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ABSTRACT 

The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution 
method for a quadratic programming problem. The linearization of the problem is slightly changed so that the simplex 
or interior point methods can solve with full speed. This is a big advantage as a complementary pivot algorithm will 
take roughly eight times as longer time to solve a quadratic program than the full speed simplex-method solving a linear 
problem of the same size. The strategy of the approach is in the assumption that the solution of the quadratic program-
ming problem is near the feasible point closest to the stationary point assuming no constraints. 
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1. Introduction 

The quadratic programming (QP) problem is the problem 
of optimizing a quadratic function over a convex solution 
space. A variety of methods are available for solving the 
quadratic programming problem [1-6]. These include 
interior point, extensions of the simplex, gradient project- 
tion, conjugate gradient, augmented Lagrangian and ac- 
tive set methods.  

Simplex-method: The simplex-method was proposed 
by George Dantzig in 1947 and it searches the boundary 
of the feasible solution for the optimal solution [7]. The 
main problem with this method is that it has an exponent 
tial complexity and is affected by degeneracy and cycling. 
This method has undergone so many improvements and 
has been competitive for solving practical linear pro- 
gramming (LP) problems so far. 

Interior point method: This is a method that reaches 
the optimal solution of a linear programming model by 
traversing the interior of the feasible region contrary to 
simplex method [3,8,9]. The interior point approaches 
were mainly developed for the general nonlinear pro- 
gramming problem but were later abandoned because of 
their poor performance that time. Karmarkar’s break- 
through in 1984 revitalized the study of interior point 
methods which have been shown to have a polynomial 
complexity. The interior point algorithm has competed 
well with the simplex-method on large LPs. The other 
four methods are not as competitive as these two for LPs. 
Detailed information on the other methods will not be 
presented here but readers are encouraged to see Freund 
[3] or Sun and Yuan [10] for more information. 

Application of quadratic programming: Quadratic 
programming has been successfully applied in areas such 
as engineering, finance, economics, agriculture, market- 
ing, public policy, water resource management and trans- 
portation. The following are some of the so many spe-
cific applications of quadratic programming. 
 Monopolist’s profit maximization  
 Portifolio selection 
 Inequality constrained least-squares estimation 
 Goal programming with quadratic preferences 
 Spatial equilibrium analysis for optimal allocation 

and pricing 
 Optimal linear decision rules 
 Calculation of current flow in resistors 
 Optimization of digital filters 
 Image classification in Computer Vision 
 Numerical modeling of elastoplastic contact problems 
 Optimization of chemical process synthesis 

More on applications of quadratic programming can be 
found in Gupta [11], Horst et al. [12] and McCarl et al. 
[5]. With this large number of applications the quadratic 
programming model certainly requires an efficient solu- 
tion method. We present an approach for and minimizing 
the complementary pivots in a simplex based solution 
method for a quadratic programming problem. The lin- 
earization of the problem is slightly changed from the 
usual Karush Kuhn Tucker (KKT) conditions [13] so that 
the simplex or interior point methods can solve with full 
speed. This is a big advantage as a complementary pivot 
algorithm will take roughly eight times as longer time to 
solve a quadratic program than the full speed simplex- 
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method solving a linear problem of the same size [4]. 
The strategy of the approach is in the assumption that the 
solution of the quadratic programming problem is near 
the feasible point closest to the stationary point assuming 
no constraints. 

2. The Quadratic Programming Problem 

Let a quadratic programming problem be represented by 
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The matrix D is assumed symmetric and negative defi-
nite. This means that f(X) is strictly concave. The con-
straints are linear thus a convex solution space is guaran-
teed. Any maximization quadratic model can be changed 
into a minimization and vice versa. This model is 
nonlinear and the idea is to linearize it in such a way that 
there is minimal complementary pivoting when solving. 

3. Linearization of the Quadratic Problem 

Let a quadratic programming problem be represented 
graphically as shown in Figure 1. 

Where X x x x is the global optimum 
point. 

This point X0 is not necessarily feasible and these vari- 
ables are not necessarily nonnegative. In other words 
they are free variables and Φ is the distance of the re- 
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Figure 1. Graphical representation of the quadratic pro-
gramming problem. 

quired optimal point X from X0 This distance is positive 
(Φ > 0)and when Φ = 0 then X0 is feasible and it is the 
trivial case. The planes (1), (2), (3), (4), ···, (m) are the 
linear constraints of the quadratic programming problem. 
The distance  is the shortest distance from X0 to X. 

3.1. Finding Point X0 

The point X0 can easily be obtained from 
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It is not necessary to solve for X0 own its own. The 
point X0 is represented by a set of Equation (2) in the 
linearized model. 

3.2. Finding Point X 

The point X is feasible and is not known and what are 
readily available are the limits of the variables. The lim-
its for the variables are given by 
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where εj ≥ 0. 
This can also be represented as 
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3.3. Nearness of Point X to X0 and the  
Objective Function 

The point X becomes close to optimality when Φ is 
minimal. In other words we need to find the smallest 
value of Φ that gives a feasible point. 
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What minimizes  also minimizes   because ε ≥ 0. 
i.e. 

      
2

2

          (8) 

Theorem 1: What minimizes also minimizes. ε1 + 
ε2 + ··· + εn. 

Proof: Let j j  , then whatever minimizes  

1 2
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 also minimizes τ1 + τ2 + ··· + τn since τn 
≥ 0. 

The objective function of the linear model is: 
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This is the same as 
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where In = (1, 1, ···, 1)T. 

3.4. Linear Model for the Quadratic Function 
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3.5. Redundant Constraints 

In the linear model given above there are redundant con- 
straints and it is necessary to discard them without ne- 
cessarily losing the optimal point. The set of constraints 
given in (4) can be split into two inequality sets. 
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Similarly the second inequality set is 
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The set of inequalities in (15) are redundant. 
Theorem 2: Whatever feasible solution that satisfies X 

– X0 + Φ ≥ 0 will also satisfy X – X0 – Φ ≤ 0. 
Proof 
Equality Case 1: If X – X0 + Φ = 0 then X – X0 – Φ = 0. 
If this is true then the following simultaneous equa-

tions are feasible 
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This is the trivial case. The equality case holds when  
X = X0 and Φ = 0. 

Inequality Case 2: Suppose Φ > 0 and we need to 
show that if X – X0 + Φ > 0 then X – X0 – Φ < 0. 

If this is true then X – X0 + Φ > 0 is the same as 
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Let X – X0 = Δ then the two inequalities become 
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Suppose Δ – Φ < 0 this implies Δ < Φ and this satisfies, 
–Δ – Φ < 0, whether Δ < 0 or Δ > 0 This implies that the 
second set of constraints can be discarded without losing 
the optimal point as they are redundant. The discarding 
also reduces the size of the LP significantly. 

3.6. Reduced Linear Model 
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The solution given by the linear model (23) is not 
necessarily optimal to the original quadratic problem. 

4. Optimality and Linear Model 

The solution to (23) becomes optimal if it also satisfies 
the necessary KKT conditions. In other words there is a 
need to fuse (23) and KKT conditions. 

Reduced linear model KKT conditions 
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where X ≥ 0, Φ ≥ 0, Y ≥ 0, V ≥ 0, μ ≥ 0 and X0 are free 
variables. 

Solving (25) will give a solution that is near optimal. 
Complementary slackness 

              (26)  
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If the solution given in (25) satisfies the complemen-
tary slackness conditions then it is optimal. The comple-
mentary slackness conditions cause a restricted basis 
entry for the simplex-method and this has significant 
effect on its speed. The idea or strategy in this paper is to 
find a feasible point closest to X0 and at the same time 
satisfying all the KKT conditions except the comple-
mentary slackness conditions given in (26). The feasible 
point is then tested to see if it satisfies KKT or not. If it 
does then it is optimal else switch to complementary piv-
ots or Wolfe’s method [14] until all the necessary condi-
tions are satisfied. 

5. Proposed Approach 

The steps for the proposed approach are summarized as 
follows: 

Step 1: Solve the linear model: 
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Step 2: If solution in Step 1 satisfies YTX = 0 and μV = 
0 then it is optimal else go to Step 3. 

Step 3: Use the optimal tableau in Step 1, switch to 
complementary pivots until all the necessary KKT condi-
tions are satisfied. 

6. Numerical Illustration 

Use the proposed approach to linearize the following 
quadratic programming problem and then solve for the 
optimal solution. 
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This is a portfolio selection problem where xj is the 
number of millions of dollars invested in stock j. In this 
problem the objective is to obtain a minimum variance 
portfolio yielding the company’s expected desired return. 
This objective is obtained by solving the company’s 
quadratic problem formulated as (27). 

Solution 

The linear model is 
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The slackness conditions are 
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Solving (28) using the simplex-method we have 

              (30)  

This solution satisfies the complementary slackness 
conditions and is optimal 

In terms of the original problem the company must 
invest 1.8 million dollars in stock 1 and 1.2 million dol-
lars in stock 2. 

7. Conclusion 

The strength of the approach presented in this paper lies 
within the simplicity with which linear models can be 
solved when there are no complementary conditions. The 
simplex-method performs efficiently if there is no re-
stricted basis entry. The proposed approach significantly 
reduces the number of restricted basis iterations to the 
extent of even avoiding them completely in some prob-
lems. This is a big advantage as complementary pivot 
algorithm will take roughly eight times as longer time to 
solve a quadratic program than the full speed simplex- 
method solving a linear problem of the same size. 
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