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ABSTRACT 

The purpose of this work is to show the stability of the hydrogen atom with useing the Quantum Oscillatory Modulated 
Potential and the Heisenberg equations of motion, postulating that the electron in the hydrogen atom is behaving as a 
quantum harmonic oscillator. With the electron confined between two potential barriers, created by the new potential 
function, we are considering that at absolute temperature the power absorbed or emitted by the electron per unit of time 
can be used to determine the zero point energy of the oscillator. Assuming that electron is only exchanging energy with 
the nucleus of the atom we are making use of the operators of creation and annihilation of a photon to explain how the 
energy between the proton and the electron can be exchanged to keep the atom a stable system. 
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1. Introduction 

In 1913, the Dane physicist Niels Bohr, to assure the 
stability of the atoms as a nuclear planetary model, such 
as proposed two years earlier, by the New Zealand 
physicist Ernest Rutherford, postulated the quantization 
of the angular momentum of the electrons when revolv-
ing the nuclei of the atoms. About twelve years later the 
Bohr theory was supplanted by the quantum mechanics, a 
new theory, independently formulated by Erwin Schroe- 
dinger and Werner Heisenberg [1,2]. Both theories have 
wider applications to more complex atomic systems. In 
the Schroedinger theory, the concept of orbit for the 
electron was ignored and its position around the nucleus 
was formulated in terms of probability density. In the 
application of the new quantum theory for the hydrogen 
atom, the question of the stability of the atom was set 
aside. However, we need to taken into consideration that 
an electron bound to the nucleus of the atom is always 
under the action of a central force field [3]. Therefore, 
whatever be its movement in the vicinity of the nucleus 
of the atoms, in someway, it needs to be accelerated and, 
according to the Classical Law of the Electrodynamics, 
losing energy by radiation [4]. Since the atoms are stable 
systems, this does not occur and the question of the sta-
bility of the atoms needs to be explained. 

In this work we are proposing to solve the problem of 
the stability of the atoms, making use of the Quantum 
Oscillatory Modulated Potential1—QOMP. This potential 

was formulated to explain in different mathematical bases 
and concepts the interaction between the proton and the 
electron in the hydrogen atom. The new potential is re- 
presented by the formula 

  
2

2
2

0 1

1 π
= ,  with  = ,cos

4πn n n

e
U r r

r n r
 


  (1) 

where the 1 0  is the Bohr radius for the hydrogen 
atom. The potential 
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tial, the interaction force between the proton and the 
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U r

     
2

2
2

0

1
= sin 2 .cos

4π
n

n n n

e
r r r

rr


   F  (2)    

r

These forces have the form of wave packets around the 
nucleus of the atom. The Figure 1 shows the graphic of 
this interaction force between the proton and the electron 
in the hydrogen atom in its ground state. It displays posi-
tive and negative peaks and is null at the position more 
likely to be occupied by the electron. Let us observe that 
with the Coulomb potential, the interaction force be-
tween the proton and the electron is always attractive and 
never becomes null, except at infinite distance from the 
nucleus of the atom. With the use of the QOMP, it is 
shown that the interaction force at the equilibrium posi-
tion 1  is null and the electron cannot be orbiting the 
nucleus of the atom as predicted by Bohr theory. Then, 1This potential was formulated in first part of the series of work. 
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the most plausible movement of the electron is the radial, 
what makes the angular momentum of the electron be 
null. Thus, in its ground state, the electron must behaves 
like a harmonic oscillator, bouncing back and forth ra-
dially, confined by two potential barriers, making the 
electron to be accelerated towards the equilibrium posi-
tion and, consequently, losing energy by radiation [4,5]. 
In the next section we will use the concept of the quan-
tum harmonic oscillator to investigate the behavior of the 
oscillating electron inside the first quantum well pro-
duced by the new potential. 

2. The Hydrogen Atom as a Quantum 
Harmonic Oscillator 

Let us assume that the departure of first potential well 
from the potential of a harmonic oscillator is small. The 
origin of the quantum harmonic oscillator potential is 
taken at the bottom of the first potential well, at the posi-
tion 1  Å and nearly 13.59  eV bellow the en-
ergy of the electron in the ground state. See Figure 2. 
Symbolically the movement of the electron inside the 
quantum well is represented by arrows as shown in the 
same figure. The Hamiltonian for the quantum harmonic 
oscillator may be written as [2]  

= 0.53r
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where  and  are, respectively, the operators of 
creation and annihilation of a photon (a quantum unit of 
energy 
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 in the Hamiltonian 
operator represents the zero point energy, it is the mini-
mum energy of the quantum harmonic oscillator. The  
operators for position r  and momentum  of the 

electron may be expressed in terms of the operators  

and , written as 
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where  1 2
2= m   and  1 2

= 1 2 .m   These 
operators when applied to the eingenstates n  of the 
quantum harmonic oscillator, produce the following well 
known relations 
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The eingenstates n  of the quantum harmonic os-
cillator are orthonormal. That is, they obey the condition 
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Moreover,  and a  are not commuting operators, 
they satisfy the relation 

               (9) 

what means that the kets n  are not eigenstates of these 
two operators. That is, they cannot act simultaneously on 
the eingstates of the harmonic oscillator. As simple har-
monic oscillator the binding energy of the electron in the 
atom in its ground state 1  eV and can be 
totally kinetic at equilibrium position  or totally po-
tential at the classical turning points 1  and 2  See 
Figure 2. According to Equations (3) and (8) the zero  

= 13.59E 
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Figure 1. The coulomb potential U(r)Coul., the quantum 
oscillatory modulated potential U1(r) and electric oscillatory 
force F2(r) for the hydrogen atom in its ground state. The 
vertical line represents the position where the oscillatory 
force is null. 
 

 

Figure 2. In the ground state of the hydrogen atom, the 
electron is oscillating, bouncing back and forth like a 
quantum harmonic oscillator. The positions R1 and R2 
represent classical turning points. 

Copyright © 2012 SciRes.                                                                                 JMP 



W. W. FILHO 662 

point energy of the harmonic oscillator is given by the 
expectation value [2,6] 

0 0=E H 0

1
= .

2
            (10) 

To determine the angular frequency   in Equation 
(10) and, consequently the zero point energy of the 
quantum harmonic oscillator, we will make the assump-
tion, that in the ground state of the hydrogen atom, the 
amount of energy absorbed or emitted by the electron per 
unit of time, at absolute temperature, , can be ex-
pressed by a formula obtained by Silva and França [7,8] 
with the use of the stochastic electrodynamics. The 
power absorbed by the electron may be expressed by 
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where  is the velocity of light. However, differently of 
Silva and França, that for deduction of Equation (11), 
assumed that the electron is orbiting the nucleus of the 
atom, as in Bohr theory, we are arguing that the electron 
is oscillating radially in the first potential well, with av-
erage distance equal to the radius of Bohr, 0=r a

,

, as 
predicted by the QOMP. 

For the hydrogen atom, in its ground state, we are as-
suming that at absolute temperature, electron is only be 
able to exchange energy with the nucleus of the atom, 
with which it is interacting. This image is the analogue to 
two masses M and m, with M m  tied at the end of a 
spring, oscillating with an angular frequency   and 
exchanging energy between them. With the use of Equa- 
tion (11), we can write, 
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where   is the lowest angular frequency corresponding 
to the zero point energy of the quantum harmonic oscil-
lator. From Equation (12) we have 

 .π = 0absP T



 = 0T

2
  .          (13) 

Considering that, at absolute temperature , the 
most probable position for the electron is = 0.53r

47

 Å, 
from Equations (11) and (13) we can estimate the value 
of the angular frequency of the quantum harmonic oscil-
lator in its lowest state. The predicted value is  

1
 

s . Thus, the amount of energy absorbed or emitted by 
the electron when moving between two adjacent quantum 
states .n  and 1n   is  eV. A 
photon with energy of this magnitude would be very dif- 
ficult to be experimentally observed. The zero point en-
ergy of the quantum oscillator is 
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eV, sometimes called the vacuum state energy. With the 
electron oscillating between the classical turning points 

1  and 2 , corresponds to the quantum harmonic os-
cillator be in an excited state n , with energy 

= = 13.6nE n   eV. Thus, the number of eigenstates 

m  existing between the energy n  and 0  the 
lowest energy level is . This very large 
number of eigenstates is a consequence of the very small 
magnitude of quantum unit of energy exchanged between 
the proton and the electron in the atom, in each quantum 
transition. In the next section we will consider the time 
evolution of the electron in the hydrogen atom. 
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3. The Time Evolution of the Electron in the 
Hydrogen Atom 

The time evolution of the electron as a quantum har-
monic oscillator can be investigate with the use the  

Heinsenberg equations of motion for the operators  

and  given by [2]  
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Thus, the operators of position  and momentum  r t
  p t

 

 , given by Equations (4) and (5) take the form 
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We need to observe that the expectation values of 
 and   p t  will not oscillate with angular fre-

quency  , because for any well defined energy eigen- 
states, characterized by  the expectation values ,n

 n nr t     and n np t   vanish. In order to see 

more clearly the action of the operators  and 

, let us consider a linear combination of two adja-

cent energy eigenstates of the oscillator, written as 
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where 1n  and n  are complex numbers [9]. With the 
use of Equaitons (8), (9), (18) and (19), we obtain the 
time dependence for the expectation  values of the oper-  

c

 r t   p tators  and  written as 
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C

where, according to Equations (6) and (7), the first braket 
in Equation (21) represents the probability amplitude for 
a transition from the eigenstate n , with energy n  
to the eigenstate 

E

1 ,n   and energy 1n  with the an- 
nihilation of a photon. The second braket represents the 
probability amplitude for a transition from the eigenstate 

E 

1n  with energy 1n  to the eigenstate  E n  with 
energy n  creating a photon with the same energy. The 
same interpretation is given to Equation (22). These two 
equations tell us that for an isolated atom, the electron is 
exchanging energy with the particle with which it is in-
teracting, the nucleus of the atom, losing and receiving a 
quantum unit of energy 

E

,  with magnitude as calcu-
lated previously. The constant exchange of energy be-
tween the proton and electron explain the stability of the 
atom. Besides its small energy magnitude of the photon, 
the exchange of energy between the two particles cannot 
be observed because it is an internal affair of the atom. 
According to the interpretation given above, the time 
required for the electron to make one cycle oscillation 
between the classical turning points 1  and 2  is 4 
times larger than the time required for the electron to 
span n eigenstates 

R R

m  between highest and the lowest 
energy levels allowed for the quantum oscillator, emit-
ting and receiving a quantum unit of energy .
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Another way to see the time evolution of the electron 

in one cycle of oscillation as described above, is to make 
use of the Equations (4) and (5), to obtain [9]  
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These two equations present a close resemblance to 
the classical equations for a simple harmonic oscillator. 
We can see that the operators  and  oscillate 
just like their classic analogues where, in a cycle of os-
cillation, the energy of the electron is exchanged between 
the kinetic energy 2 2=E p mk  and the potential en-
ergy   2 2= 1 2E m r


p  , according to the sequence 
      1 1 = =k pE r r E R E r r E r R   
 ,

 †
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,

1 2k p  
 making one complete cycle of oscillation. 

Thus, according to this model, we argue that the mecha-
nism responsible for the stability of the atom is the ex-
change of energy between the electron and the proton, 
mathematically represented by the action of the operators 

= =r
 1=kE r r

of creation  and the operator o annihilation  act- 
ing on the eigenstates, creating and annihilating a photon 

of energy 

= 0

 in such a way that the loss of energy by 
the atom is zero. Base on the Quantum Oscillatory 
Modulated Potential, for the first time, as far as we know, 
we have an idea of the energy magnitude of the empty 
space (the so-called vacuum state energy), and how the 
electron and the proton in the hydrogen atom are ex-
changing energy, to keep the atom a stable system. 

4. Conclusion 

The use of Quantum Oscillatory Modulate Potential for 
describing the interaction between the proton and the 
electron in the hydrogen atom, lead us to conclude that 
inside potential well created around the nucleus of the 
atom, the electron behaves approximately as a quantum 
harmonic oscillator, oscillating radially bouncing back 
and forth, confined by two potential barriers. Assuming 
that in the ground state of the atom, the amount of energy 
absorbed or emitted by the electron per unit of time, at 
absolute temperature, T , can be calculated by a 
formula obtained with the base in the stochastic electro-
dynamics, it was possible to determine the zero point 
energy of the of the oscillator, and consequently, the 
quantum unit of energy, a photon of very small magni-
tude, that the electron is exchanging with the nucleus of 
the atom during one cycle of oscillation. We are con-
cluding that the constant exchange of energy between the 
proton and the electron through the emission and absorp-
tion of photon, mathematically represented by the action 
of the operators of creation and annihilation, is the 
mechanism responsible for the stability of the atoms and 
consequently, for its own existence. 

REFERENCES 
[1] D. A. McQuarrie, “Quantum Chemistry,” Universe Sci- 

ence Books, Margate, 1983. 

[2] W. W. Filho, “Mecânica Quântica,” Editora da Universi-
dade Federal de Goiás, Goiânia, 2002. 

[3] J. S. Towsend, “A Modern Approach to Quantum Me-
chanics,” McGraw Hill International Edition, 1992. 

[4] W. Hauser, “Introduction to the Principles of Electro-
magnetism,” Addison Wesley Publishing Company Inc., 
Boston, 1986. 

[5] P. A. Tipler, “Modern Physics,” Worh Publishers Inc., 
New York, 1977. 

[6] R. M. Eisberg, “Fundamentals of Modern Physics,” John 
Wesley & Sons Inc., New York, 1961. 

[7] R. da Silva and H. Prança, “A Estabilidade do Átomo de 



W. W. FILHO 664 

Hidrogênio Segundo a Eletrodinâmica Estocástica,” Re- 
vista Brasileira de Ensino de Física, Vol. 24, No. 1, 2002, 
pp. 1-13. 

[8] E. Merzbacher, “Quantum Mechanics,” John Willey & 

Sons Inc., New York, 1976. 

[9] J. J. Sakurai, “Modern Quantum Mechanics,” The Ben-
jamin Cummings, Publishing Company Inc., Menlo Park, 
1985. 

 
 

Copyright © 2012 SciRes.                                                                                 JMP 


