G-Design of Complete Multipartite Graph Where G Is Five Points-Six Edges

Chengyang Gu, Wei Zhou
School of Mathematical Sciences, Huaiyin Normal University, Huai'an, China
Email: gcy1964@sina.com, gcy@hytc.edu.cn

Received March 3, 2012; revised April 27, 2012; accepted May 5, 2012

Abstract

In this paper, we construct G-designs of complete multipartite graph, where G is five points-six edges.

Keywords: Complete Multipartite Graph; Graph Design; Latin Square

1. Introduction

Let K_{v} be a complete graph with v vertices, and G be a simple graph with no isolated vertex. A G-design (or G-decomposition) is a pair (X, B), where X is the vertex set of K_{v} and B is a collection of subgraphs of K_{v}, called blocks, such that each block is isomorphic to G and any edge of K_{v} occurs in exactly a blocks of B. For simplicity, such a G-design is denoted by $G-G D(v)$. Obviously, the necessary conditions for the existence of a $G-G D(v)$ are

$$
\begin{align*}
& v \geq|V(G)| \\
& v(v-1) \equiv 0 \bmod 2|E(G)|, \tag{1}\\
& v-1 \equiv 0 \bmod d
\end{align*}
$$

where d is the greatest common divisor of the degrees of the vertices in $V(G)$.

Let $K_{n_{1}, n_{2}, \cdots, n_{m}}$ be a complete multipartite graph with vertex set $X=\bigcup_{i=1}^{m} X_{i}$, where these X_{i} are disjoint and $\left|X_{i}\right|=n_{i}, 1 \leq i \leq m$. For a given graph G, a holey G-design, denoted by (X, G, \mathcal{B}), where X is the vertex set of $K_{n_{1}, n_{2}, \cdots, n_{m}}, G=\left\{X_{1}, X_{2}, \cdots, X_{m}\right\}\left(X_{i}\right.$ called hole) and \mathcal{B} is a collection of subgraphs of $K_{n_{1}, n_{2}, \cdots, n_{m}}$ called blocks, such that each block is isomorphic to G and any edge of $K_{n_{1}, n_{2}, \cdots, n_{m}}$ occurs in exactly a blocks of \mathcal{B}. When the multipartite graph has k_{i} partite of size $n_{i} 1 \leq i \leq r$, the holey G-design is denoted by $G-H D\left(n_{1}^{k_{1}} n_{2}^{k_{2}} \cdots n_{r}^{k_{r}}\right)$. When $n_{1}=n_{2}=\cdots=n_{m}=n$, the holey G-design is denoted by $G-H D\left(n^{m}\right)$ (also known as G-decomposition of complete multipartite graph $K_{n}(t)$).

On the G-design of existence has a lot of research. Let k be the vertex number of G, When $k \leq 4$, J. C. Bermond proved that condition (1) is also sufficient in [1]; When k

Abstract

$=5$, J. C. Bermond gives a complete solution in [2]. When $G=S_{k}, P_{k}$ and $C_{k}, \mathrm{~K}$. Ushio investigated the existence of G-design of complete multipartite graph in [3]. In this paper, G-designs of complete multipartite graph, where G is five points-six edges is studied. Necessary and sufficient conditions are given for the G-designs of complete multipartite graph $K_{n}(t)$. For graph theoretical term, see [4].

2. Fundamental Theorem and Some Direct Construction

Let G be a simple graph with five points-six edges (see Graph 1). G is denoted by ($a, b, c)$-(c, d, e).

The lexicographic product $G_{1} \otimes G_{2}$ of the graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and an edge joining $\left(u_{1}, u_{2}\right)$ to $\left(v_{1}, v_{2}\right)$ if and only if either u_{1} is adjacent to v_{1} in G_{1} or $u_{1}=v_{1}$ and u_{2} and v_{2} are adjacent in G_{2}. We are only concered with a particular kind of lexicographic product, $G \times \bar{K}_{n}$ (\bar{K}_{n} be a empty graph with n vertices). Observe that

$$
K_{n}(l t)=K_{n}(t) \otimes \bar{K}_{l} .
$$

Lemma 2.1. If there exists a $G-H D\left(t^{n}\right)$, then there exists a $G-H D\left((l t)^{n}\right)$ for any integer l.

Proof. Let $V\left(\bar{K}_{l}\right)=\{1,2, \cdots, l\}$, Take any $l \times l$ latin square and consider each element in the form (α, β, γ) where α denotes the row, β the column and γ the entry, with $1 \leq \alpha, \beta, \gamma \leq l$. We can construct l^{2} graphs G.

Graph 1. Let \boldsymbol{G} be a simple graph with five points-six edges.

$$
((a, i),(b, j),(c, k))-((c, k),(d, i),(e, j))(1 \leq i, j, k \leq l)
$$

Let K be a subset of positive integers. A pairwise balanced design $(\operatorname{PBD}(v, K))$ of order v with block sizes from K is a pair (Υ, \mathcal{B}), where Υ is a finite set (the point set) of cardinality v and \mathcal{B} is a family of subsets (blocks) of Υ which satisfy the properties:

1) If $B \in \mathcal{B}$, then $|B| \in K$.
2) Every pair of distinct elements of Υ occurs in exactly a blocks of \mathscr{B}.

Let K be a set of positive integers and

$$
B(K)=\{v \in N \mid \exists P B D(v, K)\}
$$

then $B(K)$ is the $P B D$-closure of K.
Lemma 2.2 [5] If $K=\{3,4,5,6,8\}$, then

$$
B(K)=\{n \in N \mid n \geq 3\} .
$$

Lemma 2.3 [5] If $K=\{3,4,6\}$, then

$$
B(K)=\{v \in N \mid n>3, n \equiv 0,1(\bmod 3)\}
$$

Lemma 2.4 [5] If $K=\{5,9,13,17,29,33\}$, then

$$
B(K)=\{v \in N \mid n>4, n \equiv 1(\bmod 4)\}
$$

Lemma 2.5 If there exists a $G-H D\left(t^{k}\right)$ where $k \in\{3,4$, $5,6,8\}$, then there exists a $G-H D\left(t^{n}\right)$ where $n \geq 3$.

Proof. Let X be $n(n \geq 3)$ element set and Z_{t} be a modulo t residual additive group. For $K=\{3,4,5,6,8\}$, take $Y=X \times Z_{t}$, by applying Lemma 2.2 , we assume that (X, \mathcal{A}) be a $\operatorname{PBD}(n, k)$. In the A, we take a block A, for $|A|=k \in K$, as there exists a $G-H D\left(t^{k}\right)$, let $A \times Z_{t}$ be the vertex set of $G-H D\left(t^{k}\right)$ and block set be $\mathcal{B}_{\mathcal{A}}$. be a $\mathscr{B}=\bigcup_{\mathcal{B}_{\mathcal{A}}}(A \in \mathcal{A})$, so (Y, \mathcal{B}) be a $G-H D(t n)$.

Similar to the proof of lemma 2.5 , We have the following conclusions.

Lemma 2.6 If there exists a $G-H D\left(t^{k}\right)$ for $k \in\{3,4$, $6\}$, then there exists a $G-H D\left(t^{n}\right)$ for $n \equiv 0,1(\bmod 3)$ and $n>3$.

Lemma 2.7 If there exists a $G-H D\left(t^{k}\right)$ for $k \in\{5,9$, $13,17,29,33\}$, then there exists a $G-H D\left(t^{n}\right)$ for $\mathrm{n} \equiv 1$ $(\bmod 4)$ and $n>4$.

Lemma 2.8 [2] For $n \equiv 1,9(\bmod 12)$, there exists a ($n, G, 1$)-GD.

Lemma 2.9 There exists a $G-H D\left(2^{3}\right)$.
Proof. Take $X=\{a, b, c, d, e, f\}$ and $G=\{\{a, b\},\{c, d\}$, $\{e, f\}\}$, we list vertex set and blocks below.

$$
\mathcal{B}:(a, d, f)-(f, c, b)(c, a, e)-(e, b, d)
$$

Lemma 2.10 There exists a $G-H D\left(2^{4}\right)$.
Proof. Take $X=Z_{8}$ and $G=\{\{0,4\},\{1,5\},\{2,6\}$, $\{3,7\}\}$, we list vertex set and blocks below

$$
\mathfrak{B}:(3,0,1)-(1,2,4)+2 \bmod 4
$$

Lemma 2.11 There exists a $G-H D\left(2^{6}\right)$.

Proof. Take $X=\mathrm{Z}_{12}$, and $G=\{\{0,5\},\{1,6\},\{2,7\}$, $\left.\{3,8\},\{4,9\},\left\{\infty_{1}, \infty_{2}\right\}\right\}$, we list vertex set and blocks below

$$
\begin{array}{r}
\mathscr{B}:(1+i, 3+i, i)-\left(i, 4+i, \infty_{1}\right)(i=0,1,2,3,4) \\
\quad(1+i, 3+i, i)-\left(i, 4+i, \infty_{2}\right)(i=5,6,7,8,9)
\end{array}
$$

Lemma 2.12 There exists a $G-H D\left(3^{5}\right)$.
Proof. Take $X=\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i}\right\}, X_{1}=\left\{a_{i}\right\} X_{2}=\left\{b_{i}\right\}$ $X_{3}=\left\{c_{i}\right\} X_{4}=\left\{d_{i}\right\} X_{5}=\left\{e_{i}\right\}(i=1,2,3)$, and $G=\left\{X_{1}, X_{2}\right.$, $\left.X_{3}, X_{4}, X_{5}\right\}$, we list vertex set and blocks below

$$
\begin{aligned}
& \mathcal{B}:\left(b_{1}, c_{1}, a_{1}\right)-\left(a_{1}, b_{3}, c_{3}\right) \\
&\left(a_{1}, c_{2}, b_{2}\right)-\left(b_{2}, a_{2}, e_{2}\right) \\
&\left(b_{1}, e_{1}, a_{2}\right)-\left(a_{2}, b_{3}, e_{3}\right) \\
&\left(e_{2}, d_{2}, a_{1}\right)-\left(a_{1}, e_{3}, d_{3}\right) \\
&\left(c_{2}, e_{2}, a_{3}\right)-\left(a_{3}, c_{3}, e_{3}\right) \\
&\left(a_{3}, c_{1}, e_{1}\right)-\left(e_{1}, a_{1}, d_{1}\right) \\
&\left(b_{1}, d_{1}, a_{3}\right)-\left(a_{3}, b_{2}, d_{2}\right) \\
&\left(c_{1}, d_{1}, a_{2}\right)-\left(a_{2}, c_{2}, d_{2}\right) \\
&\left(a_{2}, c_{3}, d_{3}\right)-\left(d_{3}, a_{3}, b_{3}\right) \\
&\left(e_{3}, d_{2}, b_{1}\right)-\left(b_{1}, c_{2}, d_{3}\right) \\
&\left(e_{1}, d_{3}, b_{2}\right)-\left(b_{2}, c_{3}, d_{1}\right) \\
&\left(e_{2}, d_{1}, b_{3}\right)-\left(b_{3}, c_{1}, d_{2}\right) \\
&\left(d_{3}, e_{2}, c_{1}\right)-\left(c_{1}, e_{3}, b_{2}\right) \\
&\left(d_{1}, e_{3}, c_{2}\right)-\left(c_{2}, e_{1}, b_{3}\right) \\
&\left(d_{2}, e_{1}, c_{3}\right)-\left(c_{3}, e_{2}, b_{1}\right)
\end{aligned}
$$

Lemma 2.13 There exists a $G-H D\left(3^{8}\right)$.
Proof. Take $X=Z_{24}$ and $G=\left\{\{i, i+8, i+16\}, i \in Z_{8}\right\}$, we list vertex set and blocks below

$$
\begin{aligned}
\mathcal{B}: & (5,9,2)-(2,11,13)+4 \bmod 24 \\
& (6,10,3)-(3,12,14)+4 \bmod 24 \\
& (3,21,2)-(2,20,1)+4 \bmod 24 \\
& (3,7,1)-(1,9,23)+4 \bmod 24 \\
& (23,5,18)-(18,6,16)+4 \bmod 24 \\
& (4,8,1)-(1,10,0)+4 \bmod 24 \\
& (0,6,19)-(19,7,17)+4 \bmod 24
\end{aligned}
$$

Lemma 2.14 There exists a $G-H D\left(3^{9}\right)$.
Proof. Take $X=Z_{27}$ and $G=\{\{i, i+9, i+18\}, i \in$ $\left.Z_{9}\right\}$, we list vertex set and blocks below

$$
\begin{aligned}
& \mathcal{B}:(2,13,0)-(0,4,12) \bmod 27 \\
& \quad(16,23,26)-(26,25,20) \bmod 27
\end{aligned}
$$

Lemma 2.15 There exists a $G-H D\left(3^{17}\right)$.
Proof. Take $X=Z_{51}$ and $G=\{\{i, i+17, i+34\}, i \in$
Z_{17}, we list vertex set and blocks below

$$
\begin{aligned}
\mathcal{B}: & (2,16,0)-(0,23,30) \bmod 51 \\
& (3,15,0)-(0,25,29) \bmod 51 \\
& (5,11,0)-(0,24,32) \bmod 51 \\
& (1,10,0)-(0,20,33) \bmod 51
\end{aligned}
$$

Lemma 2.16 There exists a $G-H D\left(3^{29}\right)$.
Proof. Take $X=Z_{87}$ and $G=\{\{i, i+29, i+58\}, i \in$ $\left.Z_{29}\right\}$, we list vertex set and blocks below

$$
\begin{aligned}
\mathcal{B}: & (43,52,0)-(0,1,4) \bmod 87 \\
& (42,53,0)-(0,2,27) \bmod 87 \\
& (41,54,0)-(0,5,23) \bmod 87 \\
& (40,55,0)-(0,6,26) \bmod 87 \\
& (39,70,0)-(0,7,28) \bmod 87 \\
& (38,68,0)-(0,8,24) \bmod 87 \\
& (37,73,0)-(0,10,22) \bmod 87
\end{aligned}
$$

Lemma 2.17 There exists a $G-H D\left(6^{k}\right)$, for $k \in\{3,4$, $5,6,8\}$.

Proof. By applying Lemma 2.9, 2.10, 2.11, 2.12, 2.13 and 2.1, we can obtain the result.

Lemma 2.18 There exists a $G-H D\left(3^{k}\right)$, for $k \in\{13$, 33\}.

Proof. By applying Lemma 2.8 and 2.1, we can obtain the result.

3. G-Designs of Complete Multipartite Graph

Theorem 3.1 The necessary conditions for the existence of a $G-H D\left(t^{n}\right)$ are sufficient for the following n and t :

1) $t \equiv 0(\bmod 6)$ and $n \geq 3$;
2) $\mathrm{t} \equiv 0(\bmod 2), t \neq 0(\bmod 3)$ and $n \equiv 0,1(\bmod 3)$,
3) $t \equiv 0(\bmod 3), t \neq 0(\bmod 2)$ and $n \equiv 1(\bmod 4)$,
4) $t \neq 0(\bmod 2), t \neq 0(\bmod 3)$ and $n \equiv 1,9(\bmod 12)$.

Proof. Necessary conditions are obviously, we prove the sufficient conditions.

1) For $t \equiv 0(\bmod 6)$ and $n \geq 3$, by applying Lemma 2.17 and 2.5.,
2) For $t \equiv 0(\bmod 2), t \neq 0(\bmod 3)$ and $n \equiv 0,1(\bmod 3)$ by applying Lemma 2.9, 2.10, 2.11 and 2.6.
3) For $t \equiv 0(\bmod 3), t \neq 0(\bmod 2)$ and $n \equiv 1(\bmod 4)$ by applying Lemma 2.12, 2.14, 2.15, 2.16, 2.18 and 2.7.
4) For $t \neq 0(\bmod 2), t \neq 0(\bmod 3)$ and $n \equiv 1,9$ $(\bmod 12)$, by applying Lemma 2.1 and 2.8.

REFERENCES

[1] J. C. Bermond and M. J Schonhei, "G-Decomposition of Kn, Where G Has Four Vertices or Less," Discrete Mathematics, Vol. 19, No. 2, 1997, pp. 113-120. doi:10.1016/0012-365X(77)90027-9
[2] J. C. Bermond, C. Huang, A. Rosa, et al., "Decomposition of Complete Graphs into Isomorphic Sutgraphs with Five Vertices," Ars Combinatoria, Vol. 10, 1980, pp. 293-318.
[3] K. Ushio, "G-Designs and Related Designs," Discrete Mathematics, Vol. 116, No. 1-3, 1993, pp. 299-311. doi:10.1016/0012-365X(93)90408-L
[4] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan Press, London, 1976.
[5] C. J. Colbourn and J. H. Dinitz, "The CRC Handbook of Combinatorial Designs," CRC Press Inc., Boca Raton, 1996. doi:10.1201/9781420049954

