Algebras of Hamieh and Abbas Used in the Dirac Equation*

Gregory Peter Wene
Department of Mathematics, The University of Texas at San Antonio, San Antonio, USA
Email: gwene@utsa.edu

Received June 16, 2012; revised July 26, 2012; accepted August 3, 2012

Abstract

Hamieh and Abbas [1] propose using a 3-dimensional real algebra in a solution of the Dirac equation. We show that this algebra, denoted by $G \mathbb{C}$, belongs to a large class of quadratic Jordan algebras with subalgebras isomorphic to the complex numbers and that the spinor matrices associated with the solution of the Dirac equation generate a six-dimensional real noncommutative Jordan algebra.

Keywords: Dirac Equation; Jordan Algebra; Quadratic Algebra

Non-associative algebras have long been used in the mathematical description of physical phenomena; first appearing as the " r number algebra" in the seminal paper by Jordan, Wigner and von Neumann [2] of 1934. The r number algebra became known as a Jordan algebra from a 1946 paper by Albert [3]. The interested reader is referred to the books on non-associative algebras in physics Lõhmas, Paal and Sorgsepp [4], Okubo [5]. A concise history of non-associative algebra is to be found in Tomber [6]; the standard introduction to non-associative algebra is the book by Schafer [7].
Hamieh and Abbas [1] present a "description of an algebra which can be used in a possible extension of local complex quantum field theories". We further expand their description and show that these algebras are Type D Jordan algebras (see Jacobson [8]).

We construct a large family of quadratic Jordan algebras that contains the three-dimensional real algebra, the so called $G \mathbb{C}$ algebra, the generalized complex numbers, of Hamieh and Abbas [1], and show that the spinor matrices that arises from using the $G \mathbb{C}$ in a formulation of the Dirac equation generate a six-dimensional noncommutative quadratic Jordan algebra.

1. Introduction

Let \mathfrak{A} be an algebra over a field F not of characteristic two. The associator is a trilinear mapping

$$
(x, y, z)=(x y) z-x(y z)
$$

of $\mathfrak{A} \times \mathfrak{A} \times \mathfrak{A}$ into \mathfrak{A} that measures the lack of asso-
*This paper is in final form and no version of it will be submitted for publication elsewhere.
ciativity in \mathfrak{A}.
One scheme of classifying nonassociative algebras involves placing conditions on the associator of certain sets of elements. Some of the better known algebras are:

1) Alternative algebras. In this variety of algebras, all elements x and y satisfy

$$
(x, x, y)=(x, y, y)=0
$$

for all elements x and y. The octonion division ring is an alternative algebra. An interesting variation is psuedooctonion algebra (Okubo [5,9]).
2) Jordan algebras. These are commutative algebras in which all x and y satisfy

$$
\left(x, y, x^{2}\right)=0 .
$$

A Type D Jordan algebra is the Jordan algebra of the symmetric bilinear form q on a vector space \mathfrak{B}. Albert [3] has shown that any algebra of Type D has a basis $\left\{e, b_{1}, b_{2}, \cdots, b_{n}\right\}$ with multiplication given by

$$
\begin{gathered}
e b_{i}=b_{i} e=b_{i}, \text { for all } 1 \leq i \leq n, \\
b_{i} b_{j}=\delta_{i j} \alpha_{i} e \text { for } 1 \leq i, j \leq n .
\end{gathered}
$$

The algebra will be semisimple if $\alpha_{i} \neq 0$ for all $1 \leq i \leq n$.
3) Noncommutative Jordan algebras. A generalization of the alternative and Jordan algebras that requires all x and y satisfy a generalization of the commutative law

$$
(x, y, x)=0,
$$

that is, the algebras are flexible, and

$$
\left(x, y, x^{2}\right)=0 .
$$

The book by Zhevlakov, Slin'ko, Shestakov and Shirshov [10] provides a detailed analysis of the alternative and Jordan rings.

The above algebras are all power associative since each element a generates an associative subalgebra; equivalently, $a^{m} a^{n}=a^{n+m}$ for positive integers m, n. In any power associative algebra \mathfrak{A} with unit element we can introduce the series

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

for $x \in \mathfrak{A}$ ignoring the question of convergence.
An algebra \mathfrak{A} over a field F is called quadratic if, for every x in \mathfrak{A}

$$
x^{2}-2 t(x)+q(x) e=0
$$

where $t(x), q(x)$ are in F and e is the identity of \mathfrak{A}. The quantities $t(x)$ and $q(x)$ are called the trace and norm of the element x, respectively. The trace is a linear functional on \mathfrak{A} see Schafer [7]. The norm $q(x)$ defines a symmetric bilinear form $q(x, y)$ on \mathfrak{A} via

$$
q(x, y)=q(x+y)-q(x)-q(y) .
$$

Say $q(x)$ is nondegenerate if $q(x, y)$ is. Any quadratic algebra is power associative and any flexible, quadratic algebra is a noncommutative Jordan algebra.

A quadratic algebra \mathfrak{A} is flexible if and only if the trace is associative; that is, $t((x y) z)=t(x(y x))$ for all x, y, z in \mathfrak{A}. If \mathfrak{A} is flexible then the mapping $x \rightarrow \bar{x}=2 t(x) e-x$ is an involution in \mathfrak{A} (see Braun and Koecher [11], p. 216).

Lemma 1. The Hamiltonian division ring is a quadratic algebra.

Proof. Let $x=a+b I+c J+d K$ be an element of the Hamitonian division ring. Direct computation shows that

$$
x^{2}-2 a x+a^{2}+b^{2}+c^{2}+d^{2}=0 .
$$

Example 1. The octonion division ring is a quadratic algebras.

Example 2. Domokos and Kövesi-Domokos [12] propose a quadratic algebra, the "algebra of color" as a candidate for the algebra obeyed by a quantized field describing quarks and leptons (see also Wene [13,14], and Schafer [15]).

2. Construction of the Algebras

The elements of the algebra $G \mathbb{C}$ are the elements of the real vector space with basis $\{e, I, J\}$. The addition is the vector space addition and multiplication is defined by $I J=J I=0, I^{2}=J^{2}=-e, e$ is the identity and the distributive laws. We note that the algebra is commutative and has divisors of zero.

An immediate generalization of this algebra has a basis $\left\{e, b^{i}, i=1, \cdots, n\right\}, n \geq 2$ over the field \mathbb{R} of real
numbers and multiplication defined by $b^{i} b^{j}=-\delta_{i j}$ where e is the identity. For want of a better name called these the Abbas algebras. As noted above, these algebras are Type D Jordan algebras. Note that the $G \mathbb{C}$ algebra is the construction for $n=2$; the results for the Abbas algebras apply to the $G \mathbb{C}$. Each Abbas algebra contains a copy of the complex numbers.

Lemma 2. The Abbas algebras are quadratic algebras.
Proof. Let H denote a Abbas algebra. Then if $x \in H$, $x=\alpha_{0} e+\alpha_{i} b^{i}$, Einstein summation convention where $i=1,2, \cdots, n$. Then

$$
\begin{gathered}
x^{2}=\alpha_{0} x+\alpha_{0} \alpha_{i} b^{i}-\left(b^{i} b^{i}\right) \\
-2 \alpha_{0} x=-2 \alpha_{0}^{2}-2 \alpha_{0} \alpha_{i} b^{i}
\end{gathered}
$$

Adding both sides gives

$$
x^{2}-2 \alpha_{0} x=-\alpha_{0}^{2}-\left(\alpha_{i} \alpha_{i}\right)
$$

and we see that $t(x)=\alpha_{0}$ and $q(x)=\alpha_{0}^{2}+\left(\alpha_{i} \alpha_{i}\right)$.
A commutative quadratic algebra will be a Jordan algebra.

Since the algebra is commutative the trace is associative; the norm is symmetric.

Lemma 3. The norm of a Abbas algebra is nondegenerate.

Proof. Let H denote a Abbas algebra. Then if $x \in H$, $x=\alpha_{0} e+\alpha_{i} b^{i}$ is arbitrary and $d=\delta_{0}+\delta_{i} b^{i}$ is fixed, then

$$
\begin{aligned}
q(d, x)= & q(d+x)-q(d)-q(x) \\
= & \left(\delta_{0}+\alpha_{0}\right)^{2}+\sum_{i=1}^{n}\left(\delta_{i}+\alpha_{i}\right)^{2} \\
& -\left(\delta_{0}^{2}+\delta_{i} \delta_{i}\right)-\left(\alpha_{0}^{2}+\alpha_{i} \alpha_{i}\right) \\
q(d, x)= & 2 \delta_{0} \alpha_{0}+2 \delta_{i} \alpha_{i}
\end{aligned}
$$

3. Special GC Algebras

Hamieh and Abbas [1] pass to a representation of the point $q=a e+b I+c J$ of the algebra $G \mathbb{C}$ in spherical coordinates, $a=r \cos (\theta), b=r \sin (\theta) \cos (\varphi)$ and $c=r \sin (\theta) \sin (\varphi)$. The subalgebras, called special $G \mathbb{C}$ algebras and denoted by $S G \mathbb{C}$ are the subalgebras spanned by all elements in which the "azimutal phase angle φ is constant". Each of these subalgebras is (isomorphic to) the complex numbers.

Lemma 4. The algebra $G \mathbb{C}$ is isomorphic to an algebra of two by two matrices

$$
\left[\begin{array}{cc}
a & b I+c J \\
b I+J & a
\end{array}\right]
$$

under the usual matrix operation of addition and multiplication.

Proof. The straight forward verification that the mapping $\theta(a e+b I+c J)=\left[\begin{array}{cc}a & b I+c J \\ b I+J & a\end{array}\right]$ is an isomorphism is left to the reader.

Lemma 5. Each of the algebras $S G \mathbb{C}$ is isomorphic to the complex numbers.

Proof. We note that if $b=r \sin (\theta) \cos (\varphi)$ then $c=b\left(\frac{\sin (\varphi)}{\cos (\varphi)}\right)$ if $\cos (\varphi) \neq 0$. If $\varphi=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$, then $q=a+c J$ and the subalgebra $S G \mathbb{C}$ is (isomorphic to) the complex numbers. Otherwise, $q=a e+b I+b s J U$ or $q=a e+b(I+s J)$ for some $s \in \mathbb{R}$. Let $X=\frac{I+s J}{\sqrt{1+s^{2}}}$, then

$$
X^{2}=\left(\frac{I+s J}{\sqrt{1+s^{2}}}\right)^{2}=\frac{-\left(1+s^{2}\right)}{1+s^{2}} e=-e
$$

The multiplication, using the basis $\{e, X\}$ will be given by

$$
(a e+b X)(c e+d X)=(a c-b d) e+(a d+b c) X
$$

4. The Spinor Matrices

The classical reference on spinors and wave equations is the book by Corson [16].

The associator spinor matrices are

$$
\left.\begin{array}{c}
\boldsymbol{C}_{t}=\left(\begin{array}{ll}
0 & J \\
J & 0
\end{array}\right), \boldsymbol{C}_{x}=\left(\begin{array}{cc}
0 & -J \\
J & 0
\end{array}\right), \\
\boldsymbol{C}_{y}=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right), \boldsymbol{C}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \begin{array}{l}
\text { Proof. Because of the trilinearlty of the associator, we } \\
\text { can write the elements } x \text { and } y \text { of the associator }(x, y, x)
\end{array} \\
x y=\left(\begin{array}{cc}
0 & b I+c J \\
e I+f J & d
\end{array}\right) \text { and } y=\left(\begin{array}{cc}
0 & y I+z J \\
s I+t J & v
\end{array}\right) . \\
(x s-c t \\
\mathrm{d} s I+\mathrm{d} t J \\
\mathrm{~d} v-e y-f z
\end{array}\right) x=\left(\begin{array}{cc}
-e b v+f c v & (-b s-c t)(b I+c J)+d[(b v I+c v J] \\
(\mathrm{d} v-e y-f z)(e I+f J) & b \mathrm{~d} s+c \mathrm{~d} t+d(\mathrm{~d} v-e y-f z)
\end{array}\right) .
$$

Theorem 1. The algebra $S P(6)$ is a quadratic noncommutative Jordan algebra.

5. The Dirac Equation

We proceed as in Hamieh and Abbas [1]. The Dirac
where $1, I, J \in G \mathbb{C}$. Denoting the 2 by 2 identity matrix by I_{2}, these matrices satisfy

$$
C_{t}^{2}=-I_{2} \text { and }\left\{C_{\mu}, C_{v}\right\}=C_{\mu} C_{v}+C_{v} C_{\mu}=2 \delta_{\mu v} I_{2}
$$

for $\mu, v=x, y, z$.
The spinor matrices generate a 6-dimensional real algebra with elements

$$
\left\{\left(\begin{array}{cc}
a & b I+c J \\
e I+f J & d
\end{array}\right) a, b, c, d, e, f \in \mathbb{R}, I, J \in G C\right\}
$$

that contains the matrix representation of the $G \mathbb{C}$ algebra. Denote this algebra by $S P(6)$.

Lemma 6. The algebra $S P(6)$ is a quadratic algebra.
Proof. If $x=\left(\begin{array}{cc}a & b I+c J \\ e I+f J & d\end{array}\right)$ is an element of $S P(6)$, then

$$
x^{2}=\left(\begin{array}{cc}
a^{2}-b e-c f & (a+d)(b I+c J) \\
(a+d)(f I+c J) & d^{2}-b e-c f
\end{array}\right)
$$

$$
-2\left(\frac{1}{2}\right)(a+d) x=-\left(\begin{array}{cc}
a^{2}+a d & (a+d)(b I+c J) \\
(a+d)(e I+f J) & a d+d^{2}
\end{array}\right)
$$

Adding the left and right sides gives

$$
x^{2}-2\left(\frac{1}{2}\right)(a+d) x=\left(\begin{array}{cc}
-a d-b e-c f & 0 \\
0 & -a d-c b-c f
\end{array}\right)
$$

Lemma 7. The algebra $S P(6)$ is flexible.
Proof. Because of the trilinearlty of the associator, we as $\quad x=\left(\begin{array}{cc}0 & b I+c J \\ e I+f J & d\end{array}\right)$ and $y=\left(\begin{array}{cc}0 & y I+z J \\ s I+t J & v\end{array}\right)$.

$$
\begin{gathered}
\gamma^{\mu}=C_{\mu}, H \Psi=\left(C_{\mu} \partial_{\mu}\right) \Psi=m \Psi \\
\left(C_{\mu} \partial_{\mu}-m\right) \Psi=0,
\end{gathered}
$$

where $\mu=x, y, z, t$.
Upon substituting the matrices for C_{μ} and simplifying we get

$$
\left(\begin{array}{cc}
\partial_{z}-m & \partial_{z} \\
J \partial_{x}+I \partial_{y}+J \partial_{t} & -\partial_{z}-m
\end{array}\right)\binom{\Psi_{1}}{\Psi_{2}}=0
$$

In dimensions x and t, the solution is given by

$$
\Psi(x, t)=N\binom{\frac{E+p}{m}}{1} e^{J(p x-c t)}
$$

p and $E= \pm \sqrt{p^{2}+m^{2}}$ are respect the momentum and energy. N is a normalization factor.

6. Conclusion

We have shown that the $G \mathbb{C}$ algebra belongs to a large class of Jordan algebras and have examined a few of the algebraic properties of these algebras and, like the Jordan algebra and the algebra of color, there is a very rich mathematical structure to further explore.

REFERENCES

[1] S. Hamieh and H. Abbas, "Two Dimensional Representation of the Dirac Equation in Non-Associative Algebra," Journal of Modern Physics, Vol. 3, No. 2, 2012, pp. 184186. doi:10.4236/jmp. 2012.32025
[2] P. Jordan, J. von Neumann and E. Wigner, "On an Algebraic Generalization of the Quantum Mechanical Formalism," Annals of Mathematics, Vol. 35, No. 1, 1934, pp. 29-64. doi:10.2307/1968117
[3] A. A. Albert, "On Jordan Algebras of Linear Transforma-
tions," Transactions of the American Mathematical Society, Vol. 59, No. 3, 1946, pp. 524-555.
doi:10.1090/S0002-9947-1946-0016759-3
[4] J. Lõhmas, E. Paal and L. Sorgsepp, "Nonassociative Algebras in Physics," Hadronic Press, Palm Harbor, 1994.
[5] S. Okubo, "Introduction to Octonion and Other NonAssociative Algebras in Physics," Cambridge University Press, New York, 1995. doi:10.1017/CBO9780511524479
[6] M. L. Tomber, "A Short History of Nonassociative Algebras," Hadronic Journal, Vol. 1, 1979, pp. 1252-1387.
[7] R. D. Schafer, "An Introduction to Nonassociative Algebras," Academic Press, New York, 1966.
[8] N. Jacobson, "Structure and Representations of Jordan Algebras," American Mathematical Society, Providence, 1968.
[9] S. Okubo, "Pseudo-Quaternion and Pseudo-Octonion Algebras," Hadronic Journal, Vol. 1, 1978, pp. 1250-1278.
[10] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, "Rings That Are Nearly Associative," Academic Press, New York, 1982.
[11] H. Braun and M. Koecher, "Jordan-Algeben," SpringerVerlag, Berlin, 1966. doi:10.1007/978-3-642-94947-0
[12] G. Domokos and S. Kövesi-Domokos, "The Algebra of Color," Journal of Mathematical Physics, Vol. 19, No. 6, 1978, pp. 1477-1481. doi:10.1063/1.523815
[13] G. P. Wene, "An Example of a Flexible, Jordan-Admissible Algebra of Current Use in Physics," Hadronic Journal, Vol. 1, 1978, pp. 944-954.
[14] G. P. Wene, "A Little Color in Abstract Algebra," The American Mathematical Monthly, Vol. 89, 1982, pp. 417419. doi:10.2307/2321659
[15] R. D. Schafer, "A Generalization of the Algebra of Color," Journal of Algebra, Vol. 160, No. 1, 1993, pp. 93-129. doi:10.1006/jabr.1993.1180
[16] E. M. Corson, "Introduction to Tensors, Spinors, and Relativistic Wave-Equations," Chelsea Publishing Company, New York, 1982.

