

G-Design of Complete Multipartite Graph Where G Is Five Points-Six Edges

Chengyang Gu, Wei Zhou

School of Mathematical Sciences, Huaiyin Normal University, Huai'an, China Email: gcy1964@sina.com, gcy@hytc.edu.cn

Received March 3, 2012; revised April 27, 2012; accepted May 5, 2012

ABSTRACT

In this paper, we construct G-designs of complete multipartite graph, where G is five points-six edges.

Keywords: Complete Multipartite Graph; Graph Design; Latin Square

1. Introduction

Let K_v be a complete graph with v vertices, and G be a simple graph with no isolated vertex. A G-design (or G-decomposition) is a pair (X, B), where X is the vertex set of K_v and B is a collection of subgraphs of K_v , called blocks, such that each block is isomorphic to G and any edge of K_v occurs in exactly a blocks of B. For simplicity, such a G-design is denoted by G-GD(v). Obviously, the necessary conditions for the existence of a G-GD(v) are

$$v \ge |V(G)|$$

$$v(v-1) \equiv 0 \mod 2 |E(G)|, \qquad (1)$$

$$v-1 \equiv 0 \mod d$$

where *d* is the greatest common divisor of the degrees of the vertices in V(G).

Let K_{n_1,n_2,\cdots,n_m} be a complete multipartite graph with vertex set $X = \bigcup_{i=1}^m X_i$, where these X_i are disjoint and $|X_i| = n_i$, $1 \le i \le m$. For a given graph G, a holey G-design, denoted by (X, G, \mathcal{B}) , where X is the vertex set of K_{n_1,n_2,\cdots,n_m} , $G = \{X_1, X_2, \cdots, X_m\}$ (X_i called hole) and \mathcal{B} is a collection of subgraphs of K_{n_1,n_2,\cdots,n_m} called blocks, such that each block is isomorphic to G and any edge of K_{n_1,n_2,\cdots,n_m} occurs in exactly a blocks of \mathcal{B} . When the multipartite graph has k_i partite of size $n_i \ 1 \le i \le r$, the holey G-design is denoted by $G - HD(n_1^{k_1}n_2^{k_2}\cdots n_r^{k_r})$. When $n_1 = n_2 = \cdots = n_m = n$, the holey G-design is denoted by $G - HD(n^m)$ (also known as G-decomposition of complete multipartite graph $K_n(t)$).

On the *G*-design of existence has a lot of research. Let *k* be the vertex number of *G*, When $k \le 4$, J. C. Bermond proved that condition (1) is also sufficient in [1]; When *k*

= 5, J. C. Bermond gives a complete solution in [2]. When $G = S_k$, P_k and C_k , K. Ushio investigated the existence of G-design of complete multipartite graph in [3]. In this paper, G-designs of complete multipartite graph, where G is five points-six edges is studied. Necessary and sufficient conditions are given for the G-designs of complete multipartite graph $K_n(t)$. For graph theoretical term, see [4].

2. Fundamental Theorem and Some Direct Construction

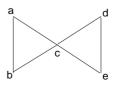
Let G be a simple graph with five points-six edges (see **Graph 1**). G is denoted by (a, b, c)-(c, d, e).

The lexicographic product $G_1 \otimes G_2$ of the graphs G_1 and G_2 is the graph with vertex set $V(G_1) \times V(G_2)$ and an edge joining (u_1, u_2) to (v_1, v_2) if and only if either u_1 is adjacent to v_1 in G_1 or $u_1 = v_1$ and u_2 and v_2 are adjacent in G_2 . We are only concered with a particular kind of lexicographic product, $G \times \overline{K}_n$ (\overline{K}_n be a empty graph with n vertices). Observe that

$$K_n(lt) = K_n(t) \otimes \overline{K}_l$$

Lemma 2.1. If there exists a G- $HD(t^n)$, then there exists a G- $HD((lt)^n)$ for any integer l.

Proof. Let $V(\overline{K}_l) = \{1, 2, \dots, l\}$, Take any $l \times l$ latin square and consider each element in the form (α, β, γ) where α denotes the row, β the column and γ the entry, with $1 \le \alpha, \beta, \gamma \le l$. We can construct l^2 graphs *G*.



Graph 1. Let *G* be a simple graph with five points-six edges.

$$((a,i),(b,j),(c,k)) - ((c,k),(d,i),(e,j)) (1 \le i, j,k \le l)$$

Let K be a subset of positive integers. A pairwise balanced design (PBD(v, K)) of order v with block sizes from K is a pair $(\mathcal{Y}, \mathcal{B})$, where \mathcal{Y} is a finite set (the point set) of cardinality v and B is a family of subsets (blocks) of \mathcal{Y} which satisfy the properties:

1) If $B \in \mathcal{B}$, then $|B| \in K$.

2) Every pair of distinct elements of γ occurs in exactly a blocks of \mathcal{B} .

Let *K* be a set of positive integers and

 $B(K) = \{ v \in N | \exists PBD(v, K) \},\$

then B(K) is the *PBD-closure* of K.

Lemma 2.2 [5] If $K = \{3, 4, 5, 6, 8\}$, then

$$B(K) = \left\{ n \in N \mid n \ge 3 \right\}.$$

Lemma 2.3 [5] If $K = \{3, 4, 6\}$, then

$$B(K) = \{ v \in N \mid n > 3, n \equiv 0, 1 \pmod{3} \}$$

Lemma 2.4 [5] If $K = \{5, 9, 13, 17, 29, 33\}$, then

$$B(K) = \{v \in N \mid n > 4, n \equiv 1 \pmod{4}\}$$

Lemma 2.5 If there exists a *G*-*HD*(t^k) where $k \in \{3, 4, ..., k\}$ 5, 6, 8}, then there exists a G- $HD(t^n)$ where $n \ge 3$.

Proof. Let X be $n(n \ge 3)$ element set and Z_t be a modulo *t* residual additive group. For $K = \{3, 4, 5, 6, 8\}$, take $Y = X \times Z_t$, by applying Lemma 2.2, we assume that (X, \mathcal{A}) be a *PBD*(n, k). In the *A*, we take a block *A*, for $|A| = k \in K$, as there exists a G- $HD(t^k)$, let $A \times Z_t$ be the vertex set of G-HD (t^k) and block set be $\mathcal{B}_{\mathfrak{g}}$. be a $\mathcal{B} = \bigcup \mathcal{B}_{\mathcal{A}} (A \in \mathcal{A})$, so (Y, \mathcal{B}) be a *G*-HD(tn).

Similar to the proof of lemma 2.5, We have the following conclusions.

Lemma 2.6 If there exists a G- $HD(t^k)$ for $k \in \{3, 4, 4\}$ 6}, then there exists a *G*-*HD*(t^n) for $n \equiv 0, 1 \pmod{3}$ and n > 3.

Lemma 2.7 If there exists a G- $HD(t^k)$ for $k \in \{5, 9, ..., N\}$ 13, 17, 29, 33}, then there exists a G- $HD(t^n)$ for $n \equiv 1$ (mod 4) and n > 4.

Lemma 2.8 [2] For $n \equiv 1, 9 \pmod{12}$, there exists a (*n*, *G*, 1)-*GD*.

Lemma 2.9 There exists a G- $HD(2^3)$.

Proof. Take $X = \{a, b, c, d, e, f\}$ and $G = \{\{a, b\}, \{c, d\}, d\}$ $\{e, f\}$, we list vertex set and blocks below.

$$\mathcal{B}:(a,d,f)-(f,c,b)(c,a,e)-(e,b,d)$$

Lemma 2.10 There exists a G- $HD(2^4)$.

Proof. Take $X = Z_8$ and $G = \{\{0, 4\}, \{1, 5\}, \{2, 6\}, \}$ $\{3, 7\}\}$, we list vertex set and blocks below

 $\mathcal{B}: (3,0,1) - (1,2,4) + 2 \mod 4$

Lemma 2.11 There exists a G- $HD(2^6)$.

Proof. Take $X = Z_{12}$, and $G = \{\{0, 5\}, \{1, 6\}, \{2, 7\}, \}$ $\{3, 8\}, \{4, 9\}, \{\infty_1, \infty_2\}\},$ we list vertex set and blocks below

$$\mathcal{B}: (1+i,3+i, i) - (i,4+i,\infty_1)(i=0,1,2,3,4) (1+i,3+i, i) - (i,4+i,\infty_2)(i=5,6,7,8,9)$$

Lemma 2.12 There exists a G- $HD(3^5)$.

(-

Proof. Take $X = \{a_i, b_i, c_i, d_i, e_i\}, X_1 = \{a_i\} X_2 = \{b_i\}$ $X_3 = \{c_i\} X_4 = \{d_i\} X_5 = \{e_i\} (i = 1, 2, 3), \text{ and } G = \{X_1, X_2, A_3\}$ X_3, X_4, X_5 , we list vertex set and blocks below

-

$$\begin{split} & \mathcal{B} : (b_1, c_1, a_1) \cdot (a_1, b_3, c_3) \\ & (a_1, c_2, b_2) \cdot (b_2, a_2, e_2) \\ & (b_1, e_1, a_2) \cdot (a_2, b_3, e_3) \\ & (e_2, d_2, a_1) \cdot (a_1, e_3, d_3) \\ & (c_2, e_2, a_3) \cdot (a_3, c_3, e_3) \\ & (a_3, c_1, e_1) \cdot (e_1, a_1, d_1) \\ & (b_1, d_1, a_3) \cdot (a_3, b_2, d_2) \\ & (c_1, d_1, a_2) \cdot (a_2, c_2, d_2) \\ & (a_2, c_3, d_3) \cdot (d_3, a_3, b_3) \\ & (e_3, d_2, b_1) \cdot (b_1, c_2, d_3) \\ & (e_1, d_3, b_2) \cdot (b_2, c_3, d_1) \\ & (e_2, d_1, b_3) \cdot (b_3, c_1, d_2) \\ & (d_3, e_2, c_1) \cdot (c_1, e_3, b_2) \\ & (d_1, e_3, c_2) \cdot (c_2, e_1, b_3) \\ & (d_2, e_1, c_3) \cdot (c_3, e_2, b_1) \end{split}$$

Lemma 2.13 There exists a G- $HD(3^8)$.

Proof. Take $X = Z_{24}$ and $G = \{\{i, i + 8, i + 16\}, i \in Z_8\},\$ we list vertex set and blocks below

> $\mathcal{B}: (5,9,2) - (2,11,13) + 4 \mod 24$ $(6,10,3)-(3,12,14)+4 \mod 24$ $(3,21,2)-(2,20,1)+4 \mod 24$ $(3,7,1)-(1,9,23)+4 \mod 24$ $(23,5,18) - (18,6,16) + 4 \mod 24$ $(4,8,1)-(1,10,0)+4 \mod 24$ $(0,6,19)-(19,7,17)+4 \mod 24$

Lemma 2.14 There exists a G- $HD(3^9)$.

Proof. Take $X = Z_{27}$ and $G = \{\{i, i + 9, i + 18\}, i \in$ Z_9 , we list vertex set and blocks below

 $\mathcal{B}:(2,13,0)-(0,4,12) \mod 27$

 $(16, 23, 26) - (26, 25, 20) \mod 27$

Lemma 2.15 There exists a G- $HD(3^{17})$. **Proof.** Take $X = Z_{51}$ and $G = \{\{i, i + 17, i + 34\}, i \in$ Z_{17} , we list vertex set and blocks below

 $\mathscr{B}:(2,16,0)-(0,23,30) \mod 51$ (3,15,0)-(0,25,29) mod 51 (5,11,0)-(0,24,32) mod 51 (1,10,0)-(0,20,33) mod 51

Lemma 2.16 There exists a G- $HD(3^{29})$.

Proof. Take $X = Z_{87}$ and $G = \{\{i, i + 29, i + 58\}, i \in Z_{29}\}$, we list vertex set and blocks below

 $\mathcal{B}: (43, 52, 0) - (0, 1, 4) \mod 87$ $(42, 53, 0) - (0, 2, 27) \mod 87$ $(41, 54, 0) - (0, 5, 23) \mod 87$ $(40, 55, 0) - (0, 6, 26) \mod 87$ $(39, 70, 0) - (0, 7, 28) \mod 87$ $(38, 68, 0) - (0, 8, 24) \mod 87$ $(37, 73, 0) - (0, 10, 22) \mod 87$

Lemma 2.17 There exists a *G*-*HD*(6^k), for $k \in \{3, 4, 5, 6, 8\}$.

Proof. By applying Lemma 2.9, 2.10, 2.11, 2.12, 2.13 and 2.1, we can obtain the result.

Lemma 2.18 There exists a G- $HD(3^k)$, for $k \in \{13, 33\}$.

Proof. By applying Lemma 2.8 and 2.1, we can obtain the result.

3. *G*-Designs of Complete Multipartite Graph

Theorem 3.1 The necessary conditions for the existence of a G- $HD(t^n)$ are sufficient for the following n and t:

1) $t \equiv 0 \pmod{6}$ and $n \ge 3$;

2) $t \equiv 0 \pmod{2}, t \neq 0 \pmod{3}$ and $n \equiv 0, 1 \pmod{3}$,

3) $t \equiv 0 \pmod{3}, t \neq 0 \pmod{2}$ and $n \equiv 1 \pmod{4}$,

4) $t \neq 0 \pmod{2}, t \neq 0 \pmod{3}$ and $n \equiv 1, 9 \pmod{12}$.

Proof. Necessary conditions are obviously, we prove the sufficient conditions.

1) For $t \equiv 0 \pmod{6}$ and $n \ge 3$, by applying Lemma 2.17 and 2.5.,

2) For $t \equiv 0 \pmod{2}$, $t \neq 0 \pmod{3}$ and $n \equiv 0, 1 \pmod{3}$ by applying Lemma 2.9, 2.10, 2.11 and 2.6.

3) For $t \equiv 0 \pmod{3}$, $t \neq 0 \pmod{2}$ and $n \equiv 1 \pmod{4}$ by applying Lemma 2.12, 2.14, 2.15, 2.16, 2.18 and 2.7.

4) For $t \neq 0 \pmod{2}$, $t \neq 0 \pmod{3}$ and $n \equiv 1, 9 \pmod{12}$, by applying Lemma 2.1 and 2.8.

REFERENCES

- J. C. Bermond and M. J Schonhei, "G-Decomposition of Kn, Where G Has Four Vertices or Less," *Discrete Mathematics*, Vol. 19, No. 2, 1997, pp. 113-120. doi:10.1016/0012-365X(77)90027-9
- [2] J. C. Bermond, C. Huang, A. Rosa, *et al.*, "Decomposition of Complete Graphs into Isomorphic Sutgraphs with Five Vertices," *Ars Combinatoria*, Vol. 10, 1980, pp. 293-318.
- K. Ushio, "G-Designs and Related Designs," *Discrete Mathematics*, Vol. 116, No. 1-3, 1993, pp. 299-311. doi:10.1016/0012-365X(93)90408-L
- [4] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan Press, London, 1976.
- [5] C. J. Colbourn and J. H. Dinitz, "The CRC Handbook of Combinatorial Designs," CRC Press Inc., Boca Raton, 1996. <u>doi:10.1201/9781420049954</u>