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ABSTRACT 

Neural networks based on high-dimensional random feature generation have become popular under the notions extreme 
learning machine (ELM) and reservoir computing (RC). We provide an in-depth analysis of such networks with respect 
to feature selection, model complexity, and regularization. Starting from an ELM, we show how recurrent connections 
increase the effective complexity leading to reservoir networks. On the contrary, intrinsic plasticity (IP), a biologically 
inspired, unsupervised learning rule, acts as a task-specific feature regularizer, which tunes the effective model com-
plexity. Combing both mechanisms in the framework of static reservoir computing, we achieve an excellent balance of 
feature complexity and regularization, which provides an impressive robustness to other model selection parameters like 
network size, initialization ranges, or the regularization parameter of the output learning. We demonstrate the advan-
tages on several synthetic data as well as on benchmark tasks from the UCI repository providing practical insights how 
to use high-dimensional random networks for data processing. 
 
Keywords: Extreme Learning Machine; Reservoir Computing; Model Selection; Feature Selection; Model Complexity; 

Intrinsic Plasticity; Regularization 

1. Introduction 

In the last decade, machine learning techniques based on 
random projections have attracted a lot of attention be-
cause in principle they allow for very efficient processing 
of large and high-dimensional data sets [1]. These ap-
proaches randomly initialize the free parameters of the 
feature generating part of a data processing model and 
restrict learning to linear methods for obtaining a suitable 
readout function. As opposed to random projections for 
dimensionality reduction, which have been considered 
much earlier [2,3], it is characteristic for such new ap-
proaches to use high-dimensional projections. These often 
actually increase the feature dimensionality. 

A prominent example is the extreme learning machine 
(ELM) as proposed in [4]. It comprises a single hidden 
layer feed-forward neural network with fixed random 
input weights and a trainable linear output layer as de-
picted in Figure 1(a). ELMs have become popular, be-
cause, compared to traditional backpropagation training, 
they train much faster since output weights are computed 
in a single batch regression step. Despite this apparent 
simplicity, ELMs are universal function approximators 
with high probability under mild conditions if arbitrarily 
large networks can be considered [5]. The relation be-
tween the ELM approach and earlier proposed feedfor-

ward random projection methods is discussed in [6]. In 
practice and for a finite ELM, however, model selection, 
parameter initialization and regularization are challenges 
and active topics of research. 

The most prominent other example for random pro-
jections is the reservoir computing (RC) approach [7], a 
paradigm to use recurrent neural networks with fixed 
and randomly initialized recurrent weights, see Figure 
1(b). From a machine learning point of view, the reser-
voir serves as a fixed spatio-temporal kernel projecting 
the input data nonlinearly into a high dimensional space 
of the reservoir network states. In the limit of infinitely 
many neurons, this is equivalent to a recursive kernel 
transformation [8]. The subsequent use of a trainable 
 

 

Figure 1. (a) Extreme learning machine architecture. Only 
the readout connections Wout are adapted during training 
(dashed arrows); (b) Reservoir network, comprising recur-
rent connections. 
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non-recurrent linear readout layer combines the advan-
tages of recurrent networks with the ease, efficiency and 
optimality of linear regression methods. New applica-
tions for processing temporal data have been reported, 
for instance in speech recognition [9,10], sensori-motor 
robot control [11-13], detection of diseases [14,15], or 
flexible central pattern generators in biological modeling 
[16]. 

An intermediate approach to use dynamic reservoir 
encodings for processing data in static classification and 
regression tasks has also been considered under the no-
tion of attractor based reservoir computing [17-19]. The 
rationale behind is that a recurrent network can effi-
ciently encode static inputs in its attractors [19,20]. In 
this contribution, we regard static reservoir computing as 
a natural extension of the ELM. We point out that recur-
rent connections significantly enrich the set of possible 
features for an ELM by introducing non-linear mixtures. 
They thereby enhance approximation capability and per-
formance under limited resources like a finite network 
size. It is noteworthy that this approach does not affect 
the output learning, where we will still use standard lin-
ear regression. 

A central issue for all learning approaches is model 
selection, and it is even more severe for random projec-
tion networks because large parts of the networks remain 
fixed after initialization. The neuron model, the network 
architecture and particularly the network size strongly 
determine the generalization performance, compare Fig-
ure 2 upper part. In the state-of-the-art ELM approach, 
most of these quantities are tuned manually by means of 
expert knowledge about the specific task. 

Several techniques to automatically adapt the net-
work’s size to a given task have been considered [21-23], 
whereas success is always measured after retraining the 
output layer of the network. Despite these efforts, it  
 

 

Figure 2. Model selection vs. feature selection. 

remains a challenge to understand the interplay between 
model complexity, output learning, and performance: 
controlling the network size affects only the number of 
features rather than their complexity and ignores effects 
of regularization both in the output learning and the ratio 
of data points to number of neurons. 

An essential mechanism to consider in this context is 
regularization ([24-26], Section 7 in the appendix). In 
this paper we distinguish two different levels of regu-
larization: output regularization with regard to the linear 
output learning and input or feature regularization with 
regard to the feature encoding produced in the hidden 
layer. Output regularization typically refers to Tikhonov 
regularization [24] and assumes a Gaussian prior for the 
learning parameters. This refers to adding a term in the 
error function which punishes large output weights and is 
also known as weight decay (c.f. Section A). It is easy to 
implement without additional computational costs in the 
batch linear regression and therefore is a standard me- 
thod used for both ELM [27] and reservoir computing 
[7,28]. A suitable Tikhonov regularization parameter 
must be determined by line search, which is computa-
tionally costly and performance can be undesirably sen-
sitive to it. This is in contradiction to the original sim-
plicity of the random projection method and we will 
therefore propose a method to make performance more 
robust with respect to the choice of the output regulariza-
tion. 

The designer also has to make choices with respect to 
the input processing, e.g. on the hyper-parameters gov-
erning the distributions of random parameter initializa-
tion, on proper pre-scaling of the input data, and on the 
type of non-linear functions involved. 

It is therefore highly desirable to gain insight on the 
interaction between parameter or feature selection and 
output regularization. The goal is to provide constructive 
tools to robustly reduce the dependency of the network 
performance on the different parameter choices while 
keeping peak performance. To this aim, we investigate 
recurrence and intrinsic plasticity, an unsupervised bio-
logically motivated learning rule that adjusts bias and 
slope of a neuron’s sigmoid activation function [29]. 
These are two mechanisms to influence the model’ fea-
ture complexity, which span a different axis as compared 
to the usual model selection approaches, see Figure 2 
(horizontal axis). We analyze the complex interplay of 
feature and model selection by assessing properties on 
three levels: First, the feature complexity, i.e. the feature 
transformation provided by a single neuron; second, the 
complexity of the network function, i.e. the learned com-
bination of features measured by its mean curvature; and 
third, the generalization performance. Together, these 
measures provide a clear picture of the advantages and 
disadvantages of the different models. 
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The remainder of the paper is organized as follows. 
We introduce the ELM including Tikhonov regulariza-
tion in the output learning in Section 2. Then we add 
recurrent connections to increase feature complexity in 
Section 3, which results in greater capacity of the net-
work and enhanced performance. Not unexpectedly, we 
observe a trade-off with respect to the risk of overfitting. 
In Section 4 we investigate the influence of IP pre-train-
ing on the mapping properties of ELMs and show that IP 
results in proper input-specific regularization. Here the 
trade-off is for the risk of poor approximation when re- 
gularizing too much. We proceed in Section 5 to show 
synergy effects between IP feature regularization and 
recurrence when applying the IP learning rule to recur-
rently enhanced ELM networks. Whereas IP simplifies 
the feature pool and tunes the neurons to a good regime, 
recurrent connections introduce nonlinear mixtures and 
thereby avoid to end up with a too simple feature set. We 
show experimentally that these two processes balance 
each other such that we obtain complex but IP regular-
ized features with reduced overfitting. As a result, in-
put-tuned reservoir networks that are less dependent on 
the random initialization and less sensitive to the choice 
of the output regularization parameter are obtained. We 
confirm this in experiments, where we observe constantly 
good performance over a wide range of network initiali-
zation and learning parameters. 

2. Baseline: The Extreme Learning  
Machine 

In 2004, Huang et al. introduced the extreme learning 
machine (ELM) [4], a three-layer feed-forward neural 
network with a high-dimensional hidden layer providing 
a random projection of the input through fixed random 
weights (see Figures 1(a) and 3). Learning is reduced to 
computing a simple generalized inverse by linear regres-
sion. ELMs thus train much faster than traditionally 
trained backpropagation networks, and even performed 
better on most of the tasks reported in [5]. It has also 
been shown in [5] that a randomly created ELM with 
hidden layer size R is able to perform any mapping con-
sisting of R observations. ELMs are thus in theory uni-
versal function approximators, if permitting an arbitrary 
number of training samples and any hidden-layer size. 

The activations of the ELM input, hidden and output 
neurons are denoted by x, h and y, respectively (see Fig-
ure 1(a)). The connection strengths are collected in the 
matrices Winp and Wout denoting the input and read-out 
weights. We consider parametrized activation functions 

 1 1 r r ra s b
rf e   , 

where 

, 1, ,
inp

r r j Ds x W   

 

Figure 3. Machine learning view of ELMs. 
 
x is the total activation of each hidden neuron hr for input 
x and D is the input dimension. We denote ar as the slope 
and br as the bias of the activation function fr(·). The 
output y of an ELM is  

 .out inpy  W W x              (1) 

The key idea of the ELM approach is to restrict learn-
ing to the linear readout layer. All other network pa-
rameters, i.e. the input weights Winp and the activation 
function parameters a, b stay fixed after initialization of 
the network. 

The ELM is trained on a set of training examples 
 ,n nx y , n = 1, ···, Ntr by minimizing the mean squared 
error 

  2

1

1 N
out

n n
n

E y
N 

 W  y          (2) 

between the target outputs n  and the actual network 
output yn with respect to the read-out weights Wout. The 
minimization reduces to a linear regression task given the 
fixed parameters and hidden activations h as follows. We 
collect the network’s states hn as well as the desired out-
put targets yn in a state matrix H = (h1, ···, hNtr) and a 
target matrix 

y

 y
1 trN  for all n = 1, ···, Ntr, 

respectively. The minimizer is the least squares solution 
y , ,Y  

†out W YH                    (3) 

where H† is the pseudo-inverse of the matrix H. 

2.1. Model Selection for the ELM 

The ELM approach is appealing because of its apparently 
efficient and simple training procedure [5] and it has 
been claimed that “apart from selecting the number of 
hidden nodes, no other control parameters have to be 
manually chosen” ([30] p. 1411). However, this claim is 
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based on the assumption that either very large data sets 
are used as in [5, 30, 31] or the network size is explicitly 
chosen to be much smaller than the number of training 
samples (e.g. in [12] pp. 1355-1356). In contrast, in prac-
tical applications training data can be very expensive, e.g. 
in tasks involving robots, and it can also be undesirable 
to limit the hidden layer size R to a small fraction of the 
number of training samples Ntr, because then the network 
suffers from poor approximation abilities. This is illus-
trated in Figure 4 (R = 5, Ntr = 50), where we show the 
dependency of the ELM’s generalization ability on the 
random distribution of the input weights Winp, the net-
work size R and the biases b on the Mexican hat regres-
sion task (cf. Section C.2 for this often employed illus-
trative task). In such cases, the model selection becomes 
an important issue since the generalization ability is 
highly depending on the choice of the model’s parame-
ters, e.g. output regularization or network size. 

2.1.1. Output Regularization 
Since the ELM is based on the empirical risk minimiza-
tion principle [32], it tends to over-fit the data, particu-
larly if the task does not comprise many training samples. 
In the original ELM approach, over-fitting is prevented 
by implicit regularization: by either providing a large 
number of training samples (see Figure 4, R = 20, Ntr = 
1000) or by using small network sizes. Assuming noise 
in the data, it is well known that this is equivalent to 
some level of output regularization [33,34]. It is therefore 
natural to consider output regularization directly as a 
more appropriate technique for arbitrary network and 
training data sizes as e.g. in [27,35]. As a state-of-the-art 
method, Tikhonov regularization ([24], Section A) can be 
used as in [27] which is also a standard method for res-
ervoir networks that are introduced in Section 3. It intro-
duces a regularization parameter ε in the error function 

  22

1

1
y y

N
out out

n n
n

E
N




  W  W



    (4) 

and the regularized minizer then becomes 

 1
1 ,out T T 


 W YH HH           (5) 

which is, as a side effect, also numerically more stable 
because of the better conditioned matrix inverse. A suit-
able regularization parameter ε needs to be chosen care-
fully. Too strong regularization, i.e. too large ε, can result 
in poor performance, because it limits the effective 
model complexity inappropriately [34]. On the other 
hand, a too small value of ε does not avoid the over-fit-
ting. This is a typical model selection problem also for 
the ELM. The parameter ε must be determined by line 
search after definition of a suitable validation set, which 
is computationally costly. 

 
(a) 

 
(b) 

Figure 4. (a) Development of the ELM’s average test per-
formance; (b) Histogram of the hidden states h of one ELM 
for which the input weights and the biases are drawn from 
[–25, 25]. 

2.1.2. Finding the Right Initialization Ranges 
In the ELM paradigm, a typical heuristics is to scale the 
data to [–1, 1] and to set the activation function parame-
ters a to one [5]. Then, allowing an arbitrary large num-
ber R of hidden neurons, manual tuning of the input 
weights Winp or the activation function parameters a, b is 
not needed, because a random initialization of these pa-
rameters is sufficient to create a rich feature set. In prac-
tice, the hidden layer size is limited and the performance 
does indeed depend on the hyper-parameters controlling 
the distributions of the initialization at least of the input 
weights and the biases b. Very small weights result in 
approximately linear neurons with no contribution to the 
approximation capability, whereas large weights drive 
the neurons into saturation resulting in a binary encoding. 
This is illustrated in Figure 4 (R =20, Ntr = 50, where we 
vary the initialization range of input weights and biases b 
and Figure 4(b), respectively. Apparently, the choice of 
scaling matters. 

2.1.3. The Network Size Matters 
Finally, the number R of hidden neurons plays a central 
role and several techniques have been investigated to 
automatically adapt the hidden layer size. The error 
minimized extreme learning machine [21] and the incre-
mental extreme learning machine [22] are methods which 
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add random neurons to the ELM. In contrast, the opti-
mally pruned extreme learning machine [23] pursues the 
idea to improve ELMs by decreasing the size of the hid-
den layer. All of these methods introduce considerable 
computational load. 

In summary, the performance of the ELM on a broader 
range of tasks depends on a number of choices in model 
selection: the network size, the output regularization (or 
the equivalent in chosing a respective task), and the hy-
per-parameters for initialization. Methods to reduce sen-
sitivity of the performance to these parameters are there-
fore highly desired. 

3. Reservoir Networks as Natural Extension 
of the ELM 

Adding recurrent connections to the hidden layer of an 
ELM converts it to a corresponding reservoir network1 
(RN) (see the machine learning view on RNs in Figure 5). 
The RN can be used for static mapping tasks by consider-
ing the converged attractor state as encoding of the input 
(for more details see Section B). Then applying output 
regression with regularization is applied as described in 
the last section. In [18] and [19] this approach has been 
motivated by showing that for static mappings the im-
portant information is represented in the reservoir’s at-
tractor states and in [17,19,36] it has been applied suc-
cessfully. To gain insights, how and why the respective  
 

 

Figure 5. Machine learning view of RNs. 

random projections work in these models, we compare an 
ELM and the corresponding reservoir network on the 
same tasks. We argue that the additional mixing effect of 
the recurrence enhances model complexity. The hypothe- 
sized effect can be visualized and evaluated on three lev-
els: for the single feature, the learned function, and with 
respect to the task performance. 

3.1. Recurrence Enhances Feature Complexity 
by Nonlinear Mixtures 

We first consider the level of a single neuron and the 
feature it computes in a given architecture. We define 
such a feature Fr as the response of the r-th reservoir 
neuron hr to the full range of possible inputs x I  from 

the network’s input space DI R : 

     : 0,1 , hr r n ,r nF I F x  x  

where h  denotes the network’s converged attractor 
state (cf. Section B). The feature can easily be visualized 
as e.g. in Figure 6, which shows features of an ELM and 
a corresponding RN for the reference example of the 
Mexican hat data set (cf. Section C.2). For the ELM, the 
features are completely determined by the activation 
function parameters a and b of the corresponding neuron. 
Regardless of the specific choice of the activation func-
tion parameters, the set of possible features in an ELM 
(top row) is quite restricted, namely to monotonically 
increasing or decreasing functions: standard sigmoid 
functions (left), stretched or compressed shifted sigmoid 
functions (middle), which can approximate linear or even 
constant behavior (right) for an appropriate parameter 
choice. In contrast, recurrent connections in a corre-
sponding reservoir network (bottom row) enhance the 
feature spectrum to more complex functions with possi-
bly several local optima. Even weak recurrence with 
small weights gives this effect without any tuning. The 
effect can be seen by visual inspection but, however, is  
 

 1We define an ELM to correspond to a reservoir network or vice versa, 
if we obtain the ELM by deleting all recurrent connections from the 
reservoir network. 

Figure 6. Exemplary features Fr generated by an ELM (top 
row) and a reservoir network (bottom row). 
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not easily be quantified and we therefore consider also 
the network level. 

complexity and implements a kind of input regulariza-
tion. 

For these reasons, we measure the MC while decreas-
ing the effective model complexity through either in-
creasing the regularization parameter ε of the output 
regularization or decreasing the network size R and we 
expect qualitatively similar developments for varying 
both model selection parameters. Experiments are per-
formed on the Mexican hat task and the default initializa-
tion parameters are shown in Section C.1. Due to the 
stochastic nature of parameter initialization, we average 
the MC over 30 networks and test each ELM and the 
corresponding RN for comparison. 

3.2. Recurrence Increases the Effective Model 
Complexity 

3.2.1. The Mean Curvature 
To assess the effective model complexity, we consider 
the mean curvature (MC) of the network’s output func-
tion, which directly evaluates a property of the learned 
model. On the one hand, this measure is closely con-
nected to the output regularization introduced in Section 
A. Typical choices for regularization functionals in (9) 
punish high curvatures such as strong oscillations. The 
network’s effective model complexity is reduced [33] 
and the network’s output function becomes smooth 
through the regularized learning. On the other hand, the 
number of features available for learning, i.e. the net-
work’s hidden layer size, also influences the model com-
plexity. A small number of features decreases the model  

The results shown in Figure 7 (left) reveal the ex-
pected behavior: too small network size or too strong 
output regularization decrease mean curvature below the 
necessary baseline level given by the MC of the target 
function, which is displayed with the dotted line. The 
target function can not be approximated in this case. On 
the other end, no regularization or very large network sizes 

 

 

 

Figure 7. Development of the mean output curvature (left) and the task performance (right) of ELMs and RNs influenced by 
network size R (top) and output regularization strength ε (bottom). 
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result in a MC that is larger than the MC of the target 
function. This is an indication for overfitting. We also 
find that the ELM and the corresponding RN have very 
similar MC’s, except for the unregularized case, where 
the RN overfits more strongly. This is expected, because 
the more complex features of the RN provide a larger 
model complexity, which is favorable if the network size 
is limited. Note that the results for varying network size 
use a regularization of ε = 10–5, which is quite optimal 
and as such already prevents overfitting quite well. Vice 
versa, the results for varying ε are given for a network 
size of N = 100, which is clearly suitable for the task. 
This once more underlines that model selection and re- 
gularization are important issues. 

3.2.2. The Task Performance 
From the above, we expect that measuring task perform-
ance on training and test data displays a typical overfit-
ting pattern. For small networks or too strong regulariza-
tion, training and test performance are poor, for increas-
ing regularization and for larger network size the test 
error reaches a minimum and then starts increasing, 
while the training error keeps decreasing. This is exactly 
the case in Figure 7 (bottom). We observe the same pat-
tern of the RN networks for increasing network size, 
however, the ELM does not overfit even for large net-
works, if properly regularized. That is due to the limited 
complexity of its features and underlines the increased 
modeling power of the RN, which is caused by the 
non-linear mixing of features and also leads to a signifi-
cantly better test performance. We therefore have to trade 
model complexity and better performance for risk of over- 
fitting when moving from ELM to RN. 

3.3. Recurrence Enhances the Spatial Encoding 
of Static Inputs 

The results of the last section show the higher complexity 
of the RN in comparison to the ELM, which is caused by 
the non-linear mixing of features. While the exact class 
of features which is thereby produced is unknown, [20] 
introduced an approach to analyze how the inputs are 
represented in RNs compared to the corresponding ELMs. 
It is based on considering the hidden state representation 
h  and measuring the cumulative energy content:  

  1

1

.

D

i
i
R

i
i

g D












 

Thereby λ1 ≥ ···≥ λR ≥ 0 are the eigenvalues of the co-
variance matrix  HCov  corresponding to the principal 
components (PCs) of the network’s attractor or hidden 
state distribution H . In principle, the cumulative energy 

content measures the increased dimensionality of the 
hidden data representation H  compared to the dimen-
sionality D of the input data x. The case of g(D) < 1 im-
plicates a shift of the input information to additional PCs, 
because the encoded data then spans a space with more 
than D latent dimensions. If g(D) < 1, no information 
content shift occurs, which is true for any linear trans-
formation of data. The experiments conducted with sev-
eral data sets from the UCI repository [37] showed that 
the cumulative energy content g(D) of the first D PCs of 
the attractor distribution is significantly lower for reser-
voir networks than for ELMs (see Figure 8). That is, a 
reservoir network redistributes more information in the 
input data onto the remaining R-D PCs than the feed- 
forward ELM. This effect, which is only due to the re-
current connections and the respective mixing of features 
shows that RNs inherently hold a higher dimensional 
hidden data representation, which can be advantageous 
for the separability of input patterns and thus increases 
learning performance, e.g. on classification tasks. 

4. Feature Regularization with Intrinsic 
Plasticity 

In the previous section, we have shown that overfitting 
can occur when using an ELM and is even stronger when 
a corresponding RN with its richer feature set is used. 
Output regularization can counteract this effect, however, 
needs proper tuning of the regularization parameter. 
Hence, we propose a different route to directly tune the 
features of an ELM and the corresponding RN with re-
spect to the input. A machine learning view on this idea 
is visualized in Figure 9. We adapt the parameters of the 
non-linear functions in the hidden layer by means of an 
unsupervised learning rule called intrinsic plasticity (IP). 
IP is biologically motivated and was first introduced in 
[29]. The idea to use IP for ELM and RN is motivated by 
 

 

Figure 8. Results from [20]. Normalized cumulative energy 
content g(D) of the first D PCs tested on several classifica-
tion tasks. 
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Figure 9. Machine learning view of IP-pretrained ELMs. 
 
previous work [38,39], where IP was shown to provide 
robustness against both varying weight and learning pa-
rameters. We show that IP in our context works as an 
input regularization mechanism. Again, we analyze the 
resulting networks on all three levels: with respect to 
feature complexity, by means of the MC, and by evalu-
ating task performance. 

4.1. Intrinsic Plasticity Revisited 

Intrinsic Plasticity (IP) was developed by Triesch in 2004 
[29] as a model for homeostatic plasticity for analog 
neurons with Fermi-function. Its goal is to optimize the 
information transmission of a single neuron strictly lo-
cally by adaption of slope a and bias b of the Fermi- 
function such that the neurons’ outputs h become expo-
nentially distributed. IP-learning can be derived by mini- 
mizing the Kullback-Leibler-divergence D(fh, fexp) be-
tween the output fh and an exponential distribution fexp: 

     
 

     

exp
exp

, log

1
log ,

h
h h

f h
D f f f h

f h

H h E h 




 
   

 

   


     (6) 

where H(h) denotes the entropy and E(h) the expectation 
value of the output distribution. In fact, minimization of 
D(Fh, Fexp) in Eq. (6) for a fixed E(h) is equivalent to 
entropy maximization of the output distribution. For 
small mean values, i.e. μ ≈ 0.2, the neuron is forced to 
respond strongly only for a few input stimuli. The fol-
lowing online update equations for slope and bias-scaled 
by the step-width ηIP- are obtained: 

21 1
, 1 2 .   (7)  IP

IPa s b b h h
a




 
  

          
  

The only quantities used to update the neuron’s non-lin-
ear transfer function are s, the synaptic sum arriving at 
the neuron, the firing rate h and its squared value h2. 
Since IP is an online learning algorithm, training is or-
ganized in epochs: For a pre-defined number of training 
epochs the network is fed with the entire training data 
and each hidden neuron is adapted to the network’s cur-
rent input separately. Within the ELM paradigm, IP is 
used as a pre-training algorithm to optimize the hidden 
layer features before output regression is applied. 

4.2. Regulating ELM Complexity through  
Intrinsic Plasticity 

4.2.1. IP and Feature Complexity 
Since IP adapts the parameters a and b of the hidden 
neurons’ activation function it directly influences the fea- 
tures generated by an ELM. Figure 10 visualizes the de- 
velopment of the network’s features’ shape during IP 
training for one dimensional inputs as it was done in Sec-
tion 3. The left plot in Figure 10 shows a collection of 
features for a randomly initialized ELM. The features are 
distributed over the whole range of inputs. Through IP- 
pretraining, the variety in the set of features is reduced 
(see Figure 10(b)), until the extreme case of only two 
features is reached (see Figure 10(c)). 

 

 

Figure 10. Random features Fr (a), IP-regularized features after a few (250) epochs (b) and strong (1000) IP-regularized features 
(c) of an ELM. 
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4.2.2. IP and the Effective Model Complexity 
On the network level, we evaluate model complexity 
again by means of the MC and the network performance 
on the Mexican hat regression task. We apply readout 
learning after each epoch to monitor the impact of IP on 
these measures over epochs. Learning and initialization 
parameters are collected in Section C.1. For illustration 
we choose the size of the ELMs’ hidden layer as R = 100 
and the number of samples used for training as Ntr = 50 
such that the ELM is prone to show overfitting and the 
effect of regularization can be observed clearly. The re-
sults are shown in Figure 11. 

Figure 11(a) shows that the MC is decreasing with 
more IP epochs and thus shows a typical regularization 
behavior qualitatively similar to the dependency on the 
output regularization shown before in Figure 7 (bottom 
left). The optimal MC of the Mexican hat function is 
reached at about 300 IP-Epochs, more IP epochs further 
reduce the curvature such that no proper approximation 
of the target function is possible. Note that in contrast to 
networks with output regularization the MC does not fall 

dramatically down to zero. 
The task performance shown in Figure 11(b) confirms 

that IP-pretraining has typical characteristics of a regu-
larization mechanism. Low regularization strength (few 
IP epochs) results in low training error but high test error; 
over-fitting occurs. In contrast, too strong regularization 
(too many IP epochs) results in a degenerated behavior 
indicated by simultaneously high training and test error. 
The optimal regularization strength can be found in be-
tween these areas. 

In Figure 11(c) we add a further analysis of the per-
formance by decomposing the errors into integrated 
squared bias and integrated variance during IP training 
(cf. Section A). It shows that the variance of the outputs 
decreases with the amount of IP epochs, while the bias is 
first constant and then increases rapidly, when the model 
complexity starts to degenerate. The observed trade-off 
between these quantities indicates the similarities to re- 
gularization processes [25]. 

Finally, we plot 30 trained ELMs for non IP, medium 
IP epochs and too many IP epochs each in Figure 12.  

 

 

Figure 11. Mean curvature (a), training and test error (b) and bias and variance decomposition measures (c) during IP 
training of ELMs on the Mexican hat regression task. 
 

 

Figure 12. Outputs y of a single ELM trained with 0 (a), 250 (b), and 1000 (c) IP-epochs on different folds of the Mexican hat 
regression task. 

Copyright © 2012 SciRes.                                                                                JILSA 



Regularization by Intrinsic Plasticity and Its Synergies with Recurrence for Random Projection Methods 239

 
The ELMs without IP-training (a) clearly show the typi-
cal oscillations due to over-fitting; a suited number of IP 
pre-training epochs (b) leads to constantly good results, 
whereas too long IP pre-training (c) tends to reduce the 
model complexity inappropriately so that the mapping is 
not accurately approximated anymore. The set of corre-
sponding features is shown in Figure 10, respectively. 

The experiments in this section clearly reveal the 
regulatory nature of IP as a task-specific feature regu-
larization for ELMs. 

5. Intrinsic Plasticity in Combination with 
Recurrence 

We now show that the combination of recurrence and IP 
can achieve a balance between task-specific regulariza-
tion by means of IP and a large modeling capability by 
means of recurrence. Whereas this is interesting from a 
theoretical point of view, it turns out that this combina-
tion also strongly enhances robustness of the perform-
ance with respect to other model selection parameters 
and eases the burden to perform grid-search or other op-
timization of those. To obtain comparable results to the 
experiments performed in the last sections, we add re-
current connections to the hidden layer of the ELMs to 
obtain the corresponding RN (see Figure 13 for illustra-
tion of the corresponding machine learning viewpoint). 
Recurrent weights are randomly drawn from a uniform 
distribution in [–1, 1] with a density of ρ = 0.1. Only at 
tractor states are used for IP-learning, i.e. the networks 
are iterated until convergence for constant input as de-
scribed by Alg. 1 in Section B before applying the IP 
learning-step given by (7). We again analyze feature 
complexity, MC, and the performance in turn. 

Feature Complexity 
Figure 14 illustrates the development of the features of a 
reservoir network during IP training. The features are not 
only sigmoid anymore due to the addition of the recur-
rent weights. As observed in Section 4.2 during IP train-
ing the features become similar and input specific, but in 
contrast to ELMs (compare to Figure 10 in Section 4.2), 

recurrent features stay complex even after a huge amount 
of IP training. 

Network Complexity 
We repeat the experiments from the previous Section 4 
with the corresponding reservoir networks instead of 
ELMs. The network settings are given in Section C.1. 
The MC development with respect to IP-training of the 
reservoir networks is illustrated in Figure 15 (a). Similar 
to the ELMs (cf. Figure 11), the RNs’ output function’s 
curvature decreases in the first epochs, but then stays close 
to the curvature of the target function without drop- ping 
to small values. This indicates that the regularization effect 
of IP and recurrence balance very well, in contrast to the 
ELM experiments where the output curvature falls sig-
nificantly below the mean task curvature when regulariz-
ing to strongly for both output and feature-regularization. 
 

 

Figure 13. Machine learning view of IP-pretrained RNs. 
 

 

Figure 14. Random mixture of features Fr (a), IP-regularized features after a few epochs (b), and strong IP-regularized fea-
tures (c) of a reservoir network. 
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Figure 15. Mean curvature development (a) training and test error (b) and bias-variance decomposition (c) of IP-trained res-
ervoir networks performing the Mexican hat regression task. 
 

Figures 15(b) and (c) show the performance and the 
bias/variance decomposition. The behavior of the net-
works show similar characteristics as the ELMs under 
the influence of IP (compare to Figure 11): Stronger 
regularization implemented by longer IP pre-training in- 
creases the generalization ability indicated by a lower 
test error and decreasing variance. Hence, reservoir net-
works still profit from the feature regularization. But in 
contrast to the results obtained for the ELMs, bias and 
test error do not increase for many IP epochs, i.e. no de-
generation of the networks is observed. Obviously, the 
recurrent connections maintain the networks’ high map-
ping capabilities even in the presence of strong regulari-
zation through IP. 

5.1. Increased Model Complexity for More 
Complex Tasks 

In previous sections, we used synthetic data and a rather 
simple one-dimensional task to clearly state and illustrate 
the concepts. We now investigate the enhanced intrinsic 
model complexity, which is due to the addition of recur-
rent connections, in a more complex function approxima-
tion task where the task complexity can be controlled 
with a single parameter. The target function is a two-di- 
mensional sine function (cf. Section C.3), where the fre-
quency ω is proportional to its mean curvature and the 
difficulty of task. 

Figure 16 shows the MSE on the training and test set 
for ELMs and corresponding RN, both pretrained with 
the same amount of IP-epochs, with respect to increasing 
frequency ω. The initialization parameters of the net-
works are stated in Section C.1. As expected, the errors 
increase with the frequency and at some frequency the 
networks can not approximate the function appropriately. 

This is indicated by a rapid deterioration of the perform-
ance, which occurs for the ELMs at ω ≥ 2, whereas the 
error for the recurrent networks does not increase 
strongly until ω ≥ 3. This experiment shows that the en-
hanced mapping capability due to the addition of recur-
rent connections is preserved despite the IP-training of 
the networks. As a result, IP-trained reservoir networks 
are suitable for a wider spectrum of task complexities 
than IP-trained ELMs. 

5.2. Parameter Robustness 

Picking up the discussion on model selection for the 
ELM in Section 2.1, we finally show that the combination 
of recurrence and feature regularization via IP makes the 
networks less dependent on the specific choice of other 
model selection parameters and the random initialization. 

We investigate three important model selection pa-
rameters: the number of hidden neurons R, the output 
regularization strength ε, and the scaling of the input 
weights and biases. In order to show the dependency of 
the different approaches to the model selection parame-
ters, a predefined parameter space will be sampled by 
initializing 30 networks at 100 given points. The bias 
scaling and input scaling is drawn from the uniform dis-
tribution in [1, 20], while the hidden layer size is uni-
formly drawn from [10, 11, ···, 300]. The output regu-
larization is chosen from [10–6, 102]. The recurrent 
weights of the RNs where uniformly drawn from [–0.2, 
0.2] with a density of ρ = 0.1. The IP-training had a fixed 
mean μ = 0.2 with a step-size of ηIP = 10–3. 

The experiment is conducted with often used bench-
mark tasks from the UCI repository, see Section C.4, for 
which the result of the different network approaches are 
collected in Table 1. 
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Figure 16. (a) Training and test errors for IP-pretrained ELMs and RNs for different frequencies ω of the two-dimensional 
sine wave approximation task; (b) and (c) Exemplary outputs of an ELM and its corresponding RN, respectively, being 
trained for ω = 3. 
 
Table 1. Average test RMSEs and standard deviations for the different network settings on regression tasks from the UCI 
repository [37]. 

Task ELM RN ELM + IP RN + IP 

Aba 0.0855 ± 0.0433 0.0825 ± 0.0431 0.0852 ± 0.0205 0.0831 ± 0.0245 

CenHou 0.1751 ± 0.2318 0.1576 ± 0.2213 0.1716 ± 0.1898 0.1588 ± 0.1781 

ComAct 0.0937 ± 0.1007 0.0770 ± 0.0973 0.0933 ± 0.0293 0.0770 ± 0.0293 

CalHou 0.4173 ± 0.7197 0.3811 ± 0.6627 0.4030 ± 0.3698 0.3896 ± 0.3982 

 
The table shows that IP trained RN’s perform better 

than purely random initialized ELMs on average and 
with a lower variance. The results is fully consistent with 
the previous chapters. On the one hand, the networks 
trained with IP have a significantly lower variance in the 
performance than the randomly initialized networks. This 
is due to the feature regularization. On the other hand, net- 
works with recurrent weights perform better on average 
indicating that the mapping capability is enhanced. Both 
mechanisms, the feature regularization and the nonlinear 
mixture of random features are exploited and have a 
positive effect on the task performance. 

Figure 17 additionally shows how the networks gen 
eralization performance is enhanced and much more ro-
bust after the addition of recurrent weights and IP train- 
ing on the abalone regression task [37]. 

The plot shows networks, where the same parameters 
were varied as in the previous experiment. The networks 
had a R = 80 neurons hidden layer, a weight decay of ε = 
10–6 and the input initialization range [–10, 10]. The pa-
rameters in Figure 17 are independently changed. 

The networks show a high robustness against parameter 
change after the addition of recurrent weights and IP training. 

6. Discussion 

In this work, we give a comprehensive account on the 

modeling power of the extreme learning machine and 
show that overfitting, regularization and model selections 
are important issues also for this random projection ap-
proach. As depicted in Figure 18, we then demonstrate 
two ways to affect an ELM’s model complexity by di-
rectly modifying its features: either through feature 
regularization by intrinsic plasticity or by adding recur-
rent connections, which puts us into the domain of res-
ervoir networks. Combining these two approaches, we 
achieve a large performance robustness against the cho-
sen model selection and output regularization parameter. 
With an eye on practical application, this is clearly a 
highly desirable property for an approach that is based on 
random features. 

The paper has also some interesting theoretical impli-
cations. We start our discussion with the intrinsic plastic-
ity adaptation rule, which was introduced in [29] and has 
been used in the context of recurrent networks before 
[38-40]. Already in [38], a regularization effect was hy-
pothesized, but not clearly shown. A proper analysis of 
IP from a machine learning point of view has since then 
not yet been provided in the literature. The analysis in 
this contribution by means of the bias/variance decom-
position and the MC clearly reveals that IP works as a 
feature regularization mechanism. The duration of the 
IP-pretraining thereby controls regularization strength. 
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Figure 17. Test error of purely random initialized ELMs and IP-pretrained reservoir networks depending on output regu-
larization (a), input scaling (b) and network size (c). 
 

 

Figure 18. Sketch of argumentation. 
 
Thus, with the usage of IP-pretraining the effective mo- 
del complexity can be adjusted and overfitting can be 
avoided. 

It is not surprising that the representational power of a 
RN corresponding to an ELM is larger because the re-
currence enriches the feature spectrum by non-linear 
mixtures. It is surprising, however, that the direct com-
bination of input-regularization by IP and recurrence 
results in a very good balance between these opposing 
mechanisms of complexity reduction and complexity 
enhancement without the need for further measures. As a 
result IP-pretrained reservoir networks are robust against 
the specific choice of model selection and learning pa-

rameters, like network size and output regularization 
parameter. Additionally, the influence of the stochastic 
nature of random projections in the hidden layer is re-
duced in the sense that the task specific performance of 
IP-pretrained reservoir networks is significantly less de-
pendent on the random initialization of a network than 
for purely random ELMs. The variance over different 
network initializations is negligible and a very good per-
formance is reached with a very high probability without 
much search (cf. Section 5.2). This is a rare example that 
the combination of several approaches is directly possi-
ble without introducing hyper parameters or additional 
arbitration. 

A very interesting question is, what the presented re-
sults imply for the analysis of reservoir networks that are 
operated not in attractor mode. In [38], Steil recommend- 
ed to use online IP as an optimization method for reser-
voirs also for the processing of temporal data. In such an 
continuously adapted network, which is driven by a 
temporal input, the features vary continuously. Even 
though non-constant, the non-linear mixing occurs in a 
similar way as demonstrated here. It is more difficult to 
transfer the regularization effect of IP, because in a con-
tinuously plastic network the IP adaptation tunes the fea-
tures to the varying distribution. If slowly changing, IP 
tunes the features towards the average distribution, but 
the recurrent effects can not be quantified. The empirical 
results presented in [38] suggest that nevertheless IP is 
able to achieve a good approximation of the optimal 
output distribution. If this is the case, we predict that IP 
acts as a feature regularizer in a very similarly way as 
demonstrated here. The verification of this is beyond the 
scope of this work and left to a future investigation. 
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A. Regularization Theory 

When considering neural network models to minimize 
the quadratic error function E, prior knowledge about the 
learning model is injected as a regularization functional 
ER added to the error function: 

ˆ .RE E E                    (8) 

This approach was analyzed in [26]. An important 
class are the Tikhonov regularizers:  
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where hr ≥ 0 for r = 0, ···, R – 1, and hR > 0. The linear 
function y(x) minimizing the regularization functional is 
unique [41]. Here, the input interval is given by [a, b]. 

Since the reconstruction of a function from a finite set 
of data is clearly an ill-posed problem, prior knowledge 
of the function that has to be reconstructed is necessary 
in order to find a suitable solution. The most commonly 
used prior knowledge is that the function is smooth, such 
that similar inputs correspond to similar outputs [26]. 
Therefore, typical choices for regularization functionals 

in neural networks punish high curvatures, e.g. strong 
oscillations. We chose h2 in the functional from (9) to be 
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1
:h x

b a
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and all other equal zero. In this setting, the functional 
becomes the mean curvature (MC) for one-dimensional 
output, which we utilize to quantify regularization effects 
throughout this contribution. 

Furthermore, the analysis of regularization mecha-
nisms can be supported by the decomposition of the 
network’s error function into integrated bias and variance 
[25]. Whereas the former determines the network’s abil-
ity to capture the structure in the data, the latter quanti-
fies its sensitivity to the choice of a particular training 
data set. The best predictive capability is given, when the 
optimal balance between bias and variance is reached. 
This sliding trade-off between both properties is charac-
teristic for regularization methods [34] and is therefore 
also used in this paper to quantify regularization effects. 

Weight Decay or Ridge Regression. In the context of 
reservoir computing and ELMs, a simple variant of the 
Tikhonov regularization approach [24] has become very 
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popular to obtain networks with good generalization 
properties [33]. The assumption of a Gaussian prior for 
the learning parameters Wout leads to the new error func-
tion punishing the growth of the network’s output 
weights quadratically: 

2
W .

2
R outE


  

This process is called weight decay. The optimal solu-
tion in combination with linear regression is given in 
Equation (3) and is also known as ridge regression. It is 
very easy to implement and involves no additional com-
putational costs in the batch linear regression. It is there-
fore a standard method employed for both ELM [27,35] 
and reservoir networks [7,28]. 

B. Attractor Based Reservoir Computing 

Adding recurrent connections to the hidden layer of an 
ELM converts it to a corresponding reservoir network. 
The network state is then governed by discrete dynamics  

     1 xinp rest t  h f W W h t        (10) 

   y 1 1outt   W h ,t             (11) 

with an additional randomly initialized weight matrix 
Wres collecting the inner reservoir connections. Inspired 
by biology and aiming at a reduction of computational 
costs often a sparsely connected reservoir is preferred. 
This rather simple technique has proven to work well on 
a variety of tasks [42]. For static mapping tasks the 
original approach is substituted by attractor-based com-
putation: We map the network’s inputs xk to the related 
attractor states kh  of the reservoir rather than to the 
instantaneous reservoir response h(k). This is done by 
clamping the input neurons to the current input pattern xk 
until the network state change    

2
= 1t t  h h h  

approaches zero as summarized in Alg. 8. Please note 
that besides this algorithm also other approaches exist to 
check, whether the network state is converged to an at-
tractor state or not. For instance, in [19] the author al-
ready adopted the Hopfield energy to monitor the net-
work convergence. 

It is worth mentioning that global stability is a prereq-
uisite for attractor based reservoir computing and it must 
hold that the network always converges to a fixed-point 
attractor. The existence of these attractors strongly de-
pends on the algebraic properties of the reservoir weight 
matrix Wres. For standard echo state networks, where f = 
tanh, Jaeger proposed to scale the spectral radius λmax of 
the reservoir matrix Wres to a certain value before train-
ing the network [43]. Thereby, λmax denotes the largest 
amongst the absolute eigenvalues of Wres. To obtain a 
suitable attractor based network, the reservoir weights 
can be scaled such that λmax < 1, which is related to the 

Lipschitz constant of the hyperbolic tangens. Note, that 
from a mathematical point of view λmax < 1 is a necessary 
condition not a sufficient one. To ensure stable network 
dynamics, it must hold that the largest absolute singular 
value is less then unity. However, in practice the eigen-
value scaling is more convenient. The usage of Fermi 
functions slightly changes this situation because of the 
different Lipschitz constant of the fermi functions. In this 
case a convenient choice of scaling the reservoir weights  
is λmax < 4. 

C. Experimental Setup 

C.1. Parameter Settings 

Table C1 contains the ranges for the uniform distribu-
tions for the random initializations and other parameters 
used for the experiments conducted in this paper. 

C.2. Mexican Hat Regression Task 

This dataset D entirely comprises N = 1000 samples. The 
input samples xn are drawn from a uniform distribution in 
[–1, 1] and the corresponding targets ny  are generated 
by the Gaussian-noised Mexican hat function  p y x  

  2

2 2

1 2 2 0, 0.01
4

2
1 exp

2
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N

x x
p y x N

 




  
   

 

  

Algorithm 1 Convergence algorithm. 

Require: get external input xk 
Require: set t = 0, Δh=1, δ =10–6 and tmax = 1000 
1: while Δh > δ and t < tmax do 
2: inject external input xk into network 
3: execute network iteration (10) 
4: compute state change Δh = ||h(t) – h(t – 1)||2 
5: t = t + 1 
6: end while 
7: return t 

 
where σ = 0.2 determines the width of the Mexican hat. 
Though this is a low dimensional and synthetic dataset, it 
is often used in machine learning and serves as a proof of 
concept here. 

In order to compile meaningful statistics in this experi-
mental setup, for the given data set D we conduct a re-
peated random cross-validation for each single network: 
From the generated samples randomly L = 30 different 
cross validation folds  are created, each 
split up in Ntr = 50 samples for training and the remain-
ing Nte = 950 for determining the test error. Then, we 
obtain the network’s performance by taking the mean of 
its error E over these folds. 

 tr te,l l lD D D 

C.3. Two-Dimensional Sine-Wave Task 

The function used for the experiments has two-dimensional  
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Table C1. Contains the ranges for the uniform distributions for the random initializations and other parameters used for the 
experiments conducted in this paper. 

Sect. nets cv.-folds Winp b a Wres ρ R ε μ ηIP Ntr Nte 

2.1 20 20 ~ ~ 1 0 0 5, 20 10–5 - - 50, 1000 950 

3.2 30 30 [–5,5] [–5,5] 1 [–1,1] 0.1 100 10–5 - - 50 950 

4.2 30 30 [–10,10] [–10,10] 1 0 0.0 100 10–7 0.2 10–3 50 950 

5 30 30 [–10,10] [–10,10] 1 [–1,1] 0.1 100 10–7 0.2 10–3 50 950 

5.1 30 1 [–1,1] [–1,1] 1 [–1,1] 0.1 100 10–7 0.2 10–3 500 1000 

 
Table C2. Speciffcation of the 4 used regression data sets from the UCI machine learning repository [37]. 

Task Abbreviation Attributes Ntr Nte 

Abalone Aba 8 2000 2177 

CaliforniaHousing CalHou 8 8000 12640 

CensusHouse8L CenHou 8 10000 12784 

ComputerActivity ComAct 12 4000 4192 

 
changes due to the increasing frequency ω of the mapping. input and one-dimensional output. Ntr = 500 samples are 

used for training and Nte = 100 are used for testing the 
networks. The results are averaged over 30 different 
networks with R =100 hidden neurons trained for 50 
IP-epochs with ηIP = 10–3, initialized as in Table C1. The 
inputs are randomly drawn from the uniform distribution 
in [–1, 1]2. The desired outputs 

C.4. Regression Tasks 

The regression tasks were taken from the UCI machine 
learning repository [37]. The multi-dimensional input 
was component-wise normalized to [–1, 1] and the one- 
dimensional target variable to [0, 1]. Table C2 comprises 
information about the tasks.     2 2

1 2siny x x x    

 


