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ABSTRACT 

In recent years, a number of preconditioners have been applied to solve the linear systems with Gauss-Seidel method 
(see [1-13]). In this paper we use Sl instead of (S + Sm) and compare with M. Morimoto’s precondition [3] and H. Niki’s 
precondition [5] to obtain better convergence rate. A numerical example is given which shows the preference of our 
method. 
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1. Introduction 

Consider the linear system  

= ,Ax b                 (1) 

where   n n
ijA a R  

, n
 is a known nonsingular matrix 

and x b R  are vectors. For any splitting A = M – N 
with a nonsingular matrix M, the basic splitting iterative 
method can be expressed as  

   1 1 1= . = 0k kx M Nx M b k   ,1, 2,

n

,

  (2) 

Assume that  
0, = 1,2, , ,iia i   

without loss of generality we can write  

=A I L U                (3) 

where I is the identity matrix, L  and  are strictly 
lower triangular and strictly upper triangular parts of 

U
A , 

respectively. In order to accelerate the convergence of 
the iterative method for solving the linear system (1), the 
original linear system (1) is transformed into the follow- 
ing preconditioned linear system  

=PAx Pb,


 

               (4) 

where P, called a preconditioner, is a nonsingular matrix. 
In 1991, Gunawardena et al. [2] considered the modi- 

fied Gauss-Seidel method with , where  P I S 

  1 for = 1,2, , 1, 1

0 otherwise.
ii

ij

a i n j i
S s  
  




 

Then, the preconditioned matrix  =SA I S A  can 
be written as 

    
=

= ,
SA I L SL U S SU

where D and E are the diagonal and strictly lower trian- 
gular parts of SL, respectively. If  

 1 1 1 1 1ii i ia a i n      , then      1
I D L E


     

exists. Therefore, the preconditioned Gauss-Seidel ite- 
rative matrix  for ST SA  becomes  

      1
= ,ST I D L E U S SU


      

which is referred to as the modified Gauss-Seidel itera- 
tive matrix. Gunawardena et al. proved the following in- 
equality:  

    < 1,ST T   

where  T  denotes the spectral radius of the Gauss- 
Seidel iterative matrix T. Morimoto et al. [3] have pro- 
posed the following preconditioner,  

  = =s m .s m ijP a I S S
   m

,n

 

In this preconditioner,  is defined by  mS

   1 < 1, 1 <
= =

0 otherwise,

ilm i
m ij

a i n i j
S s

    



 

where  and  = minil iI

 = : is maximal for 1 <i ijI j a i j n  , for  

1 <i n 1  . The preconditioned matrix  
 m=s mA I S S A   can then be written as  

    
 

=

          

       

         ,

s m

m m m

s m s m

m m s

A I L SL U S

SU S S L S U

I D L E

U S S SU S U F



 



   

   

   

      m

 

I D L E U S SU

    

     
 

where s mD  , s mE   and s mF   are the diagonal, strictly 
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lower and strictly upper triangular parts of  
respectively. Assume that the following inequalities are 
satisfied:  

 mS S L

1

.

n 1 1

1 1

0 < < 1 1 <

0 < < 1 = 1

ii i i il l ii l

ii i i

a a a a i

a a i n

 

 

 



 

Then   is nonsingular. The 
preconditioned Gauss-Seidel iterative matrix 

   s m s mI D L E   
s mT   for 

s mA   is then defined by  

    
 s m

1
=

 

s m s m s m

m m

T I D L E

U S S SU S U F



  



  

      .
 

Morimoto et al. [3] proved that    s m s . To 
extend the preconditioning effect to the last row, Mori- 
moto et al. [7] proposed the preconditioner  

T T 

= ,RP I R  

where R is defined by  

  1 1
= =

0 otherwise

nj
nj

a j n
R r

   



 

The elements R
nja  of RA  are given by  

   

1

=1

= = ,

     1 < , 1

=
1 .

R
R ij

ij
R n
ij

nj nk kj
k

A I R A a

a i

a
a a a j n





 



  




n j n

 

 

And Morimoto et al. proved that  RT  T  
holds, where RT  is the iterative matrix for RA . They al- 
so presented combined preconditioners, which are given 
by combinations of R with any upper preconditioner, and 
showed that the convergence rate of the combined meth- 
ods are better than those of the Gauss-Seidel method ap- 
plied with other upper preconditioners [7]. In [14], Niki 
et al. considered the preconditioner SR  =P  I S R  . 
De- note SR SR SR=A M N . In [5], Niki et al. proved that 
if the following inequality is satisfied,  

 1 ,n 
1

=1,

= = 1, 2, ,
n

R
nj nj nj nk kj

k k j

a a a a a j




      (5) 

then SR S  holds, where SR  is the iterative 
matrix for 

  T 
SR

T T
A . For matrices that do not satisfy Equation  

(5), by putting    
1

=1 ,

= =
n

nj nk kj nj
k k j

R r a a a




  ,1 < ,j n

= 1

1,

therwise.

n

Equation (5) is satisfied. Therefore, Niki et al. [5] pro- 
posed a new preconditioner , where  GP I G 

 
1

=1 ,

, 1
= =

0 o

n

nk kj nj
k k jnj

a a a j
G g





   




 
 

Put  = = =G
G G ij G GA P A a M N , and .  1=G GT M N

G

Replacing G  by P = ,G mP I S S G    and setting 
= 1,  the Gauss-Seidel splitting of GA  can be written 

as  

       
  ,

G s m s m

m m s m

A I D L E G L U G

U S S SU S U F

 



      

     
 

where  G L U G 
nj jna

 is constructed by the elements 
. Thus, if the preconditioner  is used, 

then all of the rows of 
=G

nja g GP
A  are subject to preconditioning. 

Niki et al. [5] proved that under the condition >u  , 
    ,R GT T  where u  is the upper bound of those 

values of   for which   < 1GT . By setting , 
they obtained  

= 0G
nja

1

=1,

= .
n

nj nj nk kj
k k j

a g g a




 
  

 
  

Niki et al. [5] proved that the preconditioner G  
satisfies the Equation (5) unconditionally. Moreover, 
they reported that the convergence rate of the Gauss- 
Seidel method using preconditioner G  is better than 
that of the SOR method using the optimum 

P

P
  found by 

numerical computation. They also reported that there is 
an optimum  opt   in the range > > ,u mopt    which  

produces an extremely small , where  optT m  is the  

upper bound of the values of   for which , for 
all . 

0nja G

j
In this paper we use different preconditions for solving 

(1) by Gauss-Siedel method, that assuming none of the 
components of the matrix A  to be zero. If the largest 
component of the column j is not  then the value 
of 

, 1,i ia 

 T  will be improved. 

2. Main Result 

In this section we replace Sl by  of Morimoto 
such that 

 mS S 
m=l nS S S  and define  by  nS

 
= 1,2,..., 2 , = 1,

= = = 1,

0 otherwise,

k ji

n ij ij

a i n j i

S s a i n

  

 



 

where maxk j kji
 s.t , and 

m  has the same form as the  proposed by Mori- 
moto et al. [3].  

a a  n= , 2, 3, ,k i i i  
mSS

The precondition Matrix  S ll
A I S A   can then be 

written as  

    
=

= ,

S l l ll

S S l ll l

A I L U S S L S U

I D L E U S S U F Sl

    

      
 

where  and 
lS,

l lS SD E , F  are the diagonal, strictly 
lower and strictly upper triangular parts of , re- lS L
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spectively. Assume that the following inequalities are 
satisfied:  

1 1 1

1 1

1 1

0 = 1,2, , 2

0 < < 1 = 1,2, , 2

0 < < 1 = 1,

ii k i il l ii i i

k i i i il l ii i i

ii i i

a a a a i n

a a a a i n

a a i n

  

 

 

    


 






   (6) 

Therefore 
lS
1M   exists and the preconditioned Gauss- 

Seidel iterative matrix  for 
lST

lSA  is defined by  

    1

=

=

l l l

l l

S S S

S S l l

T M N

I D L E U S S U F




        lS

1

.
 

For  = ijA a  and , we write  = n n
ijB b R  A B  

whenever  holds for all  A is non- 
negative if 

ij ija 
0

b
,

, = 1i j
 0; , = 1, ,

, 2, , .n
,ijA a i j   n  and A B  if 

and only if .  0A B 
Definition 2.1 (Young, [15]). A real  matrix  n n
 = ijA a  with  for all  is called a Z- 

matrix.  
0ija  i  j

Definition 2.2 (Varga, [16]). A matrix A is irreducible 
if the directed graph associated to A is strongly connected.  

Lemma 2.3. If A is an irreducible diagonally dominant 
Z-matrix with unit diagonal, and if the assumption (6) 
holds, then the preconditioned matrix AS is a diagonally 
dominant Z-matrix. 

Proof. The elements  of lS
ija

lSA  are given by  

, 1 1, , ,

, 1 1,

1 < 1,

= 1,

= .

l

ij k i i j i l l ji i i
S
ij ij i i i j

ij

a a i n

a a a a i n

a i

 

 

  


  



a a a

n



1,

,



,

,

,

,

,

.

We denote that .  Then 

th ality holds:  

1 < .n

 (7) 

Since A is a diagonally dominant Z-matrix, so we have  

, 1 1,

, ,

, 1 1, 1

0 1 for

0 1 for

1 0.

k i i ji

i l l j ii i

k i i ii

a a j i

a a j l

a a

 

  

  

  

  

   (8) 

Therefore, the following inequalities hold:  

, 1 1,= 0
ii k i i ip a a    

, ,= 0
i ii i l l iq a a   

1

, 1 1,
=1

= 0
i

i

i k i i j
j

r a a


    

1

, ,
=1

= 0
i i

i

i i l l j
j

s a a


  

, 1 1,
= 1

= 0
i

n

i k i i j
j i

t a a 


  

, ,
= 1

= 0
i i

n

i i l l j
j i

u a a


  

 = = = = = = 0n n n n n np q r s t u

e following inequ

p q r s t u

, 1 1, , ,
=1 =1

= 0
i i i

i i i i i i

n n

k i i j i l l j
j j

a a a a i 

    

   
 

Furthermore, if , 1 0i ia  , and , for some 1,
=1

< 0i j
j

a 

for some i

n


< n , then we have

p q r s t

i   

u < 0 < .i i i i i i n        (9) 

Let  l i
d S ,  l i

l S  and  l i
u S

lSL , an
  

 be the sums
el

hold:

 of the 
emen

lSD , d 
lSU , respectively. 

The following equation
ts in row i of 

s 

  = = 1lSd S a p q

 

 

1

=1

= 1

, 1

= = 1

= = 1

l

l

l ij i i

i
S

l ij i i i
j

n
S

l ij i i i
j i

i n

l S a l r s i n

u S a u t u i n





,

,

,

   

    

    





  (10) 

where  and  are the sums of the elements in row i il
d 

iu
of L an U for =A I L U  , respectively. Since A is a 
diagonally dom x, by (8) and by the con- 
dition (6) the following relations hold:  

, 1 1, , ,1 > 0, for =a a a a j 

inant Z-matri

i
i i ik i i j i l l j   

, 1 1, , ,
= 1 = 1

0, for >
i i i

n n

ij k i i j i l l j
j i j i

a a a a a i j 
 

     

, 1 , , 1 , 1 1, , ,
= 2 = 2

0

for < .

i i i

n n

ij k i i l l i k i i j i l l ji i i
j i j i

a a a a a a a a

i j

   
 

    
 



Therefore,   0ll S  ,   0lu S  , and 
lSA  is a Z- 

matrix. Moreo ) a  assump n, we can 
easily obtain  

ver, by (9 nd by the tio

     
   = >

for all .

l l l

i i i i i i i i i

S u S

d l u p q r s t u

i



       

d S l

0    (11) 

Therefore, 
lSA  satisfies the condition of diagonal do- 

m
 2.4 [10, Lemma 2]. An upper bound on the 

sp

inance. 
Lemma
ectral radius  T  for the Gauss-Seidel iteration 

matrix T is given by  

  ,max
1

i

i
i

u
T

l
 




  

where  and  are the sums of the moduli of the 

. Let A be a nonsingular diagonally do- 
m

il


ts 
iu
 elemen in row i of the triangular matrices L and U, 

respectively.  
Theorem 2.5

inant Z-matrix with unit diagonal elements and let the 
condition (6) holds, then   < 1.

lST  
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Proof. From (11) and   0lu S   we have  

This implies that  

    ll . > 0 for al l ld S l S u S i   

 
   

< 1.l

l l

u S

d S l S
           (12) 

Hence, by Lemma (2.4) we have 
trix. Then, 

  < 1.
lST  

 real maDefinition 2.6. Let A be an n n
=A M N  is referred to as:  

lar splitting, if M 1) a regu is nonsingular, 
an

 a we  regular splitting, if M is nonsingular, 

3) a convergent splitting, if   

 Let 

1 0M    
d 0.N   
2) ak

1 0   and 1 0.M N   M

 1 < 1.M N 

n nLemma 2.7 (Varga, [10]). A R
rix. Then

  be a non- 
ne

 eigen  spectral 
ra

gative and irreducible nn  mat   
1) A has a positive real value equal to its
dius  A ;  
2) fo r A , there corresponds an eigenvector x > 0;  
3)  A a simple eigenvalue of A;   is 
4)  A  increases whenever any entry of A increases.  
Cor  2.8 [16, Corollary 3.20]. If ollary  = ijA a  is a 

real, irreducibly diagonally dominant n  with 
< 0ija  for all i j , and > 0iia  ll 1 i n

n  matrix
r afo   , 

1 >then A O . 
Theorem 2.9 [16, Theorem 3.29]. Let =A MN  be a 

regular splitting of the matrix A. Then, A i gular 
with 1 >

s nonsin
A O  if and only if  1 < 1M N  , where  

   
 

1

1

1
= <

1

A N
M N

M N





1


 

Theorem 2.10 (Gunawardena et al. [2, Theorem 2.2]). 
Le



t A be a nonnegative matrix. Then 
1) If x Ax   for some nonnegative vector x, 0,x   

then  .A  
2) If 

  
Ax x  for some positive vector  x, then

 A .  ver, if A is irreducible and if   Moreo
0 x Ax x   for some nonnegative vector   x, then 

 A     and x  is a positive vector.  
a real Banach space, B  itsLet B  be  dual and 

 B   space of all bounded linear operator mapping 
itself. We assume that B is generated by a normal 

cone K [17]. As is defined in [17], the operator 
 

L
B into

the
 

A L B  has the property “d” if its dual A  possesses 
ius eigenvector in the dual cone a Fro- ben K   which is 

de- fined by  

 = : , = ( ) 0 for all .K x B x x x x x K       

As is remarked in [1,17], when  and = nB R = nK R , 
ereforeall n n  real matrices have the property “d”. Th  

the case are discussing fulfills the property “d”. For the 
space of all n n  matrices, the theorem of Marek and 
Szyld can be s  as follows:  

Theorem 2.11 (Marek and Sz
tated

yld [17, Theorem 3.15]). 
Let 1 1 1=A M N  and 2 2 2=A M N  be weak regular 
split 1 1= ,M N  . Let 0, 0x y   
be such that

ting with 1 1 1 2 2=T M N2T
  1 1T x  and =T x  2T y . If2 =y  

1 1
1 2 ,M M

T
   and 1 2A A or  if either   1 0,A x 0,x

 1 2A A y 10, 0,A y    with > 0y , then  

 T T  1 2 . 

Moreover, if 1 1
1 2>M M   and  then  1 2 ,N N

  1 2< .T T   
Now in th wing lemma we p ove that e follo r

 = =
l lS n m S Sl

A I S S A M N    is Gauss-S

Theorem 2.12. Let A 

eidel con- 

be an irreducibly diagonally 
do

vergent regu litting.  lar sp

minant Z-matrix with unit diagonal, and let the con- 
dition (6) holds, then =

l l lS S SA M N  is Gauss-Seidel 
convergent regular split  ting. Moreover 

    < 1.T T   
lS s m

Proof. If  irreducibly diagon minant Z- 
m

A is an ally do
atrix, then by Lemma (2.3), 

lSA  is a diagonally 
dominant Z -matrix. So we have 0A . By hypothesis  

we have 

1

lS 

  1

lSI D I


  . Thus t tly lower trian-  he stric

gular matrix  lSL E
anns 

 
um

has nonnegative elements. By 
considering Ne series, the following inequality 
holds:  

   

    
      

1

21

11 1

          

         0.

l l l

l l

l l l

S S S

S S

n

S S S

M I I D L E

L E

L E I D





 

  

 



1

I D

I D

 

 

   


  



Direct calcu n shows that  holds. Thus, 
by

latio 0
lSN 

l
 definition (2.6) =

l lS S SA M N  Gauss-Seidel 
convergent regular sp ] we have  

=

 is the
 in [3litting. Also

s m s m s mA M N    and  

1
L

  

    
      

1

21

11 1

= [

           ,

          0.

s m S M S M

S M S M

n

S M S M S M

M I D E

L E

L E I D


  


 

 
  



 



I

I D

I D

 

 

   

  



Direct co arison of the two matrix elements  mp

 I  1

S MD


  and   1
I D


  also  S ML E   and  

lS

 lSL E  w   e obtain
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11
,

.

l

l

S M S

S M S

I D

L E L E






 

  
 

I D

Thus  
1 10 .

ls m SM M 
   

Furthermore, since , we have  
ma (2.7), x is 

m

holds. 
te  

nS S
 0Ax

l
 , and x

T


lS s m nx A x S S   . From Lem

 is also a Perron vector of 

lST . Therefore, from heorem (2.11),  

   T T   

A 
an eigenvector of ST

 

lS s

Deno

 
 
 
 

,

,

,

,

smr m

S r ll

G m

GS ll

A I S S R A

A I S R A

A I S S G A

A I S G A




   
  

   
  

 

and also let smrT , 
ted to 

lS rT , GT  and be the iterative G lT S  
matrix associa smrA , 

lS rA , GA  and 
lGSA   

respectively. Then w  prove   and 
   G l GT S T  , similarly. In s e the 

ties:  

   

e can  lS r

ummary
 

,
smrT T 

 we hav
following inequali

     

     .
l

l l

s s m S smr

S G GS

T T T T T

T r T T

    

  

   

  
 

Remark 2.13. W. Li, in [18] used the M-matrix in- 
st

3. Numerical Results 

ple example to compare and 




Applying the Gauss-Seidel method, we have 

ead of irreducible diagonally dominant Z-matrix, there- 
fore we can say that the Lemma 2.3 and the Theorems 
2.5 and 2.12 are hold for M-matrices.  

In this section, we test a sim
contrast the characteristics of the different precondition- 
ers. Consider the matrix  

1  0.2 0.6 0.2

0.2 1 0.3 0.1

0.1 0.2 1 0.3

0.2 0.3 0.2 1

A

 
   
   
 
   

 

  =T  
 ,A  we0.

find tha
5099 . By using preconditioner =SP I S  

t SA  and ST  have the follow

0.96 0 0.66 0.22  

ing forms: 

0.23 0.94 0 0.19

0.16 0.29 0.94 0

0.2 0.3 0.2 1

SA
   
  
 
   

 

0 0 0.6875 0.2292

0 0 0.1682 0.2582

0 0 0.1689 0.1187

0 0 0.2217 0.1470

ST

 
 
 
 
 
 

 

and   = 0.3205ST
Using the precondi

. 
tioner ,s mP   we obtain  



and 

0.90 0.12 0.06 0.4

0.25 0.91 0.2 0.09
=

0.1 0.29 0.94 0

.3

s mA 

   
   
  
 

 
6

0.2 0 0.2 1   

0 0.133 0.067 0.444

0 0.037 0.040 0.221
=

0 0.034 0.023 0.144

0 0.044 0.030 0.184

s mT 

 
 
 
 
 
 

 

  = 0.2581s mT 

For =P I S
. 

lS l , we have  



and 

0.88 0.02 0.09 0.41

0.25 0.91 0.2 0.09
=

0.16 0.29 0.94 0

0.2 1

lSA

   
   
  
 
   

 

0.2 0.3

0 0.023 0.102 0.465

0 0.006 0.050 0.227
=

0 0.006 0.033 0.149

0 0.007 0.042 0.1911

lST

 
 
 
 
 
 

 

  = 0.2328
lST

For =smrP I S
. 

RmS   , we have  



and 

0.90 0.12 0.06 0.4

0.25 0.91 0.2 0.09
=

0.1 0.29 0.94 0

0.08 0. 0.87

smrA

   
   
  
 
  

 
6

08 0.21

0 0.133 0.067 0.444

0 0.037 0.040 0.221
=

0 0.034 0.023 0.144

0 0.024 0.015 0.096

smrT

 
 
 
 
 
 

 

  = 0.1694smrT . 
For = ,P I S R  we have  



lS r l 

0.88 0.02 0.09 0.41

0.25 0.91 0.02 0.09
=

0.16 0.29 0.94 0

0.08 1 0.87

lS rA

   
   
  
 
 

 

0.08 0.2 
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0 0.023 0.102 0.465

0 0.006 0.050 0.227
=

0 0.006 0.033 0.149

0 0.004 0.022 0.1

lS rT

 
 
 
 
 
 

 

and 
lts, we have  

. Then  and 






and . 
G , we have  








and Since the preconditioned matri- 
ces di ues of their last rows, the related 

ly in these values, as is shown in 
th  the elements of new 

  = 0.1415.
lS rT  

From the above resu
 0.28,0.38,0.41,0njG 

have the forms:  
  = 1GA  GT  

0.90 0.12 0.06 0.4

0.25 0.91 0.02 0.09

0

0.04 0.06 0.07 0.78

   
 
  

 
 

 =
0.16 0.29 0.94

GA 
 


0 0.133 0.067 0.444

0 0.037 0.040 0.221=
0 0.034 0.024 0.144

0 0.012 0.008 0.050

GT

 
 
 
 
 
 

 

  = 0.1218GT
For  = 1 =P I

lGS lS 

0.88 0.02 0.09 0.41

0.25 0.91 0.02 0.09=
0.1 0.29 0.94 0

0.04 0.06 .78

GSl
A

   
 
  
   
  

 
6

0.07 0

0 0.023 0.102 0.465

0 0.006 0.050 0.227=
0 0.006 0.033 0.149

0 0.002 0.011 0.052

GSl
T

 
 





 

  = 0.0940.
lGST  

ffer only in the val
matrices also differ on

e above results. Thus GA  and 

lGSA  are similar to elements of GA  and 
lGSA , respec- 

tively ts of last rows. Therefore, we 
hereafter show only the last row. 

By putting 1 = 1.22699

 than the elemen

 , the matrices 
1
,GA

 1
,GT

 1lGSA   
and 

1lGST   have the following forms:  

 
 

1

1

= 0, 0.003, 0.0 0.733

= 0,0.0021,0.0015,0.0093 ,

G

G

A

T





 
 

42, ,

and  
1

= 0.0779


,  GT

 


1

1

= 0, 0.003, 0.042,0.733 ,

= 0,0.00036,0.0021,0.0096
l

l

GS

GS

A

T





 
 



For 

,

and .  1
= 0.0509

lGST 

2 = 1.23966

 
 

2

2

= 0.0021,0, 0.0413,0.7310 ,

= 0,0.0015,0.0011,0.0069 ,

G

G

A

T






 

and  
2

= 0.0751GT


  and  

 
 

2

2

= 0.0021,0, 0.0413,0.7310 ,

= 0,0.00026,0.0016,0.0071 ,
l

l

GS

GS

A

T






 

and  2
= 0.0483

lGST  . 

 3 = 1.5625optFor  we have:  

 
 

 
 

3

3

= 0.0547,0.0781,0,0.6609 ,

= 0, 0.0154, 0.0102, 0.0629 ,

G opt

G opt

A

T




  

 

 we have:  

and 
  

3
= 0.0227

optGT


  and  

   

   
3

3

= 0.0547,0.0781,0,0.6609 ,

= 0, 0.0026, 0.0144, 0.0654 ,

l

l

GS opt

GS opt

A

T



   
 

and   
3

= 0.021
lGS optT  6 .  

From the numerical results, we see that this method 
with the preconditioner produces a spectral 
radius smaller than the onditioners that above 
was introduced. 

eng and X

10.1016/j.amc.2005.07.050

 
lGS optP   
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