b)$, if

$$T_u(u) = f(u)$$
, and $T_u(x) \le f(x) \quad \forall x \in (a,b)$. (2)

That is, if f(x) and $T_u(x)$ agree at x = u and the graph of f(x) does not lie under the support curve.

Remark 2.1. If $f:(a,b) \to \mathbb{R}$ is differentiable trigonometrically ρ -convex function, then the supporting function for f(x) at the point $u \in (a,b)$ has the form

$$T_u(x) = f(u)\cos\rho(x-u) + f'(u)\sin\rho(x-u).$$

Proof. The supporting function $T_u(x)$ for f(x) at the point $u \in (a, b)$ can be described as follows:

$$T_u(x) = \lim_{v \to u} H(x; u, v, f),$$

where $v \in (a, b)$ such that $0 < \rho(v-u) < \pi$, and as

$$f(x) \ge H(x; u, v, f), \ \forall x \in (a, b) \setminus (u, v).$$

Then taking the limit of both sides as $v \rightarrow u$, and from (1), one obtains

$$f(x) \ge T_u(x)$$

= $\lim_{v \to u} H(x; u, v, f)$
= $\lim_{v \to u} \frac{f(u)\sin\rho(v-x) + f(v)\sin\rho(x-u)}{\sin\rho(v-u)}$
= $f(u)\cos\rho(x-u) + f'(u)\sin\rho(x-u).$

Thus, the claim follows.

Theorem 2.1. A trigonometrically ρ -convex function $f:(a,b) \to \mathbb{R}$ has finite right and left derivatives $f''_+(x), f'_-(x)$ at every point $x \in (a,b)$, and $f'_-(x) \leq f''_+(x)$ for all $x \in (a,b)$.

Theorem 2.2. Let $f:(a,b) \to \mathbb{R}$ be a two times continuously differentiable function. Then f is trigonome-trically ρ -convex on (a,b) if and only if $f''(x) + \rho^2 f(x) \ge 0$ for all $x \in (a,b)$.

Property 2.1. Under the assumptions of Theorem 2.1, the function f is continuously differentiable on (a, b) with the exception of an at most countable set.

Property 2.2. A necessary and sufficient condition for the function f(x) to be a trigonometrically ρ -convex in (a, b) is that the function

$$\varphi(x) = f'(x) + \rho^2 \int_{w}^{x} f(t) dt, \quad w \in (a,b)$$

is non-decreasing in (a, b).

Lemma 2.1. Let $f:(a,b) \to \mathbb{R}$ be a continuous, 2π -periodic function, and the derivative f'(x) exists and piecewise continuous function and let M be a set of discontinuity points for f'(x) If

$$f'(x_k - 0) \le f'(x_k + 0), \ x_k \in M,$$
 (3)

and $f \in C^2((a, b) \setminus M)$, where

$$f''(x) + \rho^2 f(x) \ge 0, \ x \in (a,b) \setminus M.$$
(4)

Then f(x) is trigonometrically ρ -convex on (a, b). **Proof.** Consider

$$\varphi(x) = f'(x) + \rho^2 \int_{w}^{x} f(t) dt, \ w \in (a,b).$$
(5)

Two cases arise, as follows.

Case 1. Suppose $x = x_k \in M$. Using (5), we observe

$$\varphi(x_k+0) - \varphi(x_k-0) = f'(x_k+0) - f'(x_k-0).$$

From (3), we get $\varphi(x_k + 0) \ge \varphi(x_k - 0)$.

So, the function $\varphi(x)$ is non-decreasing in *M*. Case 2. Let $x \in (x_{k-1}, x_k), x_{k-1}, x_k \in M$, and

 $(x_{k-1}, x_k) \cap M = \emptyset.$

Differentiating both sides of (5) with respect to x, one has

$$\varphi'(x) = f''(x) + \rho^2 f(x).$$

Using (4), one obtains

$$\varphi'(x) \ge 0, x \in (x_{k-1}, x_k).$$

Thus, $\varphi(x)$ is non-decreasing function in (x_{k-1}, x_k) .

Therefore, from Property 2.2, we conclude that the function f(x) is trigonometrically ρ -convex on (a, b).

3. Main Results

Theorem 3.1. A function $f:(a,b) \to \mathbb{R}$ is trigonometrically ρ -convex on (a,b) if and only if there exists a supporting function for f(x) at each point x in (a,b).

Proof. The necessity is an immediate consequence of F. F. Bonsall [10].

To prove the sufficiency, let x be an arbitrary point in (a, b) and f has a supporting function at this point. For convenience, we shall write the supporting function in the following form:

$$T_{x}(z) = f(x)\cos\rho(z-x) + K_{x,f}\sin\rho(z-x),$$

where $K_{x,f}$ is a fixed real number depends on x and f.

From Definition 2.2, one has

$$T_x(x) = f(x)$$
, and $T_x(z) \le f(z) \quad \forall z \in (a,b)$.

It follows that,

$$f(x)\cos\rho(z-x) + K_{x,f}\sin\rho(z-x) \le (z) \quad \forall z \in (a,b).$$
(6)

For all $u, v \in (a, b)$, choose any $u \neq v$ such that $0 < \rho(v-u) < \pi$, and $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$ and let

 $x = \lambda u + \mu v.$

Applying (6) twice at z = u and at z = v yields

$$f(x)\cos\rho(u-x) + K_{x,f}\sin\rho(u-x) \le f(u)$$

$$f(x)\cos\rho(v-x) + K_{x,f}\sin\rho(v-x) \le f(v)$$

Multiplying the first inequality by $\sin \rho \lambda (v-u)$, the second by $\sin \rho \mu (v-u)$, and adding them, we obtain

$$f(x) [\sin \rho \lambda (v-u) \cos \rho (u-x) -\cos \rho (v-x) \sin \rho \mu (u-v)] +K_{x,f} \sin \rho \lambda (v-u) \sin \rho (u-x) -\sin \rho (v-x) \sin \rho \mu (u-v) \le f(u) \sin \rho \lambda (v-u) + f(v) \sin \rho \mu (v-u).$$

Consequently

$$f(x) \le \frac{f(u)\sin\rho(v-x) + f(v)\sin\rho(x-u)}{\sin\rho(v-u)}$$

for all $x \in [u, v]$, which proves that the function f(x) is trigonometrically ρ -convex on (a, b).

Hence, the theorem follows.

Remark 3.1. For a trigonometrically ρ -convex function $f:(a,b) \to \mathbb{R}$, the constant $K_{x,f}$ in the above theorem is equal to f'(x) if f is differentiable at the point x in (a,b), otherwise, $K_{x,f} \in [f'_{-}(x), f''_{+}(x)]$.

Theorem 3.2. Let $f:(a,b) \to \mathbb{R}$ be a trigonometrically ρ -convex function such that $0 < \rho(b-a) < \pi$ and let $T_u(x)$ be a supporting function for f(x) at the point $u \in (a, b)$. Then the function

$$G(u) = \int_{a}^{b} \left[f(x) - T_{u}(x) \right] dx$$

has a minimum value at $u = \frac{a+b}{2}$.

Proof. From Definition 2.2, we have

$$T_u(u) = f(u), \tag{7}$$

and

$$T_u(x) \le f(x) \quad \forall x \in (a,b), \tag{8}$$

and
$$T_{\mu}(x)$$
 can be written in the form

$$T_{u}(x) = f(u)\cos\rho(x-u) + K_{u,f}\sin\rho(x-u)$$

= $K\sin\rho(x+\alpha-u),$ (9)

where $K = \sqrt{f^2(u) + K_{u,f}^2}$, and $\tan \rho \alpha = \frac{f(u)}{K_{u,f}}$.

Using (9), one obtains

Copyright © 2012 SciRes.

$$\int_{a}^{b} T_{u}(x) dx$$

$$= K \int_{a}^{b} \sin \rho (x + \alpha - u) dx$$

$$= \frac{2}{\rho} \sin \rho \left(\frac{b - a}{2}\right) K \sin \rho \left[\left(\frac{b + a}{2}\right) + \alpha - u \right]$$

$$= \frac{2}{\rho} \sin \rho \left(\frac{b - a}{2}\right) T_{u} \left(\frac{a + b}{2}\right)$$

Consequently,

$$G(u) = \int_{a}^{b} f(x) dx - \frac{2}{\rho} \sin \rho \left(\frac{b-a}{2}\right) T_{u}\left(\frac{a+b}{2}\right). \quad (10)$$

Using (7) at $u = \frac{a+b}{2}$, the function G(u) becomes

$$G\left(\frac{a+b}{2}\right) = \int_{a}^{b} f(x) dx - \frac{2}{\rho} \sin \rho \left(\frac{b-a}{2}\right) f\left(\frac{a+b}{2}\right).$$
(11)

But from (8) ,we observe
$$T_u\left(\frac{a+b}{2}\right) \le f\left(\frac{a+b}{2}\right)$$
 for

all $u \in (a,b)$.

Now using (10) and (11), it follows that

$$G(u) \ge G\left(\frac{a+b}{2}\right)$$
 for all $u \in (a, b)$.

Hence, the minimum value of the function G(u)occurs at $u = \frac{a+b}{2}$.

Theorem 3.3. Let f(x) be a non-negative, 2π -periodic, and trigonometrically ρ -convex function with a continuous second derivative on \mathbb{R}^+ and let F(x) be a 2π -periodic function defined in $[0, 2\pi]$ as follows

$$F(x) = \frac{1}{x} \int_{0}^{x} f(t) dt, \quad x \in [0, 2\pi].$$
(12)

If $f'(0) \ge 0$, and

$$f(0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt.$$
 (13)

Then, F(x) is trigonometrically ρ -convex function.

Proof. The proof mainly depends on Lemma 2.1. So, we show that the function F(x) satisfies all conditions in this lemma.

Suppose that

$$g(x) \coloneqq \frac{1}{x} \int_{0}^{x} f(t) dt, \ x \in \mathbb{R}^{+}.$$
 (14)

It is obvious that, g(0) = f(0).

First, we study the behavior of the function F(x) inside the interval $(0, 2\pi)$.

It is clear from (12) that F(x) s is an absolutely

continuous function, has a derivative of third order.

But from the periodicity of F(x) and (13), we get

$$F(0) = g(0) = f(0)$$

= $\frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt = g(2\pi) = F(2\pi).$ (15)

Using the following substitution $t = x\tau$. It follows that, F(x) can be written as

$$F(x) = \int_{0}^{1} f(x\tau) d\tau \text{ and } F''(x) = \int_{0}^{1} \tau^{2} f''(x\tau) d\tau.$$

Consequently,
$$F''(x) + \rho^{2} F(x)$$

$$= \int_{0}^{1} \tau^{2} \left(f''(x\tau) + \rho^{2} f(x\tau) \right) + \rho^{2} \left(1 - \tau^{2} \right) f(x\tau) d\tau.$$
⁽¹⁶⁾

Since f(x) is non-negative, trigonometrically ρ -convex function, and $0 \le \tau \le 1$, then from Theorem 2.2 and (16) it follows that

$$F''(x) + \rho^2 F(x) \ge 0, \ x \in (0, 2\pi).$$
(17)

Second, we prove that

$$F'(2\pi - 0) \le F'(2\pi + 0).$$
 (18)

From the definition of g(x) in (14) and the periodicity of F(x), we observe that

 $F'(2\pi - 0) = g'(2\pi)$, and $F'(2\pi + 0) = g'(0)$.

Again using (14), we have

$$g'(x) = \frac{f(x) - g(x)}{x}.$$
 (19)

Thus, from (15) and (19), one has $g'(2\pi) = 0$, and $g'(0) = \frac{1}{2} f'(0)$.

Hence, from (13), we infer that

$$F'(2\pi - 0) = g'(2\pi) = 0 \le \frac{1}{2}f''(0)$$
$$= g'(0) = F'(2\pi + 0),$$

and the inequality in (18) is proved.

Now using (17), (18), and Lemma 2.1, we conclude

that F(x) is trigonometrically ρ -convex function, and the theorem is proved.

4. Acknowledgements

The author wishes to thank the anonymous referees for their fruitful comments and suggestions which improved the original manuscript.

REFERENCES

- [1] B. Ya. Levin, "Lectures on Entire Functions," American Mathematical Society, 1996.
- [2] L. S. Maergoiz, "Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics," Kluwer Academic Publishers, New York, 2003.
- [3] A. W. Roberts and D. E. Varberg, "Convex Functions," Academic Press, New York, 1973.
- [4] M. J. Miles, "An Extremum Property of Convex Functions," *American Mathematical Monthly*, Vol. 76, 1969, pp. 921-922. <u>doi:10.2307/2317948</u>
- [5] A. M. Bruckner and E. Ostrow, "Some Functions Classes Related to the Class of Convex Functions," *Pacific Journal of Mathematics*, Vol. 12, 1962, pp. 1203-1215.
- [6] E. F. Beckenbach, "Convex Functions," Bulletin of the American Mathematical Society, Vol. 54, No. 5, 1948, pp. 439-460. doi:10.1090/S0002-9904-1948-08994-7
- [7] J. W. Green, "Support, Convergence, and Differentiability Properties of Generalized Convex Functions," *Proceedings of the American Mathematical Society*, Vol. 4, No. 3, 1953, pp. 391-396. doi:10.1090/S0002-9939-1953-0056039-2
- [8] M. M. Peixoto, "On the Existence of Derivatives of Generalized Convex Functions," *Summa Brasilian Mathematics*, Vol. 2, No. 3, 1948, pp. 35-42.
- [9] M. M. Peixoto, "Generalized Convex Functions and Second Order Differential Inequilities," *Bulletin of the American Mathematical Society*, Vol. 55, No. 6, 1949, pp. 563-572. doi:10.1090/S0002-9904-1949-09246-7
- [10] F. F. Bonsall, "The Characterization of Generalized Convex Functions," *The Quarterly Journal of Mathematics Oxford Series*, Vol. 1, 1950, pp. 100-111. doi:10.1093/gmath/1.1.100