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ABSTRACT 

This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain 
systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under controller gain varia-
tions. The parameter uncertainty is assumed to be norm-bounded. The problem to be addressed is the design of 
non-fragile robust controllers via state feedback such that the resulting closed-loop system is asymptotically stable for 
all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such 
controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. Fi-
nally, a numerical example is illustrated to show the contribution of the main result. 
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1. Introduction 

In recent years, the research on two-dimensional (2-D) 
discrete systems have received considerable attention, 
since 2-D systems exist in many practical applications 
such as image data processing, seismographic data proc-
essing, thermal processes, gas absorption, water stream 
heating, river pollution modeling, etc. [1-5]. The stability 
properties of 2-D discrete systems described by the For-
nasini-Marchesini second local state-space (FMSLSS) 
model [6] have been studied in [7-15]. The asymptotic 
stability conditions for linear FMSLSS model based on 
2-D Lyapunov equation approach have been established 
in [7-10]. Many publications related to stability analysis 
of 2-D discrete systems employing various finite word- 
length nonlinearities have appeared [10-14]. The problem 
of robust stability analysis and stabilization of 2-D dis-
crete systems via the linear matrix inequality (LMI) ap-
proach has been considered in [15]. 

Recently, there has been a growing interest in the study 
of robust non-fragile control problems. The aim of robust 
non-fragile control is to design a robust controller for a 
given uncertain system such that the controller is insensi-
tive to some amount of error with regard to its gain. Based 
on this idea, many significant results have been obtained 
for one-dimensional case [16-22]. Robust non-fragile 
control for 2-D discrete uncertain systems in the FMSLSS 
setting is an important problem.  

This paper, therefore, deals with the problem of robust 

non-fragile control for a class of 2-D discrete uncertain 
systems described by the FMSLSS model. The paper is 
organized as follows. In Section 2, we formulate the 
problem of robust non-fragile control for a class of 2-D 
discrete uncertain systems described by the FMSLSS 
model and recall some useful results. The main result of 
the paper is presented in Section 3. In Section 4, a nu-
merical example is given to illustrate the effectiveness of 
the proposed method. 

Notations  denotes real vector space of dimension 
n, 

nR
n mR   is the set of n m  real matrices, 0 denotes null 

matrix or null vector of appropriate dimension, I is the 
identity matrix of appropriate dimension, the superscript T 
stands for matrix transposition,  ( ) stands for 
the matrix G is symmetric and positive (negative) definite, 
and diag{···} stands for a block diagonal matrix. 

0G 0G

2. Problem Formulation and Preliminaries 

This paper studies the problem of robust non-fragile con-
trol for a class of 2-D discrete uncertain systems de-
scribed by the FMSLSS model [6]. Specifically, the sys-
tem under consideration is given by 

     
       

1 1

2 2 1 2

1, 1 1,

, 1 1, , 1

i j i j

i j i j i j

     

,       

x A A x

A A x B u B u
 

(1a) 

where  , ni j Rx  and  , mi j Ru  are the state and 
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the control input, respectively. The matrices 1 2, n nR A A

A

 
and 1 2  are known constant matrices repre-
senting the nominal plant. The matrices 1  and 2

, n mR B B
 A  

represent parameter uncertainties in the system matrices 
which are assumed to be of the form 

    1 2  1,i j 2A A LF M M ,       (1b) 

where n kR L , 1 2  are known structural 
matrices of uncertainty and  is an un-
known matrix representing parameter uncertainty which 
satisfies   

, l nR M M
F  ,i j  k lR 

   
  

,

, ,

valently, , 1

T i j i j

i j





F F I

For equi

m nR 

.



        (1c) 

Suppose the system state is available for feedback, the 
objective of this paper is to develop a procedure to de-
sign a non-fragile state feedback control law 

    ,i j i j  u K K x ,         (2a) 

where K  is the nominal controller gain and K  
represents the controller gain perturbation of the form   

 ,k k ki j K L F M ,            (2b) 

with  and m g
k R L h n

k R M
 ,

 being known constant 
matrices, and g hi j R k  an unknown uncertain 
parameter matrix satisfying  

F

   
  

  


1,

, 1

i j

i j





K x

x

, ,

valently, ,

T
k k

k

i j i j

i j





F F

F

 

or equi

 1, 1i j  x A

P

1 ,

I



B

K

       (2c) 

for system (1) such that the resulting closed-loop system 



1 1 1 1

2 2 2 2

    

    

B K A

A B K A B
(3) 

is asymptotically stable for all admissible uncertainties 
and perturbation in controller gain. 

Now, we recall the following lemmas, which are 
needed in the proof of our main result. As an extension 
of [7], one can easily arrive at the following lemma. 

Lemma 2.1 [7] The system (3) is asymptotically stable 
if there exists an  positive definite symmetric ma- 
trix  such that 

n n

       

 

1 1 2 2 1 1 2 2

0
0,

0 1

T




            
 

   

A A A A P A A A A

P

P



 (4a) 

for all admissible uncertainties (1b) and (2b) satisfying 
(1c) and (2c), respectively, where  

1 1 1 2 2 2

1 1 1 2 2 2

, ,

, ,

0 1.

   

         
 

A A B K A A B K

A A B K A A B K     (4b) 

Lemma 2.2 [23] Let H, E, F and M be real matrices 
of appropriate dimension with M satisfying TM M  
then 

0T T T M HFE E F H           (5a) 

for all F satisfying T F F I , if and only if there exists 
a scalar 0   such that 

1 0T T   M HH E E  .         (5b) 

Lemma 2.3 [24] For real matrices M, L, Q of appro-
priate dimensions, where  and TM M 0T Q Q  
then 0T M L QL  if and only if 

1
0

T



 
  

M L

L Q
 or equivalently 

1

0
T

 
 

 

Q L

L M
. (6) 

3. Main Result 

In this section, we give a LMI-based sufficient condition 
for the existence of non-fragile robust controllers in the 
form of (2a) with the gain perturbation satisfying (2b) 
and (2c), such that the resulting closed-loop system (3) is 
asymptotically stable for all admissible parameter uncer-
tainties and controller gain variations.  

Theorem 3.1 Consider the system (1a) and the con-
troller gain perturbation K  in (2b) and (2c). Then 
the robust non-fragile control problem is solvable if 
there exist positive scalars 1  and 2 , an m n  ma-
trix U, and an n n  positive definite symmetric matrix 
S with a fixed 0 1   such that the following LMI 
holds: 

 

 2 2 2
T

k k



   

 
   

1 2 1 1 1 1 2 2

1 1 1

2 2 2

1 2 1

2

2

0 0 0

0 0

0 1 0 0
0 0

0 0 0

0 0 0 0
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T T T
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T T
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0

0
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LL B L L B A S B U A S B U

A S B U S SM SM

A S B U S SM SM

M S M S I

M S I

M S I

B L L B

.   (7) 
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In this case, a state feedback controller chosen by  
1K US                  (8) 

will be such that, for all admissible uncertainties (1b) and 
(1c), and controller gain variations in (2b) and (2c), the 
resulting closed-loop system (3) is asymptotically stable.  

Proof: Applying Lemma 2.3, (4a) can be written as 

   
 
   

1
1 1 2 2

1 1

2 2

0 0

0 1

T

T





     
 
   
 
      

P A A A A

A A P

A A P



0

0

0

.  (9) 

Using (1b), (2b) and (4b), (9) can be represented as 
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M F L B

M F L B
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   (10) 

Equation (10) can be rewritten as  
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A B K P F M M M M F

A B K P

B L B L
F M

F M

B L B L
M F

M F
0 0.

0 0

T
 
   
  

   (11) 

Using Lemma 2.2, (11) can be rearranged as 

     

 
   

1
1 2 1 1 2 2 2 1 1 2 2

1 1 1
1 1 1 1 1 2 1 1 2

1 1
2 2 1 2 1 1 2 2 2

0.

1

T T T T T
k k k k

T T T T
k k
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A B K P M M M M M M
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(12) 

Premultiplying and postmultiplying (12) by  1 1diag , , I P P , one obtains 

    

 
   

1 2 1 1 2 2 2 1 1 2 2
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1 1 1
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0
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S LL B L L B B L L B A S B U A S B U

A S B U S

A S B U S

SM M S SM M S SM M S

SM M S SM M S SM M S

            (13) 

 

where 1S P  and 1K US . 

The equivalence of (13) and (7) follows trivially from 
Lemma 2.3. This completes the proof of Theorem 3.1. 

4. Numerical Example 

As an illustration of Theorem 3.1, consider a 2-D discrete 
uncertain system represented by (1) with 
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1

0 0

1 0

 
  
 

A

2

0.008

0

 
  
 

B

, , , 

, , 

2

0.1 1

0 0

 
  
 

A

0

1

 
  
 

L

1

0.002

0.002

 
  
 

B

 1M 0.7 0.008  , 

 2 0.5 0.02 M . 

Suppose the actual controller is with perturbations in 
the form of (2b) and (2c) with parameters as 

0.15k L ,  0 0.02k M . 

We wish to design a robust non-fragile state feedback 
controller for this system such that the resulting closed- 
loop system is asymptotically stable for all admissible 
uncertainties and controller gain variations. By solving 
LMI (7) using the Matlab LMI toolbox [24,25] with 

0.7  , we obtain the following feasible solution: 

 

1 2

2.4802 0.2958
, 7.1774, 7.6242

0.2958 18.1199

70.8 2140.3 .

 
 

  
 



S

U


 (14) 

Therefore, by Theorem 3.1, we can see that the robust 
non-fragile control problem is solvable. A desired state 
feedback controller to solve this problem can be chosen 
as 

 14.4699 117.8843K .         (15) 

5. Conclusion 

In this paper, we have investigated the problem of robust 
non-fragile control for a class of 2-D discrete uncertain 
systems in the FMSLSS setting under state feedback gain 
variations. Using the Lyapunov method, a criterion for 
robust non-fragile control via state feedback is derived in 
terms of LMI. Finally, a numerical example has been 
presented to illustrate the effectiveness of the proposed 
method.   
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