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ABSTRACT

In this paper, we apply the differential transfor-
mation method to high-order nonlinear Volterra-
Fredholm integro-differential equations with se-
parable kernels. Some different examples are
considered the results of these examples indi-
cated that the procedure of the differential trans-
formation method is simple and effective, and
could provide an accurate approximate solution
or exact solution.
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1. INTRODUCTION

Integral and integro-differential equations play an im-
portant role in characterizing many social, biological,
physical and engineering problems; for more details see
[1-3] and references cited therein. Nonlinear integral and
integro-differential equations are usually hard to solve
analytically and exact solutions are rather difficult to be
obtained. Many numerical methods have been studied
such as the Legendre wavelets method [4], the Haar
functions method [5,6], the linearization method [7], the
finite difference method [8], the Tau method [9,10], the
hybrid Legendre polynomials and block-pulse functions
[11], the Adomian decomposition method [12,13], the
Taylor polynomial method [14-16] and the collocation
approach (for linear case) [17].

In this paper, we will use the differential transform
method (DTM) to solve a high-order nonlinear Volterra-
Fredholm integro-differential equation given by

iZ::ﬂi (X) y<i>(x): f (X)+ﬂ1ik1(xat)[y(t)]pdt
7 b : ,(1.1)
# 2]k (O y(] at

a
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with the initial conditions
yV(@)=y;, i=0,1,2,,m-1,  (1.2)

where a,b, 4, 4,,y; are constant values, f(x),

ki (x.t), ky(xt) and z(x),i=0,1,2,---,m with

o (X)#0 are known functions that have suitable de-
rivatives on an interval a<x<t<b, p,q are integers
and y(x) is the unknown function. The concept of the
DTM was first proposed by Zhou [18] and has been used
to solve both linear and nonlinear initial value problems,
in electric circuit analysis. The DTM is a distinguished
form of the Taylor series method, which requires sym-
bolic computation of the necessary derivatives of the data
functions. Taylor polynomials method is computationally
tedious for high orders. DTM leads to an iterative pro-
cedure for obtaining an analytic series solution of func-
tional equations. It is possible to solve differential equa-
tions, difference equations, differential difference equa-
tions, fractional differential equations, pantograph equa-
tions, integral equations and integro-differential equa-
tions by using this method.

In this work, we apply the DTM to solve high-order

nonlinear Volterra-Fredholm integro-differential equa-
tions with separable (degenerate) kernels; i.e.
k; (x,t)=M;(x)N;(t), j=1,2. Five different problems
are solved to make clear the application of the DTM on
such class of integro-differential equations. We introduce
theorems in general forms to be able to apply any kind of
integro-differential in any order.

2. DIFFERENTIAL TRANSFORM
METHOD

The basic definition and the fundamental theorems of
the differential transformation and its applicability for
various kinds of differential and integral equations are
given in [19-22]. For convenience of the reader, a review
of differential transformation will be presented here. The
transformation of the kth derivative of a function in one
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variable is as follows. <
g y(x) =Y (K)(x=x%)" . 22)
Y(k):F{—ky(x)} : @.1) K=
HLdx X=X The following theorems can be deduced from EQgs.2.1
and the inverse transformation is defined by and 2.2.

Theorem 1.If y(x)=f(x)£h(x),then Y (k)=F(k)+H (k).
Theorem 2. If y(x)=cf (x), then Y (k)=cF(k), where ¢ is a constant.

n (k+n)!
Theorem 3. If y(x)= f™(x), then Y(k):k—!F(k).

Theorem 4. 1f y(x)= f (x)h(x) . then Y (k)= 3" F (k )H (k—k)

I, k=m

Theorem 5. 1f y(x)=x", then Y (k)=3&(k—-m), where 5(k—m)={0 k=m’

Theorem 6. If y(x)=f,(x) f,(x)--- f._; (x) f,(x), then
Y(k): i Z ZS: kz: Fl(kl)FZ(kZ _kl)”.Fn—l(kn—l _kn—Z)Fn(k_kn—l)’

F(k-1)
k

Theorem 7. If y(x):ff(t)dt,then Y (k)= L k>1.

Theorem 8.1If y(x)= j f(t) f,(t)--- £ (t) f,(t)dt, then
X0

Theorem 9. If y(x)=f (t) f,(t)--- f,_, (t) f, () T h (t)h, (t)---h, (t)h, (t)dt, then

k Km.n-1 ks k 1

Y= X 2 2>

K H1 (kl _1) Hz (kz _kl)”' Hm—l (km—l _km—z)
Kmin-1=1 Kminp=1 ko=l k=1 Bm

X Hm (km _km—l)Fl (km+1 _km)Fz (km+2 _km+1)'"
x Fn—l (km+n—1 - km+n—2 ) Fn (k - I(m+n—1 )’ k>1

The following relation is quite useful in the solution of Fredholm integrals; it can be obtained from theorem 8 and
Eq.2.2

f1 (t) fz (t) fn—l (t) fn (t)dt

D ey T

S{ile-x) -n ] 25 iﬁ(k»e(kz—kl>---a_l<kn-1—kn_»a(k—kn-l—l)}}

Also, we introduce the differential transformations for 2K
some basic functions, which are encountered in the fol- K
lowing examples. The proof of these differential trans- . '

If y(x)= X+ th
forms follows directly from the definition (2.1) and (2.2) y( ) ksm(a K 'B) - et
and the operations of the differential transformation Y (k) = a_sjn (n_+ ﬂj .
given in the above theorems. k! 2

o If y(x)=e", then Y (k)=

Copyright © 2012 SciRes. OPEN ACCESS
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os(a x+ /), then

Y(k)=% s(7+ﬁj.

3. APPLICATIONS AND NUMERICAL
RESULTS

In this section, we implement the DTM on some dif-
ferent examples.

Example 3.1. Consider the nonlinear Volterra-Fred-
holm integro-differential equation

x'yD (x)=y" (x)+y'(x)

X2 14 1 ¢ 2

-2 2 2 4y -t t)dt 3.1
e 2+3x2+_([(x )Y (1) (3.1

0<x<1,

with the initial conditions
y(0)=1, y'(0)=0, y"(0)=2and y"(0)=0 (3.2)

Application of the differential transform to EQ.3.1
gives

(kK =k =1)(k+1)(k+2)Y (k+2)+(k+1)Y (k+1)

==L 0(k=6)+55(k—4)+155(k 2)]
(%—2aj5(k—1) G
+(k—11)k:l__llY(k )Y (k—k 1)

1
where o = I y(t)dt
0

Substitute k =1,2,3,4,5and 6 into EQ.3.3, one can
get the following relations

3Y (3)-Y(2)=—(7/3)+a
Y?(0)-1,
Y(0)Y (1),

24Y (4)+
300Y (5)+12Y (4) =
Y (5)=2Y(0)Y(2)+Y?(1)-2,

6Y (3) =
3960Y (6)+ 60
7980Y (7)+6OY (6) =Y (O)Y (3)+Y (I)Y (2) s
and
48720Y (8) +210Y (6)
=2[Y(0)Y (4)+Y (1)Y(3)]+Y*(2)-1.
Also, for k>6 in EQ.3.3, the following recurrence

relation can be obtained

Copyright © 2012 SciRes.

1

Y(k+2)= (€ —k=1)(k+2)

k—
)Y (k=k —-1)-Y (k+1

G (6 DY (kDY)

The initial conditions in EQ.3.2 is transformed by us-
ing (2.1) to

Y(0)=1 Y(1)=0, Y(2)=1land Y (3)=0.

Consequently, from the above recurrence relations we
can easily find that Y (k)=0, k>4.

Hence by using EQ.2.2, the solution of the integro-

differential Eq.3.1 with its initial conditions (3.2) is ob-
tained to be

y(x)=1+x%,

which is the exact solution.
Example 3.2. Consider the integro-differential equa-
tion

Xy (x)=2y"(x)+xy(x)

(e-1)
:x4+5x3—4ex—Tx+2 (3.4)
+ [ty ( dt+jxy )dt, 0<x<I
0
with the initial conditions
y(0)=0, y'(0)=
y"(0)=2, y"(0)=3 (3.5)
and y¥(0)=4.

The differential transformation of EQ.3.4 and the ini-
tial conditions (3.5) are

Y(k+2)
:E::;;;!!{z(kﬂ)Y(k+l)—Y(k—1)+(|k(j32)! (3.6)
_%+Y(kk_2)_(ez;l—aja(k_l)},
where a = jy t)dt, and
Y(0)=0, Y(1)=1,
Y(2)=1 Y(3)=1/2!, 3.7)

and Y (4)=1/3.

Utilizing the recurrence relation (3.6) and the trans-
formed initial conditions (3.7), we can obtain

Y (k+1)=1k!, k>4
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Substitute Y (k) into EQ.2.2 to obtain the solution of
the nonlinear Volterra-Fredholm integro-differential equa-
tion in this example

which is its exact solution.
Example 3.3. Consider the following sixth order Vol-
terra-Fredholm integro-differential equation

X'y (x)+y? (x)+y'(x)
=—x*cosX+0.5sin2X+3x+0.4

~0.1e{[cos(1)+sin (1) ]x[ cos” (1)+3e ]} (3.8)

X 1
—2f[ 14y (1) ]dt+ [e'y? (t)dt,
0 0
0<x<1,
with the initial conditions
y(0)=1, y'(0)=0,
y"(0)=-1, y"(0)=0, 3.9)
y¥(0)=1and y* (0)=0.
The differential transformation of EQ.3.8 and the ini-
tial conditions (3.9) are
k+2)!
Y3y K| _(k*2)
(k+3)1|  (k—4)!
cos(n(k —4)/2) . 2" sin(mk/2)
(k—4)! k!

+§(k—1)—§kZiY(kl)Y(k—kl—1)}

Y(k+2)—(k+1)Y (k+1)

(3.10)
and
Y(0)=1, Y(1)=0,
Y(2)=-1/21, Y(3)=0,
Y (4)=1/4!and Y (5)=0.

G.11)

Note that, in EQ.3.10 the first and third terms in left
hand side vanishas k=3.

Utilizing the recurrence relation (3.10) and the trans-
formed initial conditions (3.11), we can get

Y (k) :{(_l)k/z/k!, k=even

0, k =odd

, k=6

Copyright © 2012 SciRes.

Therefore, the solution of EQ.3.8 is given by

k=0
XZ X4 X6 X8 XlO
=l-— =
21 41 6! 8! 10!
=COS X,

which is the exact solution.
Example 3.4. Let us consider the nonlinear Volterra-
Fredholm integro-differential equation [23]

Y () +y(x)

5 3 2
:_X_+ZL+SL_£X_1 (312)
5 3 6 105

[y it iy @t

0

with the initial conditions
y(0)=-1, y'(0)=0 and y"(0)=2

The differential transformation of this equation and its
initial conditions are

(3.13)

v(k+3):ﬁ{_v(k)%kﬁv(kl)v(k_kl_1)
_5(k=s)  25(k-3)
5 3
5 113
+[g+aj§(k—2)—(ﬁ—ﬂ]§(k—1)},
(3.14)
where
a :ljty2 (t)dt, (3.15)
/3=jt2y2 (t)dt, (3.16)
and
Y (0)=-1Y(1)=0 and Y(2)=1. (3.17)

To obtain Y (3), put x=0 into Eq.3.12 and utiliz-
ing the transformation (2.1), hence Y (3)=0.

Substitute k =1,2,3,4 and 5 into Eq.3.14, one can get
the following relations

Y (4)=—(1/315)+ /24,
Y (5)=-1/360+a/60,

(3.18)
(3.19)

Y(6)=0, Y(7)=-Y(4)/210, and
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Y (8)=-Y(5)/336-Y (4)/840.
Also, for k>6 in EQ.3.14, the following recurrence
relation can be obtained

Y(k+3)

k! 1 X! .
] 00 S v (k)

T (k+3)|

Utilizing Egs.2.3, 3.15 and 3.16, it can be shown that
the following equalities hold for ¢ and S

“=ilk72Y(kl)Y(k—kl—2), (3.20)
k=2 " k=0
ﬂ=ilkf3Y(kl)Y(k—kl—3), (3.21)
k=3kk1:0

where N is a suitably large integer that represents the
number of terms to be chosen. Solving EQs.3.20 and 3.21
with EQs.3.18 and 3.19 by taking N =8 terms, one can
obtain the following results

=1/6, B=8/105, Y(4)=0 and Y(5)=0

Hence one can get all the missing coefficients of
Y (k) of the expansion for the unknown function, that is

y(x)=-1+x,

which is the exact solution.
Example 3.5. Consider the nonlinear Volterra-Fred-
holm integro-differential equation

y® (x)-ny(x)

s1n(21tx 1
Ty (1)t S )
0
<lI,

2 J;cos nt) y(t))y(t)dt,

(3.22)
with the initial conditions

y(0)=0, Yy'(0)=m,
y?(0)=0, y?(0) =1,

y'(0)=0, y¥(0)=-n
y®(0)=0 and y”(0)=-n’
(3.23)

EQ.3.22 can be written in the following form
y* (x)-m'y(x)

:__jy M

- {cos(nt)y(t)dt (3.29)

2

sm 2nx L
j v (
0

The differential transformation of the EQ.3.24 gives
the following recurrence relation

Copyright © 2012 SciRes.

Y(k+8)

:(ki!g)! ngy(k)—%:_loY(k)Y(k k-1) (325
2D (o ﬂ)(zt)!kl sin(nk/2) |, k=1

where
o = [cos(m)y(t)dt. and f=[y’ (D)t (326)

The initial conditions in EQ.3.23 are transformed by
using Eq.2.1 as follows

Y(0)=0, Y(1)=m, Y(2)=0, Y(3):—%,
Y(4)=0, Y(S):Z—S', Y(6)=0 and Y(7)=—’;—7|.
' (327)

Also, for obtaining Y (8), put x=0 into EQ.3.22
and utilize (2.1), one can get

Y (8)=0. (3.28)

By using the transformed initial conditions in (3.27)
and (3.28) and the recurrence relation in EQ.3.25, the
series solution is then evaluated for y(X) up to O(xls)

3 5 7
LY B BV
y(x)=mnx 3 X+ 5 X - X

+{’; 9'( ,B+1/2)}

T (3.29)
_{11' 11'(205 2,6’+1)}
7_513 8 4 3
+{E+F(2a 2ﬂ+1)}x‘ +O(x‘5)
Utilizing EQs.2.3 and 3.26, one can show
N 1 k-1 ‘II
azz Pl cos(nk,/2)Y (k—k, —1), (3.30)
:l k=0 B
N 1 k-1
B=2=>Y(k)Y(k-k -1), (3.31)
k:]kk:O

where N is a sufficiently large integer. Solving EQs.
3.30 and 3.31 by taking N =25 terms, we can get
a =0.0000020056, and £ =0.499998190 .

The unknown function is evaluated by using Eq.3.29
for these values of @ and £ . The numerical results
are shown in Table 1 with comparison to the exact solu-
tion y(x)=sin(nx).
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Table 1. Numerical comparison of results in example 3.5.

S. H. Behiry, S. I. Mohamed / Natural Science 4 (2012) 581-587

X App. Value, (N =10) App. Value, (N =25) Exact value
0.1 0.3090169944 0.3090169944 0.3090169944
0.2 0.5877852524 0.5877852523 0.5877852523
0.3 0.8090170074 0.8090169944 0.8090169944
0.4 0.9510568223 0.9510565163 0.9510565163
0.5 1.0000035426 1.0000000000 1.0000000000
0.6 0.9510826571 0.9510565163 0.9510565163
0.7 0.8091583161 0.8090169944 0.8090169944
0.8 0.5883934857 0.5877852523 0.5877852523
0.9 0.3112157684 0.3090169944 0.3090169944
1.0 0.0069252707 0.0000000000 0.0000000000

4. CONCLUSION

In this work, the differential transform method for the
solution of high-order nonlinear Volterra-Fredholm inte-
gro-differential equations is successfully implemented.
The present method reduces the computational difficul-
ties of other traditional methods and all the calculation
can be made simple manipulations. The accuracy of the
obtained solution can be improved by taking more terms
in the solution. In many cases, the series solution ob-
tained with differential transform method can be written
in exact closed form.

REFERENCES

[1] Kythe, PK. and Puri, P. (1992) Computational methods
for linear integral equations. University of New Orleans,
New Orleans.

[2] Wazwaz, A.M. (2006) A comparison study between the
modified decomposition method and traditional method.
Applied Mathematics and Computation, 181, 1703-1712.
d0i:10.1016/j.amc.2006.03.023

[3] Rashed, M.T. (2004) Numerical solution of functional
differential, integral and integro-differential equations.
Applied Numerical Mathematics, 156, 485-492.

[4] Razzaghi, M. and Yousefi, S. (2005) Legendre wavelets
method for nonlinear Volterra-Fredholm integral equa-
tions. Mathematics and Computers in Simulation, 70, 1-8.
doi:10.1016/j.matcom.2005.02.035

[5] Maleknejed, K. and Mirzaee, F. (2006) Numerical solu-
tion of integro-differential equations by using rationalized
Haar functions method. Kybernetes, 35, 1735-1744.
doi:10.1108/03684920610688694

[6] Reihani, M.H. and Abadi, Z. (2007) Rationalized Haar
functions method for solving Fredholm and Volterra inte-
gral equations. Journal of Computational and Applied
Mathematics, 200, 12-20.
d0i:10.1016/j.cam.2005.12.026

Copyright © 2012 SciRes.

[7] Darania, P., Abadian, E. and Oskoi, A.V. (2006) Lineari-
zation method for solving nonlinear integral equations.
Mathematical Problems in Engineering, 1-10.
doi:10.1155/MPE/2006/73714

[8] Zhao, J. and Corless, R.M. (2006) Compact finite differ-
ence method for integro-differential equations. Applied
Mathematics and Computation, 177, 271-288.
doi:10.1016/j.amc.2005.11.007

[9] Abbasbandy, S. and Taati, A. (2009) Numerical solution
of the system of nonlinear Volterra integro-differential
equations with nonlinear differential part by the opera-
tional Tau method and error estimation. Journal of Com-
putational and Applied Mathematics, 231, 106-113.
d0i:10.1016/j.cam.2009.02.014

Ebadi, G, Rahimi-Ardabili, M. Y. and Shahmorad, S.
(2007) Numerical solution of the nonlinear Volterra inte-
gro-differential equations by the Tau method. Applied
Mathematics and Computation, 188, 1580-1586.
doi:10.1016/j.amc.2006.11.024

Maleknejad, K., Basirat, B. and Hashemizadeh, E. (2011)
Hybrid Legendre polynomials and Block-pulse functions
approach for nonlinear Volterra-Fredholm integro-dif-
ferential equations. Computers & Mathematics with Ap-
plications, 61, 2821-2828.
doi:10.1016/j.camwa.2011.03.055

Wazwaz, A.M. (2010) The combined Laplace transform-
Adomian decomposition method for handling nonlinear
Volterra integro-differential equations. Applied Mathe-
matics and Computation, 216, 1304-1309.
d0i:10.1016/j.amc.2010.02.023

Araghi, M.A. and Behzadi, Sh.S. (2009) Solving nonlin-
ear Volterra-Fredholm integro-differential equations using
the modified Adomian decomposition method. Computa-
tional Methods in Applied Mathematics, 9, 321-331.

Darania, P. and Ivaz, K. (2008) Numerical solution of
nonlinear Volterra-Fredholm integro-differential equa-
tions. Applied Mathematics and Computation, 56, 2197-
2209. doi:10.1016/j.camwa.2008.03.045

Maleknejad, K. and Mohmoudi, Y. (2003) Taylor poly-

[10]

[11]

[13]

OPEN ACCESS


http://dx.doi.org/10.1016/j.amc.2006.03.023
http://dx.doi.org/10.1016/j.matcom.2005.02.035
http://dx.doi.org/10.1108/03684920610688694
http://dx.doi.org/10.1016/j.cam.2005.12.026
http://dx.doi.org/10.1155/MPE/2006/73714
http://dx.doi.org/10.1016/j.amc.2005.11.007
http://dx.doi.org/10.1016/j.cam.2009.02.014
http://dx.doi.org/10.1016/j.amc.2006.11.024
http://dx.doi.org/10.1016/j.camwa.2011.03.055
http://dx.doi.org/10.1016/j.amc.2010.02.023
http://dx.doi.org/10.1016/j.camwa.2008.03.045

[16]

[17]

(18]

[19]

S. H. Behiry, S. I. Mohamed / Natural Science 4 (2012) 581-587

nomial solution of high-order nonlinear Volterra-Fred-
holm integro-differential equations. Applied Mathematics
and Computation, 145, 641-653.
doi:10.1016/S0096-3003(03)00152-8

Yalcinbas, S. (2002) Taylor polynomial solution of
nonlinear Volterra-Fredholm integral equations. Applied
Mathematics and Computation, 127, 195-206.
doi:10.1016/S0096-3003(00)00165-X

Yiizbasi, S., Sahin, N. and Yildirim, A. (2012) A colloca-
tion approach for solving high-order linear Fredholm-
Volterra integro-differential equations. Mathematical and
Computer Modelling, 55, 547-563.
doi:10.1016/j.mcm.2011.08.032

Zhou, J.K. (1986) Differential transformation and its
applications for electrical circuits. Huazhong University
Press, Wuhan.

Arikoglu, A. and Ozkol, 1. (2005) Solution of boundary
value problems for integro-differential equations by using
differential transform method. Applied Mathematics and
Computation, 168, 1145-1158.

Copyright © 2012 SciRes.

(20]

(21]

(22]

587

doi:10.1016/j.amc.2004.10.009

Arikoglu, A. and Ozkol, 1. (2008) Solution of integral and
integro-differential equation systems by using differential
transform method. Computers & Mathematics with Ap-
plications, 65, 2411-2417.
doi:10.1016/j.camwa.2008.05.017

Odibat, Z.M. (2008) Differential transform method for
solving Volterra integral equation with separable kernels.
Mathematical and Computer Modelling, 48, 1144-1149.
doi:10.1016/j.mcm.2007.12.022

Biazar, J. and Eslami, M. (2011) Differential transform
method for systems of Volterra integral equations of the
second kind and comparison with homotopy perturbation
method. International Journal of Physical Sciences, 6,
1207-1212.

Wang, W. (2006) An algorithm for solving the high-order
nonlinear Volterra-Fredholm integro-differential equation
with mechanization. Applied Mathematics and Computa-
tion, 172, 1-23. doi:10.1016/j.amc.2005.01.116

OPEN ACCESS


http://dx.doi.org/10.1016/S0096-3003(00)00165-X
http://dx.doi.org/10.1016/j.mcm.2011.08.032
http://dx.doi.org/10.1016/j.amc.2004.10.009
http://dx.doi.org/10.1016/j.camwa.2008.05.017
http://dx.doi.org/10.1016/j.mcm.2007.12.022
http://dx.doi.org/10.1016/j.amc.2005.01.116

