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ABSTRACT 

The paper is intended to provide algorithmic and computational support for solving the frequently encountered lin-
ear-quadratic regulator (LQR) problems based on receding-horizon control methodology which is most applicable for 
adaptive and predictive control where Riccati iterations rather than solution of Algebraic Riccati Equations are needed. 
By extending the most efficient computational methods of LQG estimation to the LQR problems, some new algorithms 
are formulated and rigorously substantiated to prevent Riccati iterations divergence when cycled in computer imple-
mentation. Specifically developed for robust LQR implementation are the two-stage Riccati scalarized iteration algo-
rithms belonging to one of three classes: 1) Potter style (square-root); 2) Bierman style (LDLT); and 3) Kailath style 
(array) algorithms. They are based on scalarization, factorization and orthogonalization techniques, which allow more 
reliable LQR computations. Algorithmic templates offer customization flexibility, together with the utmost brevity, to 
both users and application programmers, and to ensure the independence of a specific computer language. 
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1. Introduction 

A thorough insight into the history of Automatic Control 
Systems theory gained by reading volumes such as the 
Systems and Control Encyclopedia [1] convinces us that 
ACS theory as a model-based science has passed through 
the three epochs of its development (Figure 1). The con- 
temporary epoch III is the epoch of uncertainty system 
optimization. It has grown into two mutually comple- 
mentary branches: adaptability and robustness. The latter 
percepts the uncertainty as a nuisance factor not to be 
identified but only compensated in a rough manner that 
leads to Fault Tolerant Control. On the contrary, the first 
branch brings three problems to be solved: 1) quickest 
Change Point Detection or more generally, Model Clas- 
sification; 2) reliable Model Identification; and 3) ade- 
quate System Modification. In Gibson’s view [2], these 
three functions are the determinant attributes of each 
adaptive system. 

In accordance with this view, adaptability is realized 
as interoperability of the three units called Modifier/ 
Identifier/Classifier, MIC for short [3,4]. In the corre-
sponding Figure 2, Classifier detects Data Source pa-
rameter change points in order to give the well-timed 
Start for Identifier. Identifier seeks to estimate the Data 
Source parameters   whose new unknown values †  

may result from the change, each change is considered as 
a system fault. While Identifier is implementing this fea-
ture, Classifier seeks to detect the point when the pa-
rameter estimates ̂  have approached their reasonable 
(near-to-optimum) value ̂ 

ˆ

 in order to give the well- 
timed Stop for Identifier. At this point, Modifier begins 
to perform Compensator modification formally viewed 
as assigning the final value    to the Compensator's 
parameter . 

Different solutions for Classifier have been proposed, 
from the very simple [5] to sophisticated ones based on 
changepoint detection methods recently surveyed in [6] 
and developed in [7]. 

An abundance of solutions available for Identifier can 
be conventionally aggregated into the five functionally 
distinguishable categories [3]: 

(C1) Bayesian Adaptive Model approach [8,9] has 
led to the modern multiple model adaptive estimation 
(MMAE) method based on a bank of parallel Kalman 
filters (KF), each KF designed to correspond a particular 
fault status of the system [10]. 

(C2) Extended (Augmented) Adaptive Model appro- 
ach uses the Kalman Filtering to predict the state vari-
ables of the system and also to estimate its constant pa-
rameters. In so doing, the state vector is augmented by     
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Figure 1. Three epochs of automatic control systems history. 
 
the unknown parameters [11]. The augmented dynamic 
equations become nonlinear. If linearized, they lead to 
the Extended Kalman Filter (EKF) [12,13]. The EKF 
implements a Kalman filter for a system dynamics that 
results from the linearization of the original non-linear 
augmented filter dynamics around the preceding state 
estimates. 

(C3) Analytical Relations based Adaptive Model ap-
proach uses the analytical relations between the optimal 
system equations and the Data Source (DS) statistics. 
They are used with the current estimates of unknown DS 
statistics (parameters) substituted for the exact (unknown) 

values. Usually, this requires a convergent numerical 
method to be developed [14]. The most distinctive fea-
ture of this approach is that it provides no feedback on 
the system performance index (the adaptation loop is 
open). 

(C4) Performance Index based Adaptive Model ap-
proach provides a feedback on the system performance 
index. Two key features determine this category: 1) a 
performance index (PI) must be available in order to be 
used as a tool for system optimization in practice, not 
only in theory, and 2) numerical optimization methods 
must be applicable in order to select from them the best   
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Figure 2. Adaptive stochastic control system structure:  stands for Plant;  for Sensor;  for Regulator;  for 
Estimator. 
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one as the system parameters estimator able to minimize 
the adopted PI. They are the focus of particularly intense 
scrutiny, and among them most theoretically substanti-
ated and practically developed is Ljungian Minimum 
Prediction Error (MPE) method [15,16]. A less known 
method belonging to the same category is the Auxiliary 
Performance Index (API) method which renders possible 
least squares fitting the adaptive model state to the pure 
albeit hidden DS state, not to the measured (incomplete 
and noisy) output [3,4]. 

(C5) Characteristic Matching Adaptive Model approa- 
ch is usually based on introducing into model equations a 
fictitious noise with its root-mean-square (RMS) adjust-
able [17,18] for a better fitting of the model. This ap-
proach is adjacent to robust system control [19]. 

The above generalized categories are not necessarily 
pure, i.e. they can be met in combinations as it is the case 
of (C2) + (C5) in [20] or (C1) + (C2) in [21]. More to it, 
the same five categories hold for Classifier solutions, e.g. 
[22-24]. 

Given Classifier running as a “hot-line alert system”, a 
next successive adaptation period can emerge spontane-
ously as a model identification phase followed by a com- 
pensator (Estimator & Regulator) modification phase (cf. 

Figures 1 and 2). For the basic Figure 2, it is claimed 
that in automatic control, a regulator is a device which 
has the function of maintaining a designated characteris-
tic of the plant behaviour by transforming the estimates 
of plant internal states into the control inputs applied 
(through an actuator) to the plant. A state estimator is 
typically a computer-implemented mathematical model 
that models a real system composed of the plant and a 
sensor in order to provide an estimate of plant’s internal 
state, given measurements of the input and output of the 
real system, which is called Data Source in Figure 2. 

The present paper in intended to provide algorithmic 
and computational perspective for answering questions 
on how to perform Regulator Modification phase in 
adaptive control systems (the lower right side block in 
Figure 1). It is absolutely understandable that this phase 
should be based on the regulator design methods, so that 
the very regulator modification can be treated as a 
re-design procedure. In this respect, we restrict ourselves 
to the case of discrete LQG control problem, that is, the 
control problem with Linear discrete-time plant and sen-
sor models, and Quadratic performance index, and Gaus-
sian random disturbances. 

Fundamental to the discrete LQG control problem are 
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two matrix nonlinear Riccati Difference Equations (RDE), 
which are dual to each other. 

The forward RDE is used in the synthesis of LQG-es-
timator (LQGE, that is, Kalman Filter, KF), and the 
backward RDE for the design of Linear-Quadratic Regu-
lator (LQR). KF and LQR are designed independently of 
each other (the separation principle [25]). The latter is 
cascaded with the first, thus closing the feedback loop 
(the compesator in Figure 2). LQR for the LQG-control 
law is identical to its counterpart for the LQ deterministic 
control law (the certainty-equivalence principle, [26], p. 
228). 

Textbooks on LQG-control contain these well-known 
theoretical facts. However, not every one covers the 
computational aspects of RDE. Often, classic textbooks 
confine themselves to giving references about care or 
dare functions of MATLAB® [27,28] thus meaning 
algebraic Riccati equations (ARE) [29] which can be 
either continuous-time ARE (care), or discrete-time 
ARE (dare). Solution of ARE is the critical task for 
stabilizing the compensator design. For discrete-time 
systems, the solution to DARE coincides with the steady- 
state solution of the RDE approached as the control ho-
rizon tends to infinity [30]. Generalized Riccati theory is 
the key tool to robust control [31]. 

Many textbooks on Automatic Control Systems con-
tain sometimes not only the presentation or derivation of 
RDE, but also a summary of numerical solutions of ARE 
as well. For example, [32] says (Section 11.5) that cita-
tion of published works on solutions and features of ARE 
(as of 1986) may amount to a book of its own. It men-
tions an iterative method and considers, in some more 
detail, the iterative solution and eigenvalue methods as 
well. 

However, the main source of information on Riccati 
equations is the vast research literature [33]. Great atten-
tion paid to ARE arises from the fact that the direct RDE 
iterations, even if they are taken in the robustified form 
(Joseph style), do not exhibit fast convergence to the 
steady-state positive-definite solution. 

The study and development of computational methods 
for ARE have evolved vigorously for many years. Of the 
great many publications, we mention only a few: [34-37] 
for the LQ-regulator solution and [38-44] for the LQG- 
estimator design. Based on these methods, solvers for 
ARE have been implemented in such software packages 
as Maple [45], Mathematica [46], MATLAB [47-49] and 
in computer libraries as BLAS (level I-III), EISPACK 
and LINPACK, as well as in their successor LAPACK 
[50,51]. Many Riccati solvers are written in FORTRAN, 
and also in Python [52]. The number of publications on 
ARE solvers has continued to grow [53-55]. 

Efficient use of existing methods within the software 
packages and libraries is mostly meant for off line appli-

cations owing to their high comptutational cost. For in-
stance, at each Kleinmann iteration step [56], the com-
putationally expensive Lyapunov equation has to be 
solved ([26], pp. 34-121). Newton’s method [57] requires 
solving a Lyapunov equation in the main step ([54], p. 6). 
Schur method [34], the most popular one amongst the 
eigenvalue methods, also needs considerable computa-
tion efforts and additional details to make this approach 
work satisfactorily. 

All these methods are intended for solving ARE, and 
so their ultimate end is to find a stabilizable regulator 
solution [58]. However, sometimes there is no need for 
solving ARE. Such a category of problems includes the 
Model Predictive Control, or MPC [26,59] exploiting the 
idea of finite receding horizon control (RHC) [26]. In 
finite RHC, the attainment of the steady-state Riccati 
solution is not the case due to the very sense of words 
“finite horizon” and “system adaptation” as can be seen 
from the generalized adaptive stochastic control system 
structure (in Figure 2, reproduced from [4]). This ex-
plains why we do not consider the above surveyed 
methods of solving ARE advisable for regulator modifi-
cation (re-design) in the adaptive control structure of 
Figure 2. 

In this paper, we consider the duality relations between 
the two RDE, that are at the heart of LQGE on the one 
part, and LQR on the other part, to secure further ad-
vancement in the algorithms for Linear-Quadratic Regu-
lator Optimization [51]. In doing so, we expect the com-
putational methods, which have been derived for the 
LQG-Estimator implementation over the preceding dec-
ades and recently surveyed in [60], to be successfully 
extended to the LQR re-design where a stepwise solution 
for the (backward) RDE, rather than ARE, is of primary 
importance. 

In Section 2 we formulate Problem 1 of determining 
the LQG control law for the system composed of the 
plant and sensor both linearly modeled and subjected to 
additive Gaussian white noises [26,61]. 

Section 3 describes Problem 2 of LQG receding hori-
zon control in line with [26]. 

Solutions to the above two problems are presented in 
Section 4 in order to compare both forward and back-
ward RDEs and then to move to a single Riccati iteration 
(aiming at the backward RDE) which is given in Section 
5 in an intermediate abstract notation. 

In Section 6, we split the single Riccati iteration into 
two consequtive stages in order to construct two separate 
computational procedures called “Riciup   Riccati 
Instant Update” and “Rictup  Riccati Temporal Up-
date,” which we use as the starting point for their nu-
merical robustification.  



Section 7 presents the scalarization of Riciup. By 
this equivalent transformation, we have prepared both 
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stages for the three robust modification styles: Potter 
style in Section 8, Bierman style in Section 9 and Kailath 
style in Section 10. 

Section 11 provides a brief look at the typical applica-
tions of the results discussed in this paper, together with 
a characterization of related challenges. 

The paper closes with the concluding remarks about 
the novelty of the new algorithmic insights. 

2. LQG Control Problem 

The overall system model includes: an n-dimentional 
stochastic discrete-time plant state equation  

 
       
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   (1) 

and a m-dimentional measurement (sensor) equation  

        , 1, 2, ,i i  

 
i i iy t H t x t v t        (2) 

where   0 1, ,w t  v t

  > 0iR t

w t

 0

 and  1 2  are two 
mutually independent noise sequences of independent 
Gaussian (normal) zero mean random vectors represent-
ing the state disturbance w and the measurement error v, 
characterized by covariance matrices i  (posi- 
tive semi-definite) and  (positive definite) cor- 
respondingly and independent of Gaussian initial state 

   , ,v t 
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input  is assumed to be sought as a   0,N

sequence N  of r-dimentional con-
trol vectors  which are applied to (1) to minimize 
the mean square performance index, PI (the expected 
cost) on a finite horizon of N time steps:  

 0 1u t u
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f
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   (3) 

where the equivalence symbol reads “is equal by defini-
tion to”. It is assumed that any nonzero input  u tk  
within the prediction horizon incurres a cost. This am- 
ounts to assuming that each weighting matrix  kt

  0
T

t t   
t

, 
which is symmetric, is positive definite (PD):  
 k k . Further, it is assumed that the in-

stantaneous cost at time k  (the term within parentheses 
in (3)) is nonnegative. Together with the above PD con-
dition, this is equivalent to the semi-positive definiteness 
of each symmetric matrix :    Tk kt t     0kt  .  

The terminal (or final) cost   2

1
f

N 

0

x t  is also assumed  

nonnegative, hence  ( f
T

f f   final


).   
Remark 1. Expectation operator E   in (3) is de-

fined w.r.t. probability measures induced by  

   0 0 0,x t x P    0,i iw t Q t  ,   and 
    0,v t R t 

 

i i

Remark 2. Metric in (3) is chosen to be elliptic:  
.  

       2

k

T

k k k kt
x t x t t x t


   

and so on. By means of it, one can regulate the impor-
tance of any summand in criterion (3). For example, the 
more costly is a single (the j-th) control input  j ku t

0 k N
 

within the prediction control horizon (PCH,  

 kt

), 
the greater should be its weight defined as the j-th di-
agonal element of matrix   in comparison with 
others. 

 t k ,  t k , fSelecting 

N 

 t

 as identity matrices 
brings us back to classical spherical distance measures. 
In signal processing, one needs sometimes to emphasize 
specific directions/dimentional components where statis-
tical facts are more relevant. This is called ICA (Inde-
pendent Component Analysis) [62]. 

Remark 3. The length of PCH, N in (3), approaching 
infinity ( ) is not a judicious choice for adaptive 
systems. Infinitely large N would mean the intention to 
attain a steady-state mode of control, when no unforeseen 
model changes are considered anymore. This is in deep 
contradiction with the very sense of adaptation. Thus, N 
must be finite. A question arises: what finite value of N 
can be selected? Obviously, it depends on the mechanism 
which the unforeseen changes are subject to. By assump-
tion, these changes should not occur very frequently 
compared with the control system transition time in order 
let the adaptor keep up with the dynamics of changes. If 
the changes mechanism operates as an independent actor, 
it is reasonable to take N equal or greater than the ex-
pected time interval between the neighbouring model 
change points.  

Remark 4. Weighting matrices k  and t k  
can be time-dependent within the PCH. There are many 
ways to do so. A reasonable one would be a matrix or-
dering: both weighting matrix sequences are chosen in 
decreasing order (Version 1)  
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N

N
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t t t
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
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or in increasing order (Version 2)  
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          (5) 

where the matrix inequality is interpreted as the standard 
positive matrix inequality: 0 , meaning  

    0t t0 1  and so on.    
Remark 5. In adaptive systems, our knowledge of 

how the matrices describing models (1), (2) behave is 
getting more and more vague in course of time within the 
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  PCH. Common sense seems to tell us that this fact gives 
us reasons for prefering the decreasing version (4). In 
this case, the instantaneous cost at a farther time tk as part 
of penalty criterion (3), will be less than at preceding 
times. Working with decreasing sequences (4) can be 
also justified on grounds of RHC. As described in Sec-
tion 3, all the control inputs except for the first one, 
which are found to minimize the overal RHC cost, are 
discarded anyway. 

On the other hand, the choice of (4) can mean under-
estimating the risk of farther erroneous states  kx t

 u t

  0t 
0f 

0,=

 and 
wrong controls k  caused just by our vague knowl-
edge of how the matrices describing models (1), (2) will 
behave in future. To mitigate the risk, one should prefer 
the increasing version (5). 

Thus, it becomes clear that the cost behaviour of con-
trol, especially of RHC, is a serious issue deserving a 
special study and experimenting which is planned to be 
made beyond the scope of this paper.  

The standard LQG control problem (P1) is stated as 
follows.  

Problem P1 Consider (1) and (2) as the linear models 
of a plant and a sensor subject to Gaussian excitations w 
and v. Define the quadratic performance index (3) with 
the symmetric matrices , k  and  

. Find an optimal physically feasible control input  
  > 0kt

Nu u 

 

 to the plant (1), initialized from the event 

 0 0,t x t

  u t


, minimizing the performance index (3). 

Remark 6. The notion “physically feasible” applied to 
control inputs here and below infers cause-and-effect 
relationships between control inputs i  and system 
outputs  iy t

it

: the first can not appear before the lat-
ter. 

3. Receding Horizon (LQG) Control 

RHC was introduced by French engineer Richalet and his 
colleagues in 1978 [59] to relax the computational diffi-
culties of steady-state control [26]. In the LQG frame-
work, the RHC problem (P2) looks as follows. 

Problem P2 Consider (1) and (2) as the linear models 
of a plant and a sensor subject to Gaussian noise inputs w 
and v.  

RHC Procedure: At time , define the quadratic PI 
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for symmetric matrices ,   >kt   0kt   and f 0 
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event ,t x ti i , minimizing the performance index (6). 
Apply to the plant (1) the initial control vector  u t

1it 
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of the optimal sequence whose subsequent N vectors are 
discarded. Repeat the procedure at time  to select 
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Although so defined RH LQG control can be hardly 
considered “optimal” in a rigor sense, it has attractive 
features [26] thus prompting suggestions that the RHC be 
used as the basis in the adaptive control structure (of 
Figure 2) for robust regulator computations as done in 
the sections that follow. 

4. Riccati-Based Solution 

From the comparison of P1 and P2 statements, in order 
to obtain criterion (6) from criterion (3) one should ad-
vance the (zero-indexed) event 0 0 , which is ini-
tial for the whole control sequence in P1, i steps:  

0 0i i , and so      0, 0, ,N i i N i i Nu u    . There-
fore all the subsequent results concerning regulation 
problems will be formulated for P1. They can be shifted 
in parallel i steps ahead to obtain the corresponding cor-
rect result for P2.   

u   

0,1, ,i N

Theorem 1 [26]. Optimal LQG-control law is decom-
posed into two independent series-connected parts 4.1 
and 4.2: 

4.1. Optimal (Kalman) Filter, KF Equations 

1) For     the KF computes the extrapo-
lated estimates  ˆ 1it
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ces  

         1 1 1, ,T
i i i i i i iP t Q t t t P t t t 
    

   

 

where  

   0 0 0 0 0 0:
T

P t P E x t x x t x .          

1, 2, ,i N2) For     the KF computes the so-called 
filtered (that is measurement updated) estimates  ˆ ix t . 
They are obtained through the measurement update using 

 i iz z t   > 0iR t i with covariances  at t , as  

         ˆ ˆ ˆi i f i i i it x t K t z H t x t      

filterf

x      (8) 

 )  with the filter gain (

            
1T T

f i i i i i i iK t P t H t R t H t P t H t


     

and also the filtered estimates covariance matrices  
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         i i i .i i fP t P t K   t H t P t

regulatorr 

, 0,1, , .i N 

    ,i r iu t G t    

 r iG t

 1 ,

 

4.2. Optimal Linear-Quadratic Regulator, LQR 
Equations 

Minimum expected cost for completing the control proc-
ess on the regulation horizon is provided by the follow-
ing LQR ( ):  

     ˆi r i iu t G t x t       (9) 

Control function of stochastic LQR  

            (10) 

is identical to the control function of deterministic LQR, 
and for matrix  in (10) the following algorithm 
holds:  

N ft                              (11a) 

         1 ,T
i i i i iA t t B t t B t   

  

         (11b) 

    
    1   

1 1

1 1, ,

i i

T
i i i i i

t B t,T
i i it t t

A t B t t t t
   

         1 1 1, , ,T
i i i i i i i

    
     (11c) 

M t t t t t t t         (11d) 

       1
1 ,T

r i i i iK t A t B t t
               (11e) 

     1,i it t

 i i iM t

, ,1,0  0t 0i

,                  (11f) r i r iG t K t 

   t t    .                    (11g) 

Remark 7. In (11), items (11b) to (11g) cycle for 
, although  found at , 1i N N     by 

(11g) is out of use (end of computations).   
Remark 8. Matrix  it

    

 in (11) satisfies the back- 
ward RDE   

  
         

  

1 1

1 1

1 1

,

, ,

T
i i i i i

T
i i i i i

i t i

t t

t B t t B t t

t t

 

 

 

  

   

    1

, 1, ,1,0

T
i iB t B t t

i N N


 

  

 1

t t  t 

 (12) 

with the final condition N f  N

 

t   at i  when 

the inverse-time computations start. Equation (12) is dual 

to the following forward RDE for matrix jP t

   

:  

   
 

j j

T  j j  
j j

   
  

1 1

1

,

, ,

j

j j j

T     1

0,1, ,

T
j j j j j

P t

H t P t

Q t t

P t H

t P t

R tt

H t H t P t

j N

  
 

t t







P  0j


  

    (13) 

with the initial condition  13 0  at   where 
 13 0P

G n s 

  1
,T T T

 stands for the term within braces in (13). 

5. Singly Taken Formal Riccati Iteration 

Consider a single Riccati iteration (RI) as a formal pro-
cedure in abstract matrix notations including an arbitrary 
matrix G of compatible size ( dim ):  

V A X XG C G XG G X A



    X   

       (14) 

s sC  0TC C, where   > 0X 0

:

,  and V . 
As seen from Equations (12) and (13), iterations (14) 

are repeated for both KF and LQR with the assignment 
operation X X    between the iterative repetitions. 
From here on, we omit the case of KF which is well- 
known and widely presented in literature [60] and direct 
our attention towards the LQR. 

For the case of LQR, let us introduce the following 
correspondences between the formal and actual specifi-
cations:  

     
     
   

1

1

, , , ,

, , ,

, , , .

i i i i

i i i

r r i r r i f f

X t V t A t t

X t G B t C t

K t G G t V s r

 



   

    

K    



     (15) 

Substituting (15) into (14) yields (12), i.e. backward 
RDE for  it  in algorithm (11) with the terminal 
condition  1N ft   i N

  1
,T T

r

 taken at . Considering 
formal symbols Kr and Gr in (15) leads to the equivalent 
form  

C G XG G X


   

,T
r

K           (16) 

X V A X XGK A     
  

r rG K A

        (17) 

                 (18) 

of procedure (14). Let us represent the computations (16), 
(17) and (18) as a procedure denoted by  

 , , , , , , rC G X V A s X G
 Ric

:

 

with the assignment fX V N at i  and by cycling 
the procedure Ric for i = N down to 0 in such a way as 
to take input parameters in accordance with (15), we get 
the output parameters in accordance with (15).   

Remark 9. In reality, the last statement is true only 
theoretically, that is in the absence of computer roundoff 
errors. Formula (17) constitutes a real danger for matrix 
X 
  to have lost its property of positive definiteness at 

the differencing in brackets. This, in particular, is the 
prime cause of Ric’s numerical instability able to di-
verge Riccati iterations when cycled in computer imple-
mentation. 

Copyright © 2012 SciRes.                                                                                IJCNS 



I. V. SEMUSHIN 616 

6. Two-Stage Riccati Iterations 

Just as the discrete KF naturally operates in two stages 1) 
and 2) (stated in Theorem 1, Subsection 4.1), a single 
Riccati iteration Ric (16), (17), (18) can be used in 
two consecutive stages shown schematically in Figure 
3  

ˆ ,rX X XGK  

ˆ .T

              (19) 

X V A XA 
               (20) 

We name them correspondingly as follows:  
 

Stage I:  ˆ, , rC G X s X K



, ,Riciup  

Name: Riccati instant update: (16)  (19), and 

Stage II:  ˆ , ,r rX K s X G
Rictup



, , ,V A  

Name: Riccati temporal update: (20)  (18). 
Remark 10. Notation such as (16)  (19) hereafter 

reads: “(16) computed and then (19) computed”.  

Lemma 1. For all positive definite matrices X nd C 
algorithm (16)  19) of Stage I is equivalent to the 
following algorithm (21)  

 a
 (

1ˆ TZ Z GC G 
1ˆ ˆ

              (21) 

in the sense that Z X n sG  with any matrix   
when 1Z X  .  

Proof. It can be found in [40], pp. 26-27.  

7. Riccati Scalarized Instant Update 

When  is a non-diagonal matrix, the square-root 
free Cholesky decomposition C C C  with the unit 
lower triangular matrix C  and diagonal matrix  

> 0C
TC L D L

L
 1 2, , ,d d C s , , proves to be useful. 

With that purpose denote CY G , where Y  is a 
solution to the lower triangular matrix equation  

C . Then instead of algorithm (16)  (19) for 
Stage I we obtain its equivalent  

D dg

TG

dia > 0kd
TL T



 ˆ .T T

TL Y 

1

CX X XY D Y XY Y X     
       (22) 

Considering matrix 1 2 sY y y y  

:

  columnwise per- 
mits one to use the following Algorithms 1 and 2. 

Algorithm 1 (scalarized, direct). 
1) Initialization: 0X X  .  
2) Scalarized (columnwise) input: 
for  to s cycle  1k 

1

1 1

k k k k

k kX X X



   1
1

,

.

T
k

T
k k k k k

d y X y

y y X



 


 

ˆ :

       (23) 

3) Concluding assignment: sX X

1

.  
Algorithm 2 (scalarized, inverse). 
1) Initialization: 0 :Z Z X   

 

X 
 X̂ X

1it it
time

(20)
(19)



.  

 

Figure 3. Backward Riccati recursion. Initialization i := N; 

X := Vf; while (i ≥ 0) do {(19); (20); i := i − 1}. 
 

2) Scalarized (columnwise) input: 
1k   to s cycle  for 

1
1 .T

k k k k kZ y d y
 

ˆ :

Z                (24) 

Z Z3) Concluding assignment: s .  
Lemma 2. Algorithms 1 and 2 are equivalent to each 

other.  
Proof. All kX  and kZ  in (23), (24) are mutually 

inverse of each other by virtue of Lemma 1, and so, 
1ˆ ˆ Z X .  

Theorem 2 (Verification of Algorithm 1 for Equation 
(22)). Algorithm 1 is true, i.e., it can be used instead of 
(22).  

Proof. By reason of Lemma 1, equality (22) is equiva-
lent to equality (21) taking into account transcriptions 

, . Thereby (21) is as follows:  G Y C D

1
1 1

1
1

1

1

0
ˆ

0

.

T

s
T

s s

s
T

k k k
k

d y

Z Z y y

d y

Z y d y









   
          
   
   

 

   



ˆ

 

Algorithm 2 gives the same value Z . It is equivalent 
to algorithm 1 (by virtue of Lemma 2). Hence, algorithm 
1 results in matrix X̂ , which is produced by procedure 
(16)  (19) (Riciup) and also by (22).  

Let us introduce the scalarized procedure Ricsiup:  
 

 Stage I: ˆ, , , , rC G X s X KRicsiup



T
C C CC L D L  CL CD

T T
CL Y G 
: 1k

 

Name: Riccati scalarized instant update 
(instead of (16)  (19)) 

begin 

    obtain ,  

    obtain Y 

     begin  
k swhile   do   cycle 


:T T

kp y X  
begin     continue 

   a row 
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: T
k ky d p     a scalar 

:kK pT     a row 

ˆ : k kX X X  y K ˆ  matrix  X  

ˆ:X X     update  X
k k 



 
: 1     increment 

end     finish 

1
T T: T

sK K K   
   collect TK  

T
C rL K  rK     obtain  K  

end 
 
Theorem 3. Algorithm Ricsiup is equivalent to 

algorithm Riciup. 
Proof. In cycle while, there is implemented the 

proved algorithm 1, which forms X̂ . To complete the 
proof, it is sufficient to substitute C C C  into (16) 
and verify that 

TC L D L
T

CrK L K  where the intermediate matrix  

 C  1T TK D Y  XY Y X
 

ˆ

 has been introduced.  

Remark 11. In the transition from Riciup to 
Ricsiup, there is eliminated the operation of matrix 
inversion in formula (16). However, the origin of nu-
merical instability (that is computation of X  in cycle 
while which is a scalar (k-th) step of (19)) calls, as be-
fore, for further algebraically equivalent modifications. 

8. Potter Style Modification 

Applying Cholesky decomposition (for definiteness, the 
lower triangular one, as described, for instance, in [60]) 
to the symmetric matrices X̂ , X , X  , V and 

fV

,

, .

T

T T
f

, we 
change to operations with their square roots (denoted by 
generic symbol S):  

ˆ ˆˆ , ,T T

V V f f

X SS X SS

V S S V S

 

 

  X S S

S

     
     (25) 

Modified procedure srRicsiup operates with the 
square roots of (25) like it was first introduced in [63]: 

 

Stage I:  ˆ, , , , rS s S K



C CC L CL CD
T

CL Y  
: 1k  




:

C GsrRicsiup  

Name: square-root Riccati scalarized instant update 
(instead of (16)  (19)): 

begin 
T
CD L     obtain ,  

TG     obtain Y 

     begin 
while  do   cycle k s
begin     continue 

T
kf S y      a column 

: T f kd f     a scalar 

 1
: 1 kd 


    a scalar 

: T T
kK f S      a row 

ˆ : T T
kS S K f   Ŝ

ˆ:S S

  matrix  

  S
: 1k k

    update  
  


    increment 

end     finish 

1:T T T
sK K K      collect TK  

T
C rL K K     obtain  rK  

end  
 
Correspondingly, we change from procedure Rictup 

to srRictup using orthogonal transformations:  
 

 Stage II: ˆ, , , , ,V r rS A S K s S G
srRictup



ˆ
,

0

T T

r rT
V

S S A
G K A

S


  
    

    






 

Name: square-root Riccati temporal update 
orthogonalized (instead of (20)  (18)): 

 

       (26) 

where  is one of the orthogonal transformations (Hau- 
sholder or Givens or Gram-Schmidt) reducing matrix in 
the right-hand side of (26) to the upper triangular form.   

Theorem 4. Algorithm srRicsiup is equivalent to 
algorithm Ricsiup and algorithm srRictup is equi- 
valent to algorithm Rictup.  

Proof. Selecting from (25) the proper substitution for 
matrix X  in algorithm Ricsiup and then factoring  

Xdifference k kXy K  ˆ (denoted X  for each k in 

Ricsiup) into  with S S  yields  ˆ ˆTSS  ˆ TI ff 

 2
: .T Tf I ff I ff      

This results in the quadratic equation with respect to 
   

   1 12 12 0.k kd d           

From its two solutions one selects  

  1
1 1 kd  


   

as being numerically stable, and introduces the interme-
diate notation   . The first equation in (26) can be 
proved by premultiplying it by itself transposed. The 
product coincides with (20).  

Remark 12. Some comparative insight into numerical 
stability of the above algorithm as well as of the two al-
gorithmic modifications that follow in Sections 9 and 10, 
can be gained from [64], pp. 163-167 and pp. 198-201. 

Copyright © 2012 SciRes.                                                                                IJCNS 



I. V. SEMUSHIN 618 

9. Bierman Style Modification 

The algorithm to be presented here is conceptually the 
Bierman’s algorithm originally developed for the U-D 
matrix decomposition used for the KF covariance fac-
torizations. It was motivated by the work of Agee and 
Turner about the one-rank modification of the UDUT 
Cholesky factorization [40] which we convert into the 
LDLT formulation as follows. 

Theorem 5 (Agee-Turner PD Factorization Update). 
Let  

T T TLDL caa

1, , nD d ddiag    
  

a a dimn P

P LDL   

where L is unit lower triangular, , 
c is a scalar, , and .  1 2, , ,

T

na a 
If P  is PD (positive definite), then factors L  (unit 

lower triangular) and 0D   (diagonal) can be calcu-
lated in the following algorithm:   

1) Initialization: .  1

2) Computation: for  to  cycle:  
c c

1i  1n 
a) 2

i iai i

b) for  to n cycle:   
d d  c

1k i 
:k k i kia a a l 

;  

i) ;  
ii) ki ki i i k i ;  In matrices L, nontrivial 

entries exist only below their unit diagonal.  
l l c a a d  

c) 1i i i i

3) Concluding assignment: 
c c d d .  

2d d c a n n n n

Proof. The algorithm is validated by representing 
 .  

Tx Px  as a sum of complete squares with substitution of 
the equation = ,TP P caa TP LDL    in this quadratic 
form. Details can be found in [40] or [60].  

We apply Bierman’s algorithm to LQR design in the 
context of Remark 11, thereby presenting another modi-
fication of procedure Ricsiup named here ldRis-
ciup that avoids potentially unstable numerical differ-
encing. What is required for that is conversion of the 
aforesaid UD Bierman’s algorithm into its LD analogue 
and writing it in terms of LQR. In doing this, we obtain 
the following result. 

Theorem 6 (Bierman style ldRisciup algorithm). 
Let : k kX X Xy K     written as ˆ : k kX X Xy K  

ˆ:
 fol-

lowed by X X  in procedure Ricsiup be using 
factorizations ˆ ˆ ˆ T̂X LDL T and X LDL    where any 
and all L are unit lower triangular and any and all D posi-
tive diagonal. Then Ricsiup is equivalent to the fol-
lowing procedure. 

 

Stage I:  ˆ ˆ, , , , rD s L D K



T
C C CC L D L  CL CD

T T
CL Y G 
: 1k

, ,C G L 1dRicsiup  

Name: L-D Riccati scalarized instant update  
(instead of (16)  (19)): 

begin 

    obtain ,  

    obtain Y 

     begin  
k swhile   do   cycle 



 1, , :
T T

n k

begin     continue 

f f L y  f  

 1, , :
T

nv v v Df  
: kd

 

  

K : 0 0k nv     
i nfor   down to 1 do 

begin 
: i iv f    

 : 1 
ˆ :i id d  

: if

 

  
1j i

 

  to n  do for 
begin 

,
ˆ : T
ji ji j kl l K   

, ,:T TK j k j k ji iK l v  

:

 

end 
   

end 
ˆ:L L ˆ:D D;  L D

: 1k k
    update  and  

  


    increment 
end     finish 

1:T T T
sK K K      collect TK  

T
C rL K K     obtain  rK  

end 
 

Remark 13. Recall that k  is the k-th column of 
matrix Y and k  is the k -th diagonal element of matrix 
D, both introduced in Section 7; 

y
d

,
T
j kK  is the j-th element 

of column T
kK  that exists within each repetition of cy-

cle while.  
Proof. Given in [60] similarly to the UD-version of 

[40].   
Forming the matrices  ˆ ˆ,L D ,L D 

L̂ L

 from   is illus-
trated schematically by Figure 4. It shows that: 1) this 
computation is columnwise starting from the last column 
and moving backwards; 2) the diagonal positions are 
used to store elements of D because the predetermined 
unit diagonals of both  and  need no storing; (3) 
output data  ˆ ˆ,L D ,L D  can supersede   in the same 
array; and (4) the upper triangular part of the array is 
zero and so may not be stored thus saving memory. 

We now turn to the LQ implementation of Stage II in 
the form of a new procedure ldRictup which is to be 
equivalent to Rictup. 

At entry to ldRictup, we have two pairs of factors:  
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1̂d

2d̂

3d̂

4d̂

1d

1̂l

2̂l
3̂l

1l

1dRicsiup
2d

3d

4d
2l

3l


 

Figure 4. Forming of matrices ˆ ˆ,L D

 ˆ,L D ˆ ˆ ˆ T̂

. 

 

1)  instead of ˆ X LDL

 ,VL D T
V V VV L D L

, and  

2)  instead of  in (20).  V

Using them, re-write (20) as  

ˆ ˆ0 T

T
V V

D TW

D L A

D L

   
   
    

ˆ
0

T
V

W

X A L L
   



         (27) 

The problem of Stage II sounds as follows: Given are 
factors W and D for which (27) holds, find factors L  
and D , L  unit lower triangular and D  positive di-
agonal, such that for matrix X 


T

 to be represented in the 
factored form X L D    L 

  the following factorization 
holds: TX LDL . In other words, we seek to have an 
algorithm yielding the pair 


 ,L D  so as to immediately 

get results: L L   and D D  . So, in equation  
T LDL

, , nw w

TWDW , the left hand side is given and the right 
hand side is what we wish to find. This is exactly what is 
known as Weighted Gram-Schmidt Orthogonalization 
(WG-SO). It is presented in [40] (pp. 125-126) in the 
UD-version. For our needs, we convert it into the LD- 
version as follows. 

Lemma 3. Let  1  be a linear independent 
set of (column) M-vectors, M n , and let 1, , MD D  
be positive scalars in a diagonal matrix  

 1 M . If 1  are defined by the 
following algorithm, then none of the v’s are zero and 

 for :  

, ,D Ddiag 

0k jv 

D

j



Tv D

 , , nvv

k 
 

MG-SO:  - , ,W D L D

1k 
:k kv w

1k 

1dMG SOrt  

Name: L-D Modified Weighted Gram-Schmidt 
Orthogonalization: 

begin      
for  to n do  

 

for  to n do  
begin  

: T
k k kD v Dv

1j k 
  

for   to n  do  

begin  

 : T
jk j k kL v Dv D   

:j j jk kv v L v    

end  
end  

end  

  0iV t  

 
Proof. Can be obtained by a straightforward calcula-

tion.  
Remark 14. The above procedure is called modified 

because it works columnwise (Figure 5). 
Finally for the case of , we obtain  

 

 ˆ ˆ, , , , , , , ,V V r rL D A L D K s L D G 
 1dRictup



Stage II:  

Name: L-D Riccati temporal update orthogonalized 
(instead of (20)  (18)): 

Compute 1

T̂
T

n T
V

L A
W w w

L

 
       

 
2

 

M n(with  ). 

Compute   1

ˆ 0
, , .

0
M

V

D
D D Ddiag

D

 
   

 


Call ldMG-SOrt , ,W D L D 
 

r rG K A

. 

Compute  . 

10. Kailath Style Modification 

There exists another a comparatively new class of algo-
rithms in Kalman filtering (LQG estimation) area [65], 
the so-called array algorithms. They alleviate some 
computational problems associated with Riccati itera-
tions by using the well-known QR-decomposition in nu-
merical linear algebra with an appropriate orthogonal 
matrix Q where R is upper triangular (R indicates here 
the right corner of a matrix). Below, we show how to 
adapt such algorithms for LQR implementations, and we 
refer to them as Kailath style paying thus a tribute to 
works by Kailath and co-authors [43]. Starting out again 
from Remark 11, we choose now (from several alterna-
tives recently serveyed in [60]) a square-root array 
modification.  

Theorem 7 (Kailath style asrRisciup algorithm). 
Let ˆ :X : k kX Xy K     written as X k kX Xy K  

ˆ:
 fol-

lowed by X X
ˆ ˆˆ T

 in procedure Ricsiup be using fac-
torizations like in (25), that is SS T  and X X SS     
 

 

Figure 5. Modified WG-SO procedure, LD-version. 
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with both S lower triangular. Then Ricsiup is equiva-
lent to the following procedure.  

 

Stage I:  ˆ, , , , rS s S K



C CC L CL CD
T

CL Y  
: 1k  




C GasrRicsiup  

Name: array square-root Riccati scalarized instant 
update (instead of (16)  (19)): 

begin  
T
CD L     obtain ,  

TG     obtain Y 

     begin 
while  do   cycle k s

begin    continue 

: kd 

  :
T T

n k

 

1, ,f f f S y    

0
TkQ

f S

 
 
  



:S   S
1 



:
0

k
T

K

S

  
 

  
   (T) 

Ŝ     update  
:k k     increment 

end     finish 

1
T T: T

sK K K   
   collect TK  

T
C rL K  rK     obtain  K  

end 
   
Proof. Assignment operator (T) in the above algorithm 

contains two arrays: pre-array B (on the right) and 
post-array A (on the left). At each cycle, let the latter be 
obtained from the first in the upper triangular form by 
means of an appropriate orthogomal transformation k  
(it may be Hausholder reflections or Givens rotations): 

k

Q

A Q B . Since k kQ Q , we have  and 
via straightforward calculations, we are done.  

T T TA AI B B

Stage II in this modification coincides with Stage II in 
the Potter style modification, that is expression (26). 

11. Applications Challenges 

Possible applications of adaptation capability of stochas-
tic systems are numerous and can be found in almost 
every field of modern engineering. While considering 
applicability of the above results, one should select the 
cases that seem to fit perfectly in the pattern of Figure 2. 
In this pattern, the very necessity for adaptation is con-
sidered as a factual constraint the occurrence of which in 
time is comparatively rare resulting from an abrupt fault 
against the long lasting nominal mode of system opera-
tion. This can be exemplified by the development and 
implementation of a high integrity navigation system 
based on the combined use of an inertial measurement 
unit aided by different outer sources of data [20,66] some 

of which are fault-susceptible or working in an accident- 
prone situation. 

Famous industrial/technological study cases to be 
brought forward as applications to theoretical/computa- 
tional work are those on advanced MPC collected in 
[59]. 

Overall, we have to admit that practical problems are 
much more challenging than theoretical ones. One barrier 
to overcome is the nonlinearity of the original system 
(Data Source) models. The traditional remedy for this is 
to invoke a linearized perturbation model or equation of 
the first variation about a nominal (or reference) solution 
to the nonlinear model on the assumption that such a 
solution is known (as in [67]) or delivered by an External 
(more precise) Data Source. In the strict sense, equation 
(1) has been written yet in the form of perturbation 
model, as it can be seen from criterion (3). The latter case, 
combining the use of the Global Positioning System 
(GPS acting as an external data source) and an inertial 
measurement unit for vehicle applications, can be viewed 
as a modeling technique for online estimation of the error 
between the reference model and the real dynamics [68]. 

Another challenge to be considered is a set of con-
straints representing the physical limitations of the proc-
ess variables as is the case in MPC and optimization for 
papermaking machines [69]. 

12. Concluding Remarks 

The emphasis in this paper has been on the robust linear 
quadratic regulator computations where the single Ric-
cati iteration algorithm is an integral part and where 
seeking a steady-state Riccati solution (Algebraic Riccari 
Equation) does not apply. 

Main novelty of the results is technical: we have shown 
that linear algebra methods of input scalarization, matrix 
factorization and array orthogonalization earlier known 
for the robustified linear quadratic estimators due to [40, 
63,65] and many other works, now are successfully ex-
tended to the robust LQR computation problems includ-
ing LQ Regulator Modification phase in the adaptive 
control systems. The new algorithmic LQ regulator for-
mulations based on these methods enhance LQR numeric 
robustness and generate a productive perspective for fur-
ther investigations into the regulator modification (re- 
design) methods within the structure of adaptive control. 

Further research is encouraged into the advancement 
of new insights about the numerics of LQR/ARE/DARE 
procedures, thus leading to Adaptive Control System 
CAD that is expected to include all three ACS phases— 
Modifier/Identifier/Classifier. 
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