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ABSTRACT 

This paper examines the allocation of resource to different tasks in a production company. The company produces the 
same kinds of goods and want to allocate m number of tasks to 50 number of machines. These machines are subject to 
breakdown. It is expected that the breakdown machines will be repaired and put into operation. From past records, the 
company estimated the profit the machines will generate from the various tasks at the first stage of the operation. Also, 
the company estimated the probability of breakdown of the machines for performing each of the tasks. The aim of this 
paper is to determine the expected maximize profit that will accrue to the company over T horizon. The profit that will 
accrued to the company was obtained as 4,N 571,100,000  after 48 weeks of operation. At the infinty horizon, the 
profit was obtained to be 20,N 491,000,000 . It was found that adequate planning, prompt and effective maintainance 
can enhance the profitability of the company. 
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1. Introduction 

We consider the allocation of tasks to different machines 
in a production company. A certain number of machines 
is proposed to be purchased at the beginning of a plan- 
ning horizon. From statistics, the company has an esti- 
mate of the profit each tasks is to yield at the first stage 
of operation. Also, the company estimates the probability 
of breakdown of the machines allocated to each tasks. 
When a machine breaks down, it goes in for repairs after 
which it returns to the factory for re-allocation at the be- 
ginning of the next period. 

In this paper, we formulate the problem as a dynamic 
optimization (DO). Our approach builds on previous re- 
search. [1] used the stochastic programming technique of 
dynamic Programming in financial asset allocation prob- 
lems for designing low-risk portfolios. [2] proposed the 
idea of using a parsimonious sufficient static in an appli- 
cation of approximate dynamic programming to invent- 
tory management. [3] described an algorithm for com- 
puting parameter values to fit linear and separable con- 
cave approximations to the value function for large-scale 
problems in transportation and logistics. [4] described a 
more complicated variation of the algorithm that im- 
plores execution time and memory requirements. The 
improvement is critical for practical applications to real- 
istic large-scale problems. [5] used DO for large-scale 

asset management problems for both single and multiple 
assets. [6] extended an approximate DO method to opti- 
mize the distribution operations of a company manufac- 
turing certain products at multiple production plants and 
shipping to different customer locations for sales. [7] 
considered the allocation of buses from a single station to 
different routes in a transportation company in Nigeria. 

In this section, we consider the methodology adopted 
in this paper. We start with the problem formulation. 

2. Problem Formulation 

In this section, we consider the methodology adopted in 
this paper. We start with the problem formulation. Given 
a certain number of tasks that are to be allocated to 
different machines at the beginning of each time period, 
we expect some machine(s) breakdown at the end of each 
period. Due to the uncertainty in the number of break- 
down machine(s), we assume that the states of the 
machines are random. The company must know the 
number of machines available for the next period before 
decision will be made on how to allocate the tasks to the 
remaining machines. The number of machines to be put 
into operation in the next period depends on the number 
of breakdown at the end of the previous period. Our aim 
is to maximize the total expected profit over a timehori- 
zon. We define the following notations which presented 
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in Table 1. 
In the next subsection, we define the one-period ex- 

pected profit function and formulate the problem as a 
dynamic program. 

3. The Objective and One-Period Expected 
Profit Function 

If the profit for allocating the k task to the machines at 
period t is t , the state of the machines is st, number of 
machines allocated to operate on task k at period t under 
policy π, is 

k
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k
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T-horizon is given by 
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The expected maximum profit that will accrue to the 
company under policy π is given by 
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Note: X(st) is the set of possible solution of problem 
(1). Conditioning (1) on ts S . We now have the 
following optimization problem (3) 
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4. Dynamic Programming Formulation and 
Optimality 

Using st as the state variable at period t and S as the state 
space, we can formulate the problem as a dynamic pro-
gram. The number of breakdown machines for task k at 
period t is given by k t , where Pk is the probability of 
break down machines for task k. Hence, total number of 
break down machines for all the tasks is given by 

. 

We therefore have that 
 

Table 1. Notations and their Definitions. 

Notation Definition 

β discount factor, 0 < β < 1. 

S the state space i.e. the set of all machines 

T set of time periods in the planning horizon. 

π is a rule which chooses an action based on current state of the system (policy). 

 k

tx  number of machines allocated to task k at period t under the policy, π, 0,t T . 

St number of functional machines at period t;  , 0,ts S t T   

bt number of breakdown machines at period t,  0,t T

k

 

  1t tx s b

k
t

 readily available machines to be allocated in the next period. 

 expected return from task k at period t.,  0,t T  

Π set of all admissible policy;   

s0 number of machines at the beginning of the planning horizon. 

Yt(st) objective function of our system,  0,t T  
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1
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k
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, 1, ,k
k t

. 

Let st be the number of machines to be allocated in pe- 
riod t and let α be the percentage of break down (but re- 
paired) machines that are expected to join the functional 
ones in period t, then the transformation equation for the 
system is given by 

 1
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Observe that the transformation equation is a random 
variable. 

We now set 1 – α = β in (5) to have, 
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In this case, the optimal policy can be found by comput-
ing the value functions through the optimization problem  
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Since all the available functional machines must be 
allocated in the next period, we have that  
t T

 

, for all 
, which is the slack variable. 

We show that (4) is equivalent to (7), and then use (4) 
and (7) interchangeably. The theorem below establish 
this claim. 

Lemma 1.1: Let st be a state variable that captures the 
relevant history up to time t, and let 1t ts   be some 
function measured at t’ ≥ t + 1 conditionalon the random 
variable st. Then, 
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For any given objective function, we desire to find the 
best possible policy, π, that optimizes it, that is, we 
search for 
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This is obtained by solving the optimality equation 

 
 







 t t

     (9) 

If we find the set of F’s that solves (9), then we have 
found the policy that optimizes s



. The result be-
low establishes this claim. 

Theorem 1.2: The expression t tF s  is a solution 
to equation (1.9) if and only if  

     * maxt t t t t ts F s Y s
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     *
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n + 2, ···, T, and let 
= n, we obtain the optimality equation as follows 

 be an arbitrary policy. For t 
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This result shows that solving the optimality  
also gives the optimal value function. 

*

 equation

Theorem 1.3: 1) Let B(s) be the set of all bounded 
real-valued functions F: S → R. The mapping Γ: B(s) → 
B(s) is a contraction. 

2) The operator Γ has a unique fixed point (given by 
F*). 

3) For any F, F F  . 
4) For any F, if ΓF ≤ F, then F* ≤ ΓtF, V  
 1, . 

Note: Γ is call ic 
0,t

ed dynam p ogramming operator (  
], for more detail). 

r See
[5

Theorem 1.4: For any bounded return or scoring 
functions F1: S → R and F2: S → R, and for all t = 0, 1, 2, 
3, ···, the inequality below holds 
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The next result shows that as T → ∞, F*(s) → ΓTF(  s),

V  s S . Thus, the profit per stage must be bounded i.e. 

   
1

km
k

k

x s b 



  , 

where μ is a positive constant. 
We now state this claim formally as follows: 

unded return or scoring 
s0), T → ∞ that is,  

Theorem 1.5: For any bo
function F: S → R, FT(s0) → F(
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    0 0 0
T
lim ,       TF s F s V s S   . 


Proof: Let H be a positive integer, 0s S  and policy 
π = {π0, π1, ···}, we can dec pose the return 
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From (16) and (17), we have 
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5. Computational Result 

A production company in Nigeria proposed to purc se 
50 machines that can perform nine different tasks. These 

wn. The Table 2 gives 
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Table 2. The Expected Initial Profit and Probability of Breakdown Machines. 

Machines Task x1 Task x2 Task x3 Task x4 Task x5 Task x6 Task x7 Task x8 Task x9 

 

(20) 

subject to: 

 

t , t = 48, 47, ···, 1; k = 1, ···, 9 which is a paramet-
ric linear programming problem with 9 variables. 

A program using MatLab was used for (20). At the end, 
the following results were obtained. 

The profit over 48 weeks is given by 
 

Initial Expected Profit (in Naira) 180,000 150,000 192,000 240,000 228,000 120,000 168,000 222,000 300,000

Probability of Breakdown (Pk) 2 11  1 10  2 13  5 21  3 19  1 12  1 9  4 15  5 18  
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accrued to the company to be 4,571,100,000.N  Figure 
2 shows the expected profit that will accrued to the  
 

 

Figure 1. The Expected Profit that will accrued to the 
Company over a Period of 48 weeks. 
 

 

Figure 2. The Expected Profit that will accrued to the
Company over an Infinite Period.  

an an e w It nd t 
infinity, the maximum profit that will accrued to the 

an

 

comp y over  infinit eeks. was fou  that a

comp y to be 20,491,0N  

6. Conclusion 

Many production companies have for long been allocat- 
ing resources to different tasks without putting into con-
sideration certain factors that may hinder the realization 
of their objectives. This paper dealt with allocation of 
machines to tasks in order to maximize profit over finite 
and infinite horizon. Careful analysis of the situation 
reveals that adequate planning, prompt and effective 
maintainance can enhances the profitability of the com-
pany.  
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