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ABSTRACT 

We study the propagation of N-soliton bound state in a triangular gradient refractive index waveguide with nonlocal 
nonlinearity. The study is based on the direct numerical solutions of the model and subsequent eigenvalues evolution of 
the corresponding Zakharov-Shabat spectral problem. In the waveguide with local nonlinearity, the velocity of a single 
soliton is found to be symmetric around zero and therefore the soliton oscillates periodically inside the waveguide. If 
the nonlocality is presence in the medium, the periodic motion of soliton is destroyed due to the soliton experiences 
additional positive acceleration induced by the nonlocality. In the waveguide with the same strength of nonlocality, a 
higher amplitude soliton experiences higher nonlocality effects, i.e. larger acceleration. Based on this soliton behavior 
we predict the break up of N-soliton bound state into their single-soliton constituents. We notice that the splitting proc-
ess does not affect the amplitude of each soliton component. 
 
Keywords: N-Soliton Bound State; GRIN Waveguide; Nonlocal Nonlinearity; Conserved Implicit Crank-Nicolson 

Method; Inverse Scattering Technique 

1. Introduction 

The propagation of optical beam in a homogenous Kerr 
medium is described by the nonlinear Schrodinger (NLS) 
equation which has a soliton solution. Spatial solitons are 
self-trapped light beams in which the diffraction is ba- 
lanced by the self-focusing induced by nonlinearity. In a 
homogeneous Kerr medium with local nonlinearity, a sin-
gle soliton propagates with a constant velocity. The ve-
locity of soliton is disturbed as it propagates in an inho-
mogeneous refractive index medium, i.e., a medium with 
a transverse gradient refractive index (GRIN) distribution, 
see e.g. [1,2]. If the nonlinear response of medium is 
nonlocal then it may significantly affect the properties of 
soliton [3]. For example, a uniform medium with positive 
nonlocal nonlinearity may induce a self-bending soliton 
[4-6]. It has been shown that a nonlocality increases the 
soliton acceleration. In a medium with the same strength 
of nonlocality, a higher amplitude soliton experiences much 
larger nonlocality effects than the lower one and there-
fore a soliton with higher amplitude will propagate with 
larger acceleration than that with lower amplitude, see 
e.g. [7,8]. 

It is known that the NLS equation has N-soliton bound 
state solution. Such a bound state contains N single soli- 

tons which have different amplitudes but they travel to- 
gether with the same speed. During the propagation N- 
soliton bound state undergoes periodic oscillations in 
shape with individual solitons remaining localized. It is 
noticed that N-soliton bound state has no binding energy 
and therefore under suitable perturbations the N-soliton 
bound state can break up into their soliton constituents 
[9]. The break up of spatial N-soliton bound state can be 
induced e.g. by reflection at material interface [10], re- 
fractive index variation [11,12], interaction with periodic 
lattice [13,14], combination of two- and three-photon 
absorption [15], linear loss [16], and defect layer [17]. In 
this paper we study the break up of N-soliton bound state 
in a triangular GRIN waveguide with nonlocal nonlinear- 
ity. The study is based on the direct numerical solutions 
of the modified nonlinear Schrödinger (m-NLS) equation 
as well as the evolution of discrete eigenvalues of the 
corresponding Zakharov-Shabat spectral problem. For that 
purposes in Section 2 we review the beam propagation 
equation in non-homogeneous medium with nonlocal 
nonlinearity as well as the inverse scattering theory. Then 
we study in Section 3 the propagation of a single soliton 
in a triangular waveguide. It is shown that when a single 
soliton is launched in a triangular waveguide then it ex- 
periences transverse acceleration which depends on the 
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strength of nonlocality as well as on its amplitude. Using 
these propagation properties in Section 4 we study the 
break up of N-soliton bound state into multiple single soli- 
ton. Finally conclusion will be given in the last section. 

2. Basic Equation and Inverse Scattering 
Technique 

We consider the evolution of beam propagating along the 
z axis in a slab waveguide with inhomogeneous linear 
refractive index in a transverse direction and first-order 
nonlocal contribution to nonlinear respond. Such beam 
propagation is described by the normalized modified 
nonlinear Schrödinger (m-NLS) equation, see [18]: 
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where  is the total width of the waveguide and 02b n

0

 
is the maximum index variation. Notice that the wave- 
guide is symmetric where its center is located at x . 
In the absence of inhomogeneity and nonlocality, i.e. 

0 0 n  , Equation (1) is known as the NLS equation. 
The NLS equation is integrable by the inverse scattering 
technique (IST) [19]. In this approach, the NLSE is asso-
ciated with the Zakharov-Shabat eigenvalue problem 
(ZSEP), 
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where u is the beam envelope which acts as potential 
function and superscript * denotes the complex conjugate. 
If the linear z-evolution of the auxiliary spectral function 

 1 2,     is given then the NLS equation can be re- 
solved from the compatibility condition   zx xz . The 
continuous spectrum of ZSEP corresponds to waves that 

are radiated away; whereas a number of discrete eigen- 
values   2, 1, 2, ,   j j ji j   N  corresponds to N 
soliton. Here  j  and j  define the velocity and the 
amplitude of the j-th soliton, respectively [20]. One of 
particular N-soliton is obtained if we consider an initial 
scattering potential 

 ,0u x 0 0 0echN q x x s q .        (4) 

Satsuma and Yajima [21] showed that ZSEP (3) with 
initial potential (4) has eigenvalues which are purely 
imaginary 

0

1
2 N , 1, 2, ,
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j jiq iq j j N .  (5) 

This solution is called an N-soliton bound state or 
higher-order soliton because it contains N single soliton 
components which propagate together and always remain 
localized in x (the transversal velocity of each single soli-
ton is zero, i.e. 0, j j ). 

In the absence of perturbations (e.g. linear refractive 
index variation and nonlocality) to the NLS equation, the 
ZSEP is iso-spectral (all eigenvalues are constant). In other 
words, the soliton content of a given input remains con- 
stant. In the presence of perturbations, the soliton eigen- 
values are no longer z-invariant and the m-NLSE is not 
integrable and therefore the IST cannot be applied. How- 
ever the ZSEP provide a powerful tool which enables us 
to monitor the dynamics of the discrete eigenvalues, i.e. 
the parameters of each individual soliton. In this case, 
when analyzing a certain potential (beam shape) at a dis- 
tance z, the obtained discrete eigenvalues gives informa- 
tion about the soliton as if it would further propagate in 
an unperturbed medium. As long as the perturbations are 
small, the ZSEP holds likewise in the perturbed medium. 
In this paper, the soliton eigenvalues of the ZSEP will be 
determined numerically using procedure given in [22]. 
For this purpose, the potential  at distance z is 
obtained by solving the m-NLS equation using the con-
served implicit Crank-Nicolson scheme [23]. 

 ,u x z 

3. Propagation of a Single Soliton 

We begin with the propagation of a single soliton in a 
triangular GRIN waveguide by considering an input beam 
as in Equation (4) with N = 1, 0  and initial position 
at 

1q

0x x
0.1

. First we use waveguide parameters to be 

0 n , 5b , 0 2.5 x  and some values of  . 
Figures 1(a)-(c) show the evolution of beam envelope 
for μ = 0, 0.01, 0.02 respectively. The corresponding ei- 
genvalue evolutions are depicted in Figures 1(d)-(f) 
(imaginary parts/ ) and Figures 1(g)-(i) (real parts/ ). 
It is shown that during the evolution, the imaginary part 
of eigenvalue ( ) in all three cases is almost constant; 
indicating that the change of soliton amplitude during its 
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Figure 1. Propagation of a soliton with amplitude 0 1q   and initial position 0 2.5x  

0.0,

 in a triangular GRIN waveguide 

with  5 . The first row shows the evolution of beam envelope for (a) 0 0.1,n  b    (b) 0.01,  and (c) 0.02 . 

Dynamics evolution of the corresponding eigenvalue is shown in the second and third rows for the imaginary part and the 
real part of eigenvalue, respectively. 

 
propagation is small. However, the real part of the ei-
genvalue ( ) is certainly not invariant. If the nonlinear-
ity of medium is local 0


( 0. 

0.01

) then the real part of 
eigenvalue  ) is a symmetric function around zero. This 
behavior shows that during the propagation the soliton 
oscillates symmetrically around the center of waveguide. 
In the medium with 

(

 , the changing of   is faster 
and bigger; meaning that the soliton experiences a larger 
acceleration. Nevertheless the soliton still oscillates but 
asymmetrically about the waveguide center. The effect of 
nonlocality is more pronounced if we further increase the 
nonlocality. Indeed, by taking 0.02 , we see that the 
soliton propagates with much larger acceleration such 
that  does not oscillate anymore. Here  is always 
negative which means that the soliton always experiences 
positive velocity. It can be said that the waveguide does 
not support the oscillating soliton. Instead, the soliton is 
forced to exit the waveguide. Outside the waveguide, i.e. 
when  the soliton propagates with a constant 
acceleration (or linear velocity). We remark that the ei-
genvalues evolution perfectly matched with the equivalent 
particle approach in [8]. 

 

 n x 0

Next we study the effect of soliton amplitude on its 
propagation in nonlocal triangular GRIN waveguide with 

, ,0 0.1 n 5b 0.01  and  by varying 
, see Figure 2. In Figure 2(a) we show the propaga- 

tion of soliton with . It is noticed that in this 
case the waveguide width is narrower than the soliton 
width and the index variation is sufficiently large. Con- 
sequently, part of soliton which is inside the waveguide 

will move faster to the wave center while another part 
remains outside the waveguide. Therefore the soliton is 
distorted and emits some radiation during its propagation. 
However it is clearly seen that the main part still oscil- 
lates in the waveguide. Such radiation is also described 
by the evolution of imaginary part of its eigenvalue (

0 2.5 x

0q

0 0.q 5

 ); 
see Figure 2(d). Here the value of   decreases which 
means that the soliton amplitude is getting smaller due to 
emitting radiation. The oscillation of the main part of beam 
is clearly seen from the real part of its eigenvalue ( ); 
see Figure 2(g). We notice that the soliton in this case is 
not a single entity and therefore the equivalent particle 
approach presented in [8] cannot be applied. Figures 
2(b)-(c) show that if we increase the soliton amplitude 
and therefore the soliton width is comparable to the 
width of waveguide then we hardly observe radiation 
during its propagation. This fact can also be seen from 
Figures 2(e)-(f) which show that each real part of its 
eigenvalue is practically speaking constant. However, we 
observed from Figures 2(h)-(i) that different amplitude 
soliton experiences different velocity. As mentioned in pre-
vious paragraph, the transversal velocity ( ) of soliton with 
amplitude 


0 1q  oscillates around zero and therefore the 

soliton also oscillates around the waveguide center. In the 
case of larger amplitude ( ), the soliton experi- 
ences much larger acceleration such that the transversal 
velocity is always positive (or  is always negative). 
Therefore the soliton always moves to the right and exit 
from the waveguide. This behavior is in accordance with the 
prediction of equivalent particle theory given in [8]. 

0 1.5q


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Figure 2. Propagation of a soliton with initial position 0 2.5x    in a nonlocal triangular GRIN waveguide with 0 0.1n  , 

 and 5b  0.1 . The first row shows the evolution of beam envelope for (a)  (b)  and (c) . 

Dynamics evolution of the corresponding eigenvalue is shown in the second and third rows for the imaginary part and the 
real part of eigenvalue, respectively. 

0 0.5q  0 1q  0 1.5q 

 

4. Break up of N-Soliton Bound State 

We continue with the dynamics of the beam evolution when 
the input contains several single solitons. As discussed in 
previous section, different strength of nonlocality causes 
different transversal velocity of soliton. Moreover, in the 
waveguide with the same strength of nonlocality, a single 
soliton with different amplitude also experiences differ- 
ent velocity (– ). Hence, if the input beam is N-soliton 
bound state which consists of several single soliton with 
different amplitude then the bound state will certainly be 
destroyed because each soliton component experience dif- 
ferent velocity. In other words the bound N-soliton bound 
state will break up when it propagates in a triangular 
GRIN waveguide with nonlocal nonlinearity. To illustrate 
the break up we perform several numerical experiments 
using initial condition given by Equation (4) with N = 2. 
The waveguide parameters are 0  and 



0.1 n 5b . In 
Figure 3 we show some numerical results using 0 0.75q  
and 0  for three different values of 2.5 x  . Notice 
that the input beam initially consists of two single soli- 
tons of amplitude 1 0.75  and 2 2.25  with zero 
velocity. It is seen from Figure 3 that during the evo- 
lution in the waveguide with 0 , 0.001  and 

0.005 , each imaginary part of eigenvalues ( ) which 
corresponds to the amplitude of single solitons is rela- 
tively constant. This fact shows that the break up process 

real part of eigenvalues changes immediately after the 
bound state enters the waveguide. The break up process 
can be considered as an interaction of two single solitons 
moving with different velocity. Due to this interaction, 
the velocity of each soliton certainly differs from that of 
a single soliton propagating alone. In the waveguide with 
local nonlinearity ( 0

almost does not affect the soliton amplitude. But each 

 ), after bound state breaks up 
into two solitons, each soliton constituent oscillates in the 
waveguide with different period. Since they have differ- 
ent oscillation period, a collision of the two solitons will 
certainly be predicted. The collision forces the smaller 
soliton ( 1 0.75 ) to exit the waveguide and then con- 
tinue to propagate in the left side of waveguide with con- 
stant velocity. The higher soliton ( 2 2.25 ) in this case 
remains oscillating inside the wave e further ob- 
serve in Figure 3 that the increasing strength of nonlo- 
cality (

guide. W

 ) leads to much larger velocity of soliton with 
higher a plitude ( 2 2.25m  ) and therefore speeds up the 
splitting process of liton. As a result, the higher 
amplitude soliton ( 2 2.25

 bound so
 ) exits and propagates to the 

right part of the w  while the lower amplitude 
soliton ( 1 0.75

aveguide
 ) oscillates inside the waveguide. 

To see cts of amplitude and initial positio the effe n of 
soliton, we plot some results of numerical simulations 
using the same parameters as in Figure 3 except 0 0.8q  
and three different initial positions; see Figure  
N = 2 and 0 0.8

4. Since
q , our initial beam consists of two 

single solitons with amplitude 1 0.8  and 2 2.4  
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Figure 3. Break up of 2-soliton bound state in a triangular GRIN waveguide with where the initial position 

of bound state is  and . The first row shows the evolution of  
0 0.1n  ,

beam envelop

 = 5b , 

e for (a)0 2.5x   0 0.75q  0 , (b) 0.001  

and (c) 0.005 . Dynami
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Figure 4. Break up of 2-soliton bound state with in a triangular GRIN waveguide with  and 0 0.8q    0 0.1n  , = 5b
0.001 . The first row shows the evolution of be ope for three different initial positions,am envel  i.e. (a) 0x 2.5 

ows 

,

for th

 (b) 

(c)  Dynamics evolution of the ponding eigenvalue is shown in the seco e 

 part  part of eigenvalue, resp
 

respectively, see Equations (3) and (4). Using 

0x    and 

imaginary
0x   .

and the real

 corres

ectively. 
nd and third r

0 0.75q  
observe 

 qualitative break up 
res 3(b), (e) 

and with the same initial position, we 
o cases give the same

pr soliton bound state; see Figu

and (h) and Figures 4(a), (d) and (g). Here the lower 
soliton oscillates inside the waveguide while the higher 
soliton exits from the waveguide. However, detail obser- 
vation shows that soliton with amplitude 

0 0.8q  
that these tw

ocess of N- 2 2.4  has 
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