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ABSTRACT

This short exposition is about some commutativity conditions on a semiprime right Goldie C;-ring. In particular, it is
observed here that a semiprime right Goldie C,-ring with symmetric quotient is commutative. The statement holdsiif the
symmetric ring is replaced by reduced, 2-primal, left duo, right duo, abelian, NI, NCI, IFP, or Armendariz ring.
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In this short note we expose some commutativity condi-
tions on a semiprime right Goldie C,-ring. All rings here
are associative with an identity. A ring 4 is said to be a
C;-ring, as introduced by Chuang and Lin in 1989 in [1],
if for very pair of elementsx, y € 4, there exist integers
m = m(x, y) and n = n(x, y) such that

], =0

where [x, y]; is the kth-commutator defined by Klein,
Nada, and Bell in[2] in 1980, as

[x.7], =[[x¥]_.v] where [x,y] =[x»].

A ring is called a symmetric ring (in the sense of Lam-
bek [3]), if whenever rab =0, then rba =0, Vr,a,be 4,
semiprime (respt. reduced) if A has no non-zero nilpotent
ideal (respt. lement) and von Neumann regular if for
eacha € 4, there existsr € A4 such that ara = a. A ring
is right Goldie in case it has finite right uniform dimen-
sion and satisfies acc on right annihilators.

In[1; Theorem 1] Chaung-Lin proved that:

Lemma 1: Every reduced Cy-ring is commutative.

We useit to prove the following.

Theorem: A semiprime right Goldie Cy-ring with sym-
metric right quotient is commutative.

Proof: Lambek in [3; Section 1G] proved that every
reduced ring is symmetric. We prove that the converse
holds for von Neumann regular rings. In deed, one may
deduce easily that 4 is symmetric if and only if

aa,---a, =0,
then
=0,

Gpp(2)" Apr) =

where a;, a,; € A and p is a one-to-one correspondence
ontheset {1, 2, -, k}. Let a € N(4) be anon-zero ele-
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ment of some index n. Since 4 is von Neumann regular,
for somex e 4,

a=axa= (ax)"_la )

But 4 is symmetric and &" = 0, which implies that a =
a"x" 1= 0. Hence 4 is reduced.

The famous Goldie's Theorem states that aring 4 is
semiprime right Goldie if and only if 4 has a right quo-
tient ring B which is semisimple Artinian [4; Theorem
2.3.6]. But a semisimple Artinian ring is von Neumann
regular [5; Theorem 1.7]. Since B is symmetric and now
von Neumann regular, therefore B is reduced. This
means that 4 is reduced. Since 4 is a C;-ring, by the
Lemma 1, we get that 4 is commutative. m

The statement of the Theorem remains unchanged if
we replace the condition of the ring being symmetric by
2-primal, abelian, left or right duo, NI, NCI, IFP, quasi-
IFP, near-1FP, Armendariz, weak-Armendariz, and some
other relationsthat are listed in Lemma 2.

Let us denote by N(A) the set of al nilpotent elements
of 4. For areduced ring N(4) =0, and aring is NI if N(A)
is anideal [6], NCI if N(4) contains a nonzero ideal [7],
and 2-primal if N(A) is the intersection of prime ideds
[8]. A ring 4 is said to have “Insertion of factor property
(in short, IFP) [9] in case for any pair of elements a, b of
A, if ab =0, then arb = 0 for al e 4. Suchrings are
also termed as semicommutative in literature, we simply
cal them IFP rings. Near-IFP (respt. quasi-IFP) rings
are introduced recently in [10] (respt. in [11]), and are
characterized asdaA contains a non-zero nilpotent ideal
of 4 for any O0#ae 4 in [10; Proposition 1.2] (respt.
AaA is anilpotent ideal of 4 for any Ozae A in[11;
Lemma1.3]).

By definitions, every reduced ring is an IFP ring, an
IFP ring is a quasi-IFP ring, and a quasi-IFP ring is a
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near-/FP ring. The converse need not be true in genera
(see the Example below) but for a semiprime ring it
holds.

A ring A is called Armendariz in [12] if whenever
polynomials in A[x] , f(x) =a,+ax+--+a,x" and
g(x)=by+bx+---+bx" saisfy f(x)g(x)zo , then
for each 7, j, ab; =0 and wesk Armendariz in [13] if
whenever (a,+ayx)(b, +bx)=0, then for each i, j,
ab,=0.

F/or several interactions and various characterizations
with examples and counter examples of these rings which
we have discussed above the interested reader may refer
tothe articles[4,11,12,14,15)].

Example: It is clear from the examples and counter
examples in above citations that the rings listed above are
different from each other, but we found no example for
near-/FP and quasi-IFP rings to be different in literature.
By definitions, quasi-IFP is near-IFP, we prove that the
opposite may not be true.

Let R bearingand /=0 anilpotent idea of R such
that every element of R—1/ is a unit. For example, a
local ring is of this type. By Proposition 1.10 [10]
R, =Mat,(R) is near-IFP. LetO=(r,)e N(R,). It is
clear that

Rn (’/;j)RVl :Rn

is nilpotent if 7, e I, otherwise not nilpotent in general.
Theideal R Mat,(I)R, of R, isproper and nilpotent.
Hence we concludethat R, isnot quasi-IFP. m

Now we give a list of rings which coincide on the
condition of von Neumann regularity. Here P stands for
some property, for instance, property for being reduced,
etc.

Lemma 2: Let A be a von Neumann regular ring. Then
the following are equivalent.

(P1) A4 is reduced,

(P2) A is left (or right) duo;

(P3) A4 is abelian;

(P4) 4 is 2-primal,

(P5) 4 is symmetric;

(P6) A is NI,

(P7) A4 is NCI

(P8) 4 is IFP;

(P9) 4 is quasi-IFP;

(P10) 4 is near-IFP;

(P11) A4 is a subdirect product of division ring;

(P12) 4 is Armendariz,

(P13) 4 is weak Armendariz,

(P14) If a,a’,a"e A, such that aa"=0=a"" with
n>1,then ad'a"=0.

(P15) If a,a’,a" e A, such that aa"=0=a'?, then
aa'a"=0.

Proof: The equivalence (P1) < (P5) is proved in the
Theorem above. Equivalences of (P1)-(P4) and (P6) and
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(P7) hold in [11; Proposition 1.4]. It is clear by defini-
tions that every reduced ring is IFP, every IFP ring is
quasi-1FP and every quasi-IFP ring is near IFP. Thus

(P1) = (P8) = (P9) = (P10).

Because a von Neumann regular ring is semiprime, by
[10; Proposition 1.4], for a semiprime ring a near-IFP
ring is reduced, giving the equivalence (P1) < (P10).
Equivaences of (PL1)-(P3), (P6), (P8) and (P10) also hold
in [10; Proposition 1.6]. The equivalence of a von Neu-
mann regular ring to be reduced, Armendariz, and weak
Armendariz is proved in [14; Lemma 2.4]. Findly, the
equivalences

(Pl) & (P2) & (P3) & (P8) < (P11) < (P12)
< (P13) & (P14) < (P15)

areestablished in[14; Lemma2.4]. m

Lemma 3 Let A be a semiprime ring of bounded index
of nilpotency. Then the following conditions are equiva-
lent:

(P1) A is reduced,

(P4) A is 2-primal,;

(P6) 4 is NI;

(P7) A is NCI,;

(P8) 4 is IFP;

(P9) 4 is quasi-IFP.

Proof: (Pl) < (P4 < (P6) < (P7) hold by [7;
Proposition 1.3], (P1) < (P6) < (P8) < (P10) hold
by [10; Proposition 1.5] while (Pl) < (P4) < (P6)
< (P8) < (P9) holdin[11; Proposition 1.6]. m

The consequences of the Theorem and above lemmas
are the following.

Corallary 1: A Cy-von Neumann regular ring is com-
mutative if any one of the properties (P1)-(P15) of Lemma
2 is satisfied.

Corollary 2: A C-semiprime ring of bounded index of
nilpotency is commutative if any one of the properties
(PY), (P4), (P6)-(P9) of Lemma 3 is satisfied.

Corollary 3: Let A be a semiprime right Goldie ring
and B its classical ring of quotients. Then the ring B sat-
isfies all equivalent conditions from (Pl) to (P15) of
Lemma 2. Moreover, for the ring A, the conditions (P1),
(P4), (P8), (P9), (P10), (P12) and (P13) of Lemma 2 are
mutually equivalent and are also equivalent to above
each of fifteen conditions for the ring B.

Proof: Equivalence of (P1) to (P15) is followed from
[14; Theorem 2.6] and Lemma 1.2.

If 4 is near-IFP and semiprime, and if « is nilpotent,
then every ideal of 4aA is zero. Hence, in particular, a is
zero, and 4 is reduced. So, (P1), (P8)-(P10) are equiva-
lent for the ring 4. Equivalence of (P1) and (P4) for the
ring 4 is obvious and for the same ring (P12) and (P13)
are followed from [14; Theorem 2.6]. m

Corollary 4: A semiprime right Goldie Ci-ring is
commutative if its classical ring of quotient satisfies any
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one of the properties (P1)-(P15) as listed in Lemma 2.
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