Advancesin Linear Algebra & Matrix Theory, 2012, 1, 31-37

+53 Scientific

http://dx.doi.org/10.4236/alamt.2012.23005 Published Online September 2012 (http://www.SciRP.org/journal/alamt) ~#¢ Research

A Modified Precondition in the Gauss-Seidel M ethod

Alimohammad Nazari, Sajjad Zia Borujeni
Department of Mathematics, Faculty of Science, Arak University, Arak, Iran
Email: a-nazari @araku.ac.ir, z-borujeni @arshad.araku.ac.ir

Received March 6, 2012; revised June 28, 2012; accepted August 21, 2012

ABSTRACT

In recent years, a number of preconditioners have been applied to solve the linear systems with Gauss-Seidel method
(see[1-13]). In this paper we use § instead of (S+ S,) and compare with M. Morimoto’s precondition [3] and H. Niki's
precondition [5] to obtain better convergence rate. A numerical example is given which shows the preference of our

method.
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1. Introduction
Consider the linear system
Ax =D, Q)

where Az(qj)e R™ is a known nonsingular matrix
and x,be R" are vectors. For any splitting A= M — N
with a nonsingular matrix M, the basic splitting iterative
method can be expressed as

XY = MINx) + M b,
Assume that

k=012 (2

a =0,i=1,2,---,n,

without loss of generality we can write

A=1-L-U, 3)
where | isthe identity matrix, —L and -U are strictly
lower triangular and strictly upper triangular partsof A,
respectively. In order to accelerate the convergence of
the iterative method for solving the linear system (1), the

original linear system (1) is transformed into the follow-
ing preconditioned linear system

PAx = Pb, (4

where P, called a preconditioner, is anonsingular matrix.
In 1991, Gunawardena et al. [2] considered the modi-
fied Gauss-Seidel method with P =(1 +S), where

S_( )‘ =&, fori=12--.n-1j=i+1
“\8)= otherwise.

Then, the preconditioned matrix Ay =(1+S)A can
be written as

A=1-L-SL-U+S-U
=(1-D)-(L+E)—-(U-S+U),
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where D and E are the diagona and strictly lower trian-
gular parts of S, respectively. If

8,8,y #1(1<i<n-1),then {(1-D)-(L+E)}
exists. Therefore, the preconditioned Gauss-Seidel ite-
rative matrix Ty for A, becomes

-1

To={(1-D)~(L+E)} ' (U-S+ V),

which is referred to as the modified Gauss-Seidel itera
tive matrix. Gunawardena et al. proved the following in-

equality:
P(Ts)<p(T)<1,

where p(T) denotes the spectral radius of the Gauss-
Seidel iterative matrix T. Morimoto et al. [3] have pro-
posed the following preconditioner,

P, = (qgs*”) =1+S+S,

In this preconditioner, S, isdefined by
m _ | T,
S=(47)=

0 otherwise,

1<i<n-li+l<j<n,

where |, =minl; and
I :{j :|a1.j| ismaximal for i+1< | sn},for

1<i <n-1. The preconditioned matrix
A, =(1+S+S,)A canthenbewritten as

A.,=l-L-SL-U+S
~SU+S,-S,L-SU
:{(l _Ds+m)_(L+Es+m)}
-(U-S-S,+U+SU+F,,),

where D, E.., and F,, arethe diagonal, strictly

Ss+m? S+m
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lower and strictly upper triangular parts of (S+S,)L
respectively. Assume that the following inequalities are
satisfied:
O0<a.a,,+3a,; <1
O < Qiﬂaﬂli <1
Then {(1-D,,)-(L+E,,)} is nonsingular. The

preconditioned Gauss-Seidel iterative matrix T, for
A, isthen defined by

Ts+m = {(I - Ds+m)_(L+ Es+m)}7l
(U-S-S,+U+SU+F,.).
Morimoto et al. [3] proved that p(T,., )< p(T,). To

extend the preconditioning effect to the last row, Mori-
moto et al. [7] proposed the preconditioner

P.=1+R
where Ris defined by

R:(r.): -a; 1<j<n-1
" 0  otherwise

1<i<n-1

i=n-1.

Theelements aj of A, aregivenby
A= (1+R)A=(a]),

a 1<i<n1<j<n

a*= n-1
" ey —kziankaw. 1<j<n.

And Morimoto et al. proved that p(Tg)<p(T)
holds, where Ty istheiterative matrix for A;. They a-
so presented combined preconditioners, which are given
by combinations of R with any upper preconditioner, and
showed that the convergence rate of the combined meth-
ods are better than those of the Gauss-Seidel method ap-
plied with other upper preconditioners [7]. In [14], Niki
et al. considered the preconditioner Py = (I +S+R).
De-note Ay = Mg —Ng. In[5], Niki et al. proved that
if the following inequality is satisfied,

n-1

<8y =8~ 2 ad (j=12-n-1), (5

k=1, k=]j
then p(Tg)< p(Ts) holds, where T, is the iterative
matrix for Ay . For matrices that do not satisfy Equation

n—:

1
(5), by putting R=(r,)=- Y a,a,-a,.1<j<n,

k=1, k=j
Equation (5) is satisfied. Therefore, Niki et al. [5] pro-
posed anew preconditioner P; = | +yG(y >1), where

n-1

y —a,, 1<j<n-1,
G=(g )= kz&j%% a;, 1<

0 otherwise.
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Put A, =P;A=(af)=Mg—Ng,and To=Mg'Ng.

Replacing P, by RB; =1+S+S,+yG, and setting
y =1, the Gauss-Seidel splitting of A; can be written
as

'% :{(I _Ds+m)_(L+Es+m)_(G(L+U)_G)}
-(U-S-8,+U+SU +F,,).

where G(L+U)-G is constructed by the elements
a; =g,a,,. Thus, if the preconditioner P, is used,
then all of therowsof A are subject to preconditioning.
Niki et al. [5] proved that under the condition y, >y,
p(Tz)= p(Ts), where y, isthe upper bound of those
values of y for which p(T;)<1. By setting a5 =0,
they obtained

n-1
y:_anj/(gnj + Ok 8 ]
k=L k]

Niki et al. [5] proved that the preconditioner P,
satisfies the Equation (5) unconditionaly. Moreover,
they reported that the convergence rate of the Gauss
Seidel method using preconditioner P, is better than
that of the SOR method using the optimum « found by
numerical computation. They also reported that there is
anoptimum y(7,, ) intherange 7,> o> 7,, Which

produces an extremely small p(T,,, ), where 7, isthe

upper bound of the values of » for which afj >0, for
al j.

In this paper we use different preconditions for solving
(1) by Gauss-Siedel method, that assuming none of the
components of the matrix A to be zero. If the largest
component of the column j isnot a;,,, then the value
of p(T) will beimproved.

*

2. Main Result

In this section we replace S by (S+ Sm) of Morimoto
suchthat § =§,+S, anddefine S, by

8| i=1,2,...,n=2,j=i+1,
S =(s)=1-4

0 otherwise,

i=n-1,

where -8 =max|a;| st k=ii+2i+3;-.n, and
S, has the same form as the S, proposed by Mori-
moto et al. [3].

The precondition Matrix A, =(1+S)A canthen be

written as
A, =1-L-U+§-SL-SU
:(I—Dﬁ)—(L+E§)—(U—S+SU+F§),
where Dg,Eg, and Fy are the diagonal, strictly

lower and strictly upper triangular parts of SL, re-
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spectively. Assume that the following inequalities are
satisfied:
8+ 8., +8, 8,20 i=1,2,n-2
O<akii+1a1'+li+a1'lia1ii <l i=12--n-2 (6
0< aii+1a1'+1i <1 i = n—l,

Therefore M ; exists and the preconditioned Gauss-
Seidel iterative matrix Tg for A isdefined by

=[(1-05)- (L&) (V- +sU+Fy)

For A=(a) and B=(b )eR"™", wewrite A>B
whenever a; >by;, holdsfordl i,j=1,2,--,n. Aisnon-
negative if A>0,(a 20;i,j=1,-,n), and A>B if
andonly if A-B>0.

Definition 2.1 (Young, [15]). Areal nxn matrix
A=(a;) with a <0 for al i=j is caled a Z-
matriX.

Definition 2.2 (Varga, [16]). A matrix A isirreducible
if the directed graph associated to A is strongly connected.

Lemma 2.3. If Aisan irreducible diagonally dominant
Z-matrix with unit diagonal, and if the assumption (6)
holds, then the preconditioned matrix As is a diagonally
dominant Z-matrix.

Proof. The elements a,.jS1 of A, aegivenby

aij _aiq,i+la1'+1,j _a”i a1i’j 1<i< n—]_,
a) =18 ~8,.8., i=n-1, @
8 i=n.

Since Aisadiagonally dominant Z-matrix, so we have
0< By B < 1
O0<a,aq ;<
—1<a 48,4 <0
Therefore, the following inequalities hold:
P =8 8., 20,
q=2a,8a, =0,

i1
= a1q,i+1za1'+1,j 20,

forj#i+1,
forj=l, (8

§= emZa
|+1Za1+1j<0’

j=i+l

u=a, Za

jl+

We denote that p, =g, =r,=5s,=t,=u, =0. Then
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the following inequality holds:
p+q+r+S+t+u;

|+1Za1+lj+a1|za| <0 1<i<n.
Furthermore, if a;,, #0, and Zam,,- <0, for some
i <n, thenwe have =1
p+q+r+s+t+u <0

Let d(S),, I(S), ad u(S)i be the sums of the
elements in row i of Dy, and Ug , respectively.
The following equations hold:

d(§)=aj =1-p-q,
(8)=-34

u(s )——Za,S U+t U,

j=i+l

for somei<n (9

S!
1<i<n,

=l +r+5 1<i<n, (10)

1<i<n,

where |, and u, are the sums of the elements in row i
of Land U for A=1-L-U , respectively. Since Aisa
diagonally dominant Z-matrix, by (8) and by the con-
dition (6) the following relations hold:

1-8 8. 8,8, >0 for j=i
a1<1|+1za|+1] 31|231,J— fori>j
j=i+l j=i+l
aij_aki,iﬂ i+l ak1|+1 ZZaHlJ a1| Zzai J_O
j=i+ j=i+
for i< j.

Therefore, 1(§)>0, u(§)=0, and A is a Z
matrix. Moreover, by (9) and by the assumption, we can
easily obtain

d(s)-1(s)-u(s)
=(d -L-u)-(p+a+r+s+t+u)>0 (11
for all i.

Therefore, A, satisfies the condition of diagonal do-
minance.

Lemma 2.4 [10, Lemma 2]. An upper bound on the
spectral radius p(T) for the Gauss-Seidel iteration
matrix T is given by

a
< 1
A(T)<max i
where | and G, are the sums of the moduli of the
elements in row i of the triangular matrices L and U,
respectively.
Theorem 2.5. Let A be a nonsingular diagonally do-
minant Z-matrix with unit diagonal elements and let the
condition (6) holds, then p (T, ) <1.
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Proof. From (11) and u(S)>0 wehave

d(S)-1(S)>u(S)=0 forali.
Thisimplies that

us) _
a(s)-i1(s) 42

Hence, by Lemma (2.4) we have p(TS <1

Definition 2.6. Let A be an nxn rea matrix. Then,
A=M —N isreferredto as:

1) a regular splitting, if M is nonsingular, M >0
and N>0.

2) a wesk regular splitting, if M is nonsingular,
M™*>0 and M*N>0.

3) aconvergent splitting, if (M *N)<1.

Lemma 2.7 (Varga, [10]). Lt Ae R™ be a non-
negative and irreducible Nx N matrix. Then

1) A has apositive real eigenvalue equal to its spectral
radius p(A);

2) for p(A), there corresponds an eigenvector x > 0;

3) p(A) isasimpleeigenvalueof A;

4) p(A) increases whenever any entry of Aincreases.

Corollary 2.8 [16, Corollary 3.20]. If A= (aﬂ) isa
real, irreducibly diagonally dominant nxn matrix with
a <0 for all i#j, and a >0 for al 1<i<n,
then A'>0.

Theorem 2.9 [16, Theorem 3.29]. Le¢ A=MN bea
regular splitting of the matrix A. Then, A is nonsingular
with A™ >0 ifandonlyif p(MN)<1,where

p(A™N)

p(MlN):m<

Theorem 2.10 (Gunawar dena et al. [2, Theorem 2.2]).

Let A be a nonnegative matrix. Then

1) If ax< Ax for some nonnegative vector x, x =0,
then o < p(A).

2) If Ax< px for some positive vector x, then
p(A)< B. Moreover, if Aisirreducible and if
0= ax< Ax< Bx for some nonnegative vector X, then
a<p(A)<pB and X isapositive vector.

Let B be a red Banach space, B’ its dua and
L(B) the space of all bounded linear operator mapping
B into itself. We assume that B is generated by a normal
cone K [17]. As is defined in [17], the operator
AeL(B) hastheproperty “d” if itsdual A" possesses
a Fro- benius eigenvector in the dual cone K’ which is
de- fined by

K'={xXeB:(xx)=x(x)20 foralxeK}.
Asisremarked in[1,17], when B=R" and K=R’,
al nxn real matrices have the property “d”. Therefore
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the case are discussing fulfills the property “d”. For the
space of all nxn matrices, the theorem of Marek and
Szyld can be stated as follows:

Theorem 2.11 (Marek and Szyld [17, Theorem 3.15)]).
Let A=M,-N, and A =M,—-N, be weak regular
splitting with T, = M;*N,,T, =M,'N,.Let x>0,y>0
be such that Tx=p(T,)x and T,y=p(T,)y . If
M;*>M,*, and if either (A-A)x>0, Ax>0, or
(A-A)y=0,Ay=>0, with y>0,then

P(Tl)SP(Tz)'
Moreover, if M;*>M," and N, =N,, then
,0(T1)<,0(T2)'

Now in the following lemma we prove that
A =(1+8,+S,)A=Mg —Ng is Gauss-Seidel con-
vergent regular splitting.

Theorem 2.12. Let A be an irreducibly diagonally
dominant Z-matrix with unit diagonal, and let the con-
dition (6) holds, then A; =Mg —Ng is Gauss-Seidel
convergent regular splitting. Moreover

p(Ts) < p(Tom) <1

Proof. If A is an irreducibly diagonaly dominant Z-
matrix, then by Lemma (2.3), is a diagonally
dominant Z -matrix. So we have A" > 0. By hypothesis

we have (I —Ds )71 >1| . Thus the gtrictly lower trian-

gular matrix (L+ Ea) has nonnegative elements. By
considering Neumanns series, the following inequality
holds:

M;lz[l+(I—Ds)_l(L+Es)

+{(| Dy ) (L+E; )} oo
-0y (eem) ooy 20

Direct calculation shows that NS >0 holds. Thus,
by definition (2.6) =Mg —Ng is the Gauss-Seidel
convergent regular splitting. Also in [3] we have
A§+m = Ms+m - Ns+m and

ML =1 +(1 = Doy ) (L+Eey )
+{(| —Dg,m )_1(L+ES+M )}2"‘"',
+{(| —Ds,m )71(L+ES+M )}”- }(' —Dg. )7120.

Direct comparison of the two matrix elements
(1-Dg,y )" and (1-Dg)" dso (L+Eg,,) and
(L+ Es) we obtain

S
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Thus
o<Mt < M;.

s+m —

Furthermore, since §, > S, we have
A x=A, . x=(S,-S)Ax>0. From Lemma (2.7), x is
an eigenvector of T. , and X is also a Perron vector of
Ts - Therefore, from Theorem (2.11),

p(Ts )< p(Tem)
holds.
Denote

A, =(1+S+S,+R)A
|

A, =(1+S+R)A
A, =(1+S+S,+/G)A
Ass =(1 +§ +7G) A

and dso let T, , Tg,, To and T;§ be the iterative
matrix associatedto A, ., A, and  Agg
respectively. Then we can prove p(T, )< p(T,, ) and
P(T:S) < p(Ts), similarly. In summary, we have the
following inequalities:

P(M)2p(T) 2 p(Tn) 2 p(TS ) > p (T )
Zp(TS‘ r)Zp(TG)Zp(TGS )

Remark 2.13. W. Li, in [18] used the M-matrix in-
stead of irreducible diagonally dominant Z-matrix, there-
fore we can say that the Lemma 2.3 and the Theorems
2.5and 2.12 are hold for M-matrices.

3. Numerical Results

In this section, we test a smple example to compare and
contrast the characteristics of the different precondition-
ers. Consider the matrix

1 -02 -06 -02

|-02 1 -03 -01

|-01 -02 1 -03

-02 -03 -02 1

Applying the Gauss-Seidel method, we have p(T)=

0.5099 . By using preconditioner Ps=(1+S)A we
findthat A, and Tg have thefollowing forms:

096 0 -066 -022
|-023 094 0 -019
1-016 -029 094

-02 -03 -02 1

Copyright © 2012 SciRes.

0 0 0.6875 0.2292
. _|0 0 01682 02582
|0 0 01689 0.1187

0 0 02217 0.1470

and p(Ts)=0.3205.
Using the preconditioner P

090 -012 -0.06 -04
-025 091 -02 -0.09
-0.16 -029 094 0

-02 -03 -02 1

we obtain

Am =

0.133
0.037
0.034
0 0.044

0.067
0.040
0.023
0.030

0.444
0.221
0.144
0.184

S+m

o O O

and p(T,.,,)=0.258L.
For Ry =1+§,wehave
0.88 -0.02 -0.09 -041
|-025 091 -02 -0.09
A= 016 020 094 0
02 -03 -02 1

0 0.023
0 0.006
0 0.006
0 0.007

0.102
0.050
0.033
0.042

0.465
0.227
0.149
0.1911

and p(Ty)=02328.

For P,, =1+S+S,+R,wehave
090 -012 -006 -04
-025 091 -02 -0.09
-016 -029 094 0
-008 -0.08 -021 087

0 0.133

0 0.037
Tew =

0 0.034

0 0.024

0.067
0.040
0.023
0.015

0.444
0.221
0.144
0.096

and p(T,, )=0.1694.
For R, =1+§+R, wehave

0.88 -002 -0.09 -041
_|-025 091 -002 -0.09
A=l 016 020 094 0
-008 -0.08 -021 0.87
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0.023 0.102 0.465
0.006 0.050 0.227
0.006 0.033 0.149
0 0004 0022 01
and p(T, )= 0.1415.
From the above results, we have

G, =(0.28,0.38,041,0) . Then A,(y=1) and T,
have the forms:

§r

o O O

090 -0.12 -006 -04
-025 091 -0.02 -0.09
-0.16 -0.29 094 0
-0.04 -0.06 -0.07 0.78

A:;:

0 0.133 0.067
0 0.037 0.040
0 0034 0.024
0 0.012 0.008

and p(T,)=0.1218.
For Py (7=1)=1+S+G,wehave

0.444
0.221
0.144
0.050

T, =

0.88 -0.02 -0.09 -0.41
_|-025 091 -002 -0.09
9 |-016 -029 094 O

-0.04 -0.06 -0.07 0.78

0 0.023 0.102 0.465
_|0 0.006 0.050 0.227
°* |0 0006 0033 0.149
0 0.002 0.011 0.052
and p(Tag ) =0.0940. Since the preconditioned matri-
ces differ only in the values of their last rows, the related
matrices aso differ only in these values, as is shown in
the above results. Thus the elements of new A, and
Ass are similar to elements of A, and A , respec-
tively than the elements of last rows. Therefore, we
hereafter show only the last row.
By putting y, =1.22699, the matrices A; , T , Asg,
and T, have the following forms: G

GSn
Abn = (O, —0.003,-0.042, 0.733) ,
Ts (O, 0.0021,0.0015, 0.0093) ,

" =
and p(TGn):O.O779,
Ass,, =(0,-0.003,-0.042,0.733),
T.e, =(0,0.00036,0.0021,0.0096),

GSn

and p(Tsg,, ) = 0.0509.
For y, =1.23966 we have:

Copyright © 2012 SciRes.

(0.0021,0,-0.0413,0.7310),

As,
T, =(0,0.0015,0.0011,0.0069),
72

and p(TGA ):0.0751 and
7o

Ass,, =(0.0021,0,-0.0413,0.7310),
Tss,, = (0,0.00026,0.0016,0.0071),

GS72

and p(Teg,, ) = 0.0483.
For y,(opt)=1.5625 we have:
A (o) =(0.0547,0.0781,0,0.6609),

ol
74 0P!

Ts

=(0,-0.0154,-0.0102,-0.0629),
74 (opt)

and p(T,,, |=00227 and

Ass, (o) = (0.0547,0.0781,0,0.6609),
Tosy. (o) = (0,0.0026,-0.0144,-0.0654),

GS7,4

and p (Tear3(0pr

From the numerical results, we see that this method

with the preconditioner P (7, ) Produces a spectral

radius smaller than the recent preconditioners that above
was introduced.

)) =0.0216.
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