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ABSTRACT 

This paper looks at various definitions of momentum then investigates a particular definition of momentum via a statis- 
tical model where the asset price is assumed to follow a log Ornstein-Uhlenbeck process. Momentum is a term that is 
widely used to describe price behaviour but is not clearly defined in terms of statistical models. The results we derive 
show that asset price momentum is determined by price autocorrelation and that positive momentum, as commonly un- 
derstood, would require explosive behaviour in log prices. 
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1. Introduction 

Technical analysts employ many techniques in seeking 
profitable opportunities, one of which is the use of charts. 
Using charts, technical analysts seek to identify price 
patterns and market trends in financial markets and at- 
tempt to exploit these patterns. These patterns are often 
linked with the rather nebulous idea of price momentum. 
Much previous literature such as [1-7] explain momen- 
tum as an upward trend in a time series, which can be 
assets’ price, earnings or returns. But they concentrate 
only on historical data and do not give explanations in 
terms of underlying processes. [8] studies momentum in 
stock returns, focusing on the role of industry, size, and 
book-to-market factors. The paper argues that it is excess 
covariance, not underreaction that explains momentum in 
the portfolios. Again, [8] looks at cross sectional return 
momentum empirically without providing a technical de- 
finition of momentum. [9] measure return momentum as 
the change in risk premium for a percentage change in 
firm value, where they find that a firm’s revenues, costs, 
and growth options combine to determine the dynamics 
of its return autocorrelation and show that this insight 
helps momentum strategy to be profitable. Although this 
provides a technical definition of return momentum, it is 
cross sectional, not single asset momentum. 

Technical analysts interpret momentum in terms of 
moving averages; when the current price rises above its 
moving average it is interpreted as an upward (bullish) 

trend , while a downward (bearish) trend emerges when 
the current price falls below its moving average. These 
interpretations do not really clarify if momentum is re- 
lated to trend or to autocorrelation; both ideas having 
precise definitions in a statistical sense. We turn to the 
practitioner literature to see if matters are resolved. The 
definition of momentum in Wikipedia is “Momentum 
investing, also sometimes known as ‘Fair Weather In- 
vesting’, is a system of buying stocks or other securities 
that have had high returns over the past three to twelve 
months, and selling those that have had poor returns over 
the same period”. And in Investopedia, momentum is 
defined as “An investment strategy that aims to capitalize 
on the continuance of existing trends in the market. The 
momentum investor believes that large increases in the 
price of a security will be followed by additional gains 
and vice versa for declining values”. 

Indeed, it is very hard to find a formal definition of 
price momentum that has a statistical basis. By this we 
mean a definition of momentum defined as a property or 
properties of a stochastic process. In this paper, we in- 
tend to provide a technical definition of single asset price 
momentum. There are two different types of momentum 
in terms of the number of assets involved, cross sectional 
momentum and single asset momentum. Unlike previous 
momentum literature that focuses on the relative per- 
formance of securities in the cross-section, we emphasize 
that this paper intends to investigate momentum within 
asset price process. [10] also look at a type of momentum 
that is similar to ours and call it “time series momentum”. *Corresponding author. 
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This single asset momentum focuses purely on a secu- 
rity’s own past process. Reference [10] state the impor- 
tance of the autocorrelation within a financial time series 
as “We find that positive auto-covariance in our futures 
contracts’ return drives most of the time series and cross- 
sectional momentum effects we find in the data. Their 
analysis only focuses on the mean of the time series re- 
turn. The contribution of the other two return compo- 
nents—serial cross-correlations and variation in mean 
returns—is small”. We are interested in price momentum 
instead of returns or earnings momentum because 1) 
most of, if not all, trading rules using technical analysis 
are based on past prices; and 2) the price momentum 
effect tends to be stronger and longer-lived than the re- 
turn momentum effect. Most previous momentum studies 
typically include a large cross-section of stocks weighted 
by the previous period return. 

Reference [11] defines “The Momentum Indicator is 
the ratio of today’s price compared to the price n periods 
ago: Momentum = (Close/Close n periods ago)*100. 
Therefore Momentum Investing is investing in securities 
with levels of Momentum Indicator above certain thresh- 
old.” As quoted in [12], Richard Driehaus (who is widely 
considered as the father of momentum investing) once 
said “far more money is made buying high and selling at 
even higher prices” (as opposed to “buy low sell high”). 
This Achelis’ definition of momentum has clear mathe- 
matical structure. Our main objective is that we take 
Achelis’ definition of momentum and investigate if it can 
be consistent with standard dynamic stochastic processes 
and, as a consequence, what will be the determinants of 
momentum. The obvious candidate for the asset price 
process is the log Ornstein-Uhlenbeck (log OU) process. 
The OU price process allows for serial correlation return 
process, which can occur for many assets. This process 
has been successfully used by many others including 
[13-15] in studying financial asset price process. The use 
of this process also has been heavily studied by [16]. In 
this paper, like [17], which show that momentum might 
be caused by cross autocorrelation in cross sectional 
stock returns, we show that autocorrelation in a single 
time series can also be a source of momentum. 

Our main contribution is that we translate the wide- 
spread, but rather a vague, concept of momentum as a 
population property of a stochastic process. We investi- 
gate the definition of momentum via a statistical model 
of log Ornstein-Uhlenbeck process to find that 1) price 
momentum is determined by price autocorrelation and 
that 2) explosive behaviour in log prices is a necessity to 
relate a percentage change in the current price to a posi- 
tive percentage change in the momentum measure. This 
association of momentum with explosive price behaviour 
should make practice of momentum trading of possible 
interest to central banks and regulators. Although our 

work focuses on price momentum, the same approach 
can be applied to other time series such as returns and 
earnings. 

2. The Model 

Whilst momentum is attributed to behavioural explana- 
tions, typically herding and conservatism bias, we shall 
not look at equilibrium models with momentum investors 
in. On the basis of previous definitions, momentum mani- 
fests itself in statistical models as possibly either trend or 
autocorrelation or both. Therefore we advocate the log 
Ornstein-Uhlenbeck model to demonstrate this. This 
model can be thought of as a stationary process about a 
trend or a random walk with drift or an explosive process 
about a trend. Such versatility should allow us to get 
some insights into the properties of momentum, as de- 
fined by Achelis. Assume that the logarithm of the asset 
price  log ( )P t  has a linear trend t . We consider the 
relationship  

   : logq t P t t   

Assume a log price process, 

    d d dq t q t t W t            (1) 

The solution for Equation (1) is well known, 
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h is the holding period which is always positive. In this 
model,  exp h  can be interpreted as the degree of 
price autocorrelation. In fact, the model admits an exact 
discrete autoregressive (AR(1)) representation in which 
this is the autoregressive coefficient. From well-known 
properties of the AR(1) model, we know that stationarity 
and existence of a steady-state solution require 0  . 
Indeed, we can think of two different processes for Equa- 
tion (2) depending on the magnitude of the autoregres- 
sive coefficient. First, when Equation (2) is mean re- 
verting, then   1hexp    (i.e. positive autocorrelation) 
and hence 0  . Second, when Equation (2) is explo- 
sive, then  exp h 1  , there is no stationarity nor a 
steady-state solution and hence 0  . 

The ratio of future price in period h to today’s price 
can be represented as 
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Hence the expected value of the left-hand side of 
Equation (3) is 
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This can be thought as the population momentum mea- 
sure conditioned on time t. Taking logs, we get 
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The properties of this population momentum measure 
can be analysed in terms of elasticities, hence th
tivity of the Equation (4) with respect to the log
If this elasticity is positive, then there is a bullish mo-
mentum and if negative there is a bearish momentum 
M

e sensi- 
 of P(t). 

oreover, as elasticity, it is dimensionless, measuring 
the impact of a percentage change in price where impact 
is on a percentage change in momentum. 

Proposition 1. The elasticity of the conditional popu-
lation momentum with respect to the current period’s 
price for the log OU model can be expressed as 
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Proposition 1 clearly shows that, for log OU, momen- 
tum is about autocorrelation. Equation (6) shows that 
when the price process is mean reverting, the elasticity o
momentum is negative while it is positive if t
explosive. This is what we would exactly anticipate. In 
ot

f 
he price is 

her words, given the high past price, the future price is 
low if the price process reverts around a mean but the 
future price is high if the price process is explosive. If we 
were to interpret efficient markets as a log random walk 
with drift, then the elasticity becomes zero. Finally, the 
elasticity is independent of the trend. 

Proposition 2. The semi-elasticity of conditional po- 
pulation momentum with respect to price autocorrelation 
for the log OU model is 
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Figure 1. Equation (7) with respect to h. 
 

We numerically investigate Equation (7) by setting the 
price autocorrelation 0.95. Hence  
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fo  . We co
the 

nfirm that the price level and 
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own in F

lation increases

nt prices, we in- 
tion of momentum via a statistical 

price follows a log Ornstein-Uhlen- 

price standard deviation are consistent since [18] es-
timates market standard deviation

2009 and July 1, 2010. We have 
to emphasize that there is no special reason to choose 
these numbers but only to locate sensible parameters. 

As sh igure 1, the semi-elasticity of condi- 
tional population momentum with respect to price auto- 
corre  as h increases. Thus the impact of 
autocorrelation increases the percentage change in mo- 
mentum, the longer the holding period. 

3. Conclusion 

In this note, we set out to translate the widespread con- 
cept of momentum as a population property of a stochas- 
tic process. We trawled the academic and practitioner to 
find a definition that had a meaning for a process, as op- 
posed to a realization. Having found a definition in terms 
of the ratio of future prices to past/curre
vestigate the defini
model where the 
beck process. The result shows, at least in this context, 
that price momentum is determined by price autocorrela- 
tion, not deterministic trend, and that momentum trading 
would require explosive behaviour in log prices to relate 
a percentage change in the current price to a positive 
percentage change in the momentum measure. This asso- 
ciation of momentum with explosive price behaviour 
makes the wide-spread practice of momentum trading of 
possible interest to central banks and regulators. 
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