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ABSTRACT 

Compiler is a program whose functionality is to translate a computer program written in source language into an 
equivalent machine code. Compiler construction is an advanced research area because of its size and complexity. The 
source codes are in higher level languages which are usually complex and, consequently, increase the level of abstrac- 
tion. Due to such reasons, design and construction of error free compiler is a challenge of the twenty first century. Veri- 
fication of a source program does not guarantee about correctness of code generated because the bugs in compiler may 
lead to an incorrect target program. Therefore, verification of compiler is more important than verifying the source pro- 
grams. Lexical analyzer is a main phase of compiler used for scanning input and grouping into sequence of tokens. In 
this paper, formal construction of deterministic finite automata (DFA) based on regular expression is presented as a part 
of lexical analyzer. At first, syntax tree is described based on the augmented regular expression. Then formal descrip- 
tion of important operators, checking null-ability and computing first and last positions of internal nodes of the tree is 
described. In next, the transition diagram is described from the follow positions and converted into deterministic finite 
automata by defining a relationship among syntax tree, transition diagram and DFA. Formal specification of the proce- 
dure is described using Z notation and model analysis is provided using Z/Eves toolset. 
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1. Introduction 

A compiler is itself a computer program which translates 
computer program written in source language into an 
equivalent machine code. The translation process is called 
compilation divided into phases reducing complexity of 
the compiler. The source code is always written in a 
higher level language in comparison to machine code. The 
higher level languages are usually complex in nature and 
consequently increase the level of abstraction between 
source code and the resulting machine code. Therefore, 
the increased complexity requires formalizing such abstract 
structures for construction and verification of a com- 
piler. 

Compiler construction is considered as an advanced 
research area due to the size and complexity of the code 
generated. The design and construction of a fully verified 
compiler will remain a challenge of the twenty first 
century. Although there exists much work on compiler 
construction and verification but it needs further in- 
vestigation. This is because the bugs in the compiler can 
lead to an incorrect machine code even the source 
program is completely verified to be correct. Bugs which 
are detected in the executable machine code might be due 
either the source program or the compiler itself. It means 

writing correct compiler is more important than writing a 
correct program to be compiled which has led the scientific 
community to investigate in this area. 

Formal methods are mathematics-based techniques 
used for specification and verification of systems [1]. The 
process of verification means applying formal techniques 
to verify the properties of systems to be correct. Formal 
verification targets the program to check its semantics by 
giving precise meanings to that program. Formal spe- 
cification is a mathematical description of a system in 
terms of set theory and first order or higher logic. The 
benefits of using mathematics in systems development are 
obvious. Although, there are some disadvantages of using 
mathematical notations but the application of formal 
methods has proved that its use is required for correct 
modeling and specification of systems [2].  

Lexical analyzer is an important part of compiler which 
scans input stream dividing groups into tokens. The 
tokens are sequences of characters which have meanings 
in collective format. The preliminary results of this re- 
search describing formal construction of syntax tree from 
regular expression were described in [3]. In that research, 
some errors and inconsistencies were identified which are 
fixed and refined here. In this paper, direct formal con-  
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struction of deterministic finite automata (DFA) based on 
regular expression is presented using Z notation. Regular 
expression, which is in fact the source program, is 
described by defining all of its possible constructs and 
variables. The regular expression is augmented by joining 
a special symbol at the end. An abstract syntax tree is 
described based on the augmented regular expression. The 
operators of the regular expression are assumed as internal 
nodes and alphabets are taken as children nodes of the 
syntax tree. Then formal description of three important 
operators checking null-ability and computing first and 
last positions of all the internal nodes of the syntax tree are 
described. Nullable is a Boolean function having value 
true or false and its value depends upon the type of node. 
First and last position functions are collection of identifiers 
of a node computed based on its children. The nullable 
and positions functions are used for description of the 
follow position function used for transition diagram. 
Finally, the diagram is converted into deterministic finite 
automata by defining a relationship among syntax tree, 
transition diagram and DFA. Formal specification of the 
algorithm is described using Z notation and model analy- 
sis is provided using Z/Eves toolset. 

Although integration of approaches has become a well- 
researched area in computer science [4-6] but there does 
not exist much research work on construction and veri- 
fication of compiler by linking formal techniques and 
automata theory. Dong et al. have described an integration 
of timed automata and Object Z [7,8]. R. L. Constable has 
presented formal description of few important concepts of 
automata theory [9,10]. A formal relationship is explored 
between Petri-nets and Z notation in [11]. Formal analysis 
of UML is presented in [12,13] using B. An introduction 
to algebraic structures is investigated using fuzzy automata 
in [14]. A formal procedure of fuzzy automata and 
language theory is discussed in [15]. An important notion 
of algebraic and automata theories is presented in [16]. 
Rest of the paper is organized as follows: 

In Section 2, an introduction to Z is given. In Section 3, 
reasoning to construct verified complier is provided. For- 
mal construction of DFA is described in Section 4. Formal 
analysis of the model is presented in Section 5. Conclusion 
and future work are discussed in Section 6. 

2. An Introduction to Z Notation 

Formal methods are mathematical approaches used for 
describing properties of software systems using computer 
tools. These techniques are based on discrete structures 
such as logic, sets, relations, functions, graphs and auto- 
mata. Formal approaches may be classified as property 
oriented and model descriptive. Property based methods 
are used to describe software in terms of properties and 
invariants. Model oriented methods are used to construct 
model of a system emphasizing statics and dynamics of a 

software system. Although there are various formal nota- 
tions, the integration of formal and existing approaches 
for complete and consistent description of systems is still 
required at the current stage of development of formal 
methods. 

There exist various traditional methods which are used 
for expressing software specifications using computer 
tools for checking properties of systems. The use of such 
methods requires a full commitment because the specifi- 
cation of the system must be used to construct a complete 
and consistent model which will be assumed as a baseline 
for the further development. For incomplete models such 
methods are not effective, however, for a complete 
validation and verification of large scale software speci- 
fication, it needs to apply mathematics-based techniques 
to overcome the weaknesses of these traditional approaches. 
Experience of applying formal notations shows that it is a 
best option for modeling complex particularly safety 
critical systems for checking and verifying the properties. 

Z notation is a model centered approach based on 
fundamental structures such as, sets, sequences, bags, 
relations, functions and, predicate and propositional logic 
used at an abstract level of specification [17]. The Z is 
usually used for specifying behavior of sequential 
programs by the abstract data types and has standard set 
operators, including union, intersection, comprehensions, 
Cartesian products and power sets. The Z allows organizing 
a system into its smaller components using a powerful 
data structure named schema. The schema defines a way 
in which state of a system can be specified and further 
refined by describing detail of a system. Schema has two 
parts one for variables definitions and other for defining 
properties of the variables. Refinement is a promising way 
of Z supporting verifiable transformation from an abstract 
specification into an executable code. Specification de- 
scribed in Z can further be refined and transformed to an 
implemented system. 

3. Lexical Analyzer 

The primary objective of compiler construction is to prove 
that it is correct and error free. Constructive formulation 
of showing correct compiler in terms of syntax and 
semantics translation processes from source to target 
languages effectively is a major issue in compiler con- 
struction. As a sub-problem, compiler verification has 
become an open research problem in compiler construction. 
Compiler verification is an area of software engineering in 
which it is required to prove that compiler behaves exactly 
as the language description. Software testing and use of 
formal approaches are two main techniques for validation 
and verification in construction of a compiler. Testing of 
compiler has various disadvantages similar to testing of 
other computer programs. It is impossible to prove by 
testing that a compiler is completely correct, error free and  
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often used for traditional description and specification of 
systems. There are some disadvantages of using mathe- 
matical notations. For example, people understand more 
use of natural languages than complex mathematical 
structures in the area of computer science. However, the 
uses and benefits of formal methods are observed in 
modeling and designing of computer systems.  

optimized. There exists much research work showing and 
referring that most of the tested compilers have bugs and 
errors [18]. Therefore, it is required to find approaches for 
correct and optimal construction of compiler. Application 
of formal methods in compiler verification is an alternative 
way to find proofs ensuring correctness and reducing 
complexity of code of construction procedure. It is realized 
that construction of a fully verified compiler has become a 
challenge of the twenty first century [19].  

The main functionality of a compiler is to translate a 
source code into an executable and optimized machine 
code. An accuracy in compiler construction has much 
importance because the bugs in the compiler can lead to 
an incorrect code even the source program is verified. 
Functionality of lexical analyzer is to scan the input 
stream of characters from left to right and grouping it into 
tokens. The tokens are sequences of characters having 
meanings in a grouped format. Verification of lexical 
analyzer is an important phase of compiler. There are two 
primary methods for implementing the lexical analyzer. 
The first one is a hard coded program to perform the 
scanning tasks in which main loop in the program reads 
characters one by one from the input program and uses a 
switch statement to process it. The output of the procedure 
is a sequence of tokens from the source program. The 
second one uses regular expressions and automata theory 
to model the scanning process. In this method, the source 
program is read character by character beginning with the 
start state. After reading a character, the transition function 
is used to move from current state to the next one. In a 
final state, it is checked if the token read is reserved word, 
it is passed to the token stream as output, otherwise, its 
name is put in the symbol table if does not exist already. 
After a final state is reached, an associated action is 
performed and the same process is continued. If we are not 
able to reach a final state an error is encountered. In this 
case, error handling called upon is used for error recovery. 
The input is a regular expression and output is a collection 
of tokens identified by an automaton [20]. 

4. Formal Specification 

In this section, at first, benefits of formal specification are 
addressed. Then direct formal construction of deterministic 
finite automata based on regular expression is presented 
using Z notation. A syntax tree is constructed from regular 
expression before construction of the automaton. 

4.1. Importance of Specification 

4.2. Definitions 

Symbol is an abstract entity. Letters, digits and punctuation 
are examples of it. Alphabet is a finite set of symbols used 
to build larger structures. In automata theory, alphabet is 
usually denoted by the Greek letter sigma ∑.  

Example: ∑ = {a, b, c} is an alphabet, where a, b, c are 
symbols, and abcb is a structure.  

Empty String: consists of zero symbol and is denoted 
by ε. 
∑*: is a set of all possible strings that can be generated 

from a given alphabet ∑.  
Regular Expression: is a rule to define the set of words 

that are valid tokens in a formal language. The regular 
expressions are usually built up from three operators 
named as concatenation, alternation and repetition. 

4.3. Regular Expressions 

Formal specification of extended regular expression is 
given in this section. Then regular expression is generalized 
by removing the special symbol as an end character which 
is used to show the end of input string given to the lexical 
analyzer. Internal node of the syntax tree is defined to 
have information including left and right positions, and 
nullable variables. The syntax tree is described based on 
the given regular expression. Then functions for comput- 
ing left positions, right positions and nullable operator for 
every node of the syntax tree are described. Further, fol- 
lows of all internal nodes are computed. Finally, deter- 
ministic finite automata is described based on the transi- 
tion diagram constructed from the syntax tree. Although 
we are well-acquainted with the regular expressions but a 
brief review is given below before its formal description. 

In formal specification of extended regular expression, 
four main components are assumed as listed in the schema 
ERE given below. The first one is terminals which is a 
collection of all the alphabets of the language. The second 
is a set of operators representing internal nodes in the 
syntax tree. The operators has values concatenation, alter- 
nation (union) and repetition. The third one is a collection 
of symbols which is a finite set of symbols other than 
operators and terminals representing children in the syntax 
tree. The fourth component is extended regular expression 
represented by ere and is a sequence of symbols. The 
Symbol, Terminal and Operator are sets at an abstract 
level of specification over which operators, for example, 
union, intersection and complement cannot be defined. 

Formal specification is a description of a system using 
mathematical notations and abstract models in terms of set 
theory and first order or higher order logic. The benefits of 
using mathematics in system development are obvious, 
for example, the models are precise and un-ambiguous 
unlike the model described in natural languages which are  
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[Symbol]; Terminal = = Symbol Invariants: 1) The intersection of sets terminals and 
operators in the grammar is an empty set. 2) Each ele- 
ment in the set of terminals is an element of set of sym- 
bols. 3) Each element in the set of operators is also an 
element of set of symbols. 4) The repetition, concatena- 
tion and alternation are elements of the set of operators. 5) 
The left parenthesis, right parenthesis and hash are ele- 
ments of the set of symbols. 6) The last element of input 
string is hash symbol showing end of file. There does not 
exit hash symbol in rest of the input string. 7) If the 
regular expression is non-empty, then its left most ele- 
ment cannot be the alternation, repetition or concatena- 
tion operator. Further, the first element cannot be right 
parenthesis. 8) If the regular expression is non-empty, 
then its right most element cannot be the alternation or 
concatenation operator. The last element cannot be left 
parenthesis. 9) If repetition symbol is an element of 
regular expression then cardinality of the regular expres- 
sion is more than 2 and on the left of repetition symbol 
there must be either terminal or right parenthesis. 10) If 
concatenation operator is an element of the regular ex- 
pression then cardinality of the regular expression is 
more than 2. Further, on the left of the concatenation 
operator there must be either a terminal or it should be 
the right parenthesis. Furthermore, a terminal or left pa- 
renthesis must be on the right hand side of the concatena- 
tion operator. 11) If an alternation operator is an element 
of the regular expression then cardinality of the regular 
expression is more than 3. The left parenthesis, concate- 
nation operator and alternation operator cannot be on the 
left hand side of the alternation operator. Further, right 
parenthesis, concatenation operator and alternation op- 
erator cannot be on the right hand side of the alternation 
operator. 12) If left parenthesis is an element of regular 
expression then cardinality of the regular expression is 
more than 2. Further, the right parenthesis, repetition 
operator, concatenation operator, alternation operator and 
hash symbol cannot be on the right hand side of the left 
parenthesis. 13) If right parenthesis is an element of 
regular expression then cardinality of the regular expres- 
sion is more than 2. In addition to it, left parenthesis, 
alternation operator and concatenation operator cannot be 
on the left hand side of the right parenthesis. 

Operator = = Symbol 
 

In first part of the schema ERE, definitions of variables 
describing extended regular expression are given. Invariants 
over the variables are defined in the second part of the 
schema in terms of properties. The invariants prove the 
well-defined-ness of the variables. In definition of vari- 
ables, terminals has a type of power set of Terminal. The 
symbols has a type of power set of Symbol. The variable 
operators has a type of power set of Operator. The last 
one regular expression has a sequence type consisting of 
alphabets, operators and symbols. 

In the schema, star, conc and or symbols are used to 
represent repetition, concatenation and alternation. The 
symbols, lp, rp and hash are used to represent left 
parenthesis, right parenthesis and hash symbol. The hash 
symbol is put at the end of file as mentioned above. 
 
»_ERE________________________ 
Æterminals: F Terminal; operators: F Operator 
Æsymbols: F Symbol; star, conc, or: Operator 
Ælp, rp, hash: Symbol; ere: seq Symbol 
«_______________ 
Æterminals I operators = 0 
ÆAt: Terminal | t e terminals • t e symbols 
ÆAo: Operator | o e operators • o e symbols 
Æstar e operators ¶ conc e operators ¶ or e operators 
Ælp e symbols ¶ rp e symbols ¶ hash e symbols 
ÆAi: N | i e 1 .. # ere - 1 • # ere ˘ i fi ere i Î hash 
Æ# ere ˘ 1 ¶ (1, ere 1) e ere 
Æfi ere 1 Î or ¶ ere 1 Î star ¶ ere 1 Î conc ¶ ere 1 Î rp 
Æ# ere ˘ 1 ¶ (# ere, ere (# ere)) e ere 
Æfi ere (# ere) Î or ¶ ere (# ere) Î lp ¶ ere (# ere) Î conc 
Æstar e ran ere 
Æfi # ere ˘ 3 ¶ (Ai: N | i e 2 .. # ere 
Æ     • (ere i = star fi ere (i - 1) e terminals v ere (i - 1) = rp)) 
Æconc e ran ere fi # ere ˘ 3 
Æ  ¶ (Ai: N | i e 2 .. # ere - 1 • (ere i = conc 
Æ           fi (ere (i - 1) e terminals v ere (i - 1) = rp) 
Æ             ¶ (ere (i + 1) e terminals v ere (i + 1) = lp))) 
Æor e ran ere fi # ere ˘ 4 
Æ  ¶ (Ai: N | i e 2 .. # ere - 1 • (ere i = or 
Æ       fi ere (i - 1) Î lp ¶ ere (i - 1) Î conc ¶ ere (i - 1) Î or 
Æ        ¶ ere (i + 1) Î rp¶ ere (i + 1) Î conc ¶ ere (i + 1) Î 
or)) 
Ælp e ran ere fi # ere ˘ 3 
Æ  ¶ (Ai: N | i e 1 .. # ere - 1 • (ere i = lp 
Æ       fi ere (i + 1) Î rp ¶ ere (i + 1) Î star ¶ ere (i + 1) Î 
conc 
Æ       ¶ ere (i + 1) Î or ¶ ere (i + 1) Î hash)) 
Ærp e ran ere fi # ere ˘ 3 
Æ  ¶ (Ai: N | i e 2 .. # ere  • (ere i = rp 
Æ      fi ere (i - 1) Î lp ¶ ere (i - 1) Î or ¶ ere (i - 1) Î conc)) 
–_____________________________ 

We have described formal definition of extended 
regular expression. Our objective is to construct deter- 
ministic finite automata from extended regular expression 
based on the construction of syntax tree. The syntax tree 
is a tree having left and right children which might be 
itself trees. The left and right children may not contain 
the hash symbol (end of input symbol). Therefore, the 
extended regular expression is generalized to describe 
regular expression using the RE schema given below. 
The range subtraction operator in Z notation is used to 
remove the hash symbol from the extended regular ex- 
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The syntax tree is described using the schema Syntex- 
Tree given below by defining a relationship between 
regular expression and syntax tree. The schema consists of 
five components in addition to the ERE schema. The first 
one represents the null tree. The second one represents the 
root identifier. The third one defines all the possible nodes 
of the syntax tree. The fourth is used to define a rela- 
tionship between parent and the children in addition to the 
parent identifier. The last one is a function defining fol- 
lows of all the sequence nodes. The description of ERE 
schema components are already given in the definition of 
extended regular expression. 

pression defined above. 
 
»_RE_________________________ 
ÆERE; re: ERE 
«_______________ 
Ære . ere = ere u {hash} 
–___________________________ 

4.4. Syntax Tree Construction 

The syntax tree from the augmented regular expression is 
described below. Before description of the syntax tree a 
generic definition of an internal node of the tree is given 
below using the schema Node. The schema consists of 
eight variables. The first one is sn termed as sequence 
number (node identifier) which is of type of natural num- 
ber. The second number is node type. There are four 
types of nodes that is terminal, internal, null and hash 
node. The third one is operator type associated with a 
node. The operator variable has four types namely, alter- 
nation, concatenation, repetition and null. The fourth and 
fifth variables represent the left and right children of the 
tree. The sixth and seventh variables represent the first 
and last position of a node of the syntax tree and are of 
types of power set of natural numbers. The last one is 
nullable variable having two values either true or false to 
check nullability of a node.  

 

 
[N]; NULLABLE ::= TRUE | FALSE 
NTYPE ::= TERMINAL | INTERNAL | EPSI | HASH 
OTYPE ::= OR | CON | STAR | NULL 
Tree ::= tip | fork œN x Tree x Tree∑ 
»_Node_________________________ 
Æsn: N; ntype: NTYPE; otype: OTYPE 
Æleft, right: RE; firstpos, lastpos: F N; nullable: NULLABLE 
«_______________ 
Æntype = INTERNAL fi sn = 0 
Æntype = EPSI 
Æfi nullable = TRUE ¶ firstpos = {} ¶ lastpos = {} 
Æ  ¶ left . re . ere = „Ò ¶ right . re . ere = „Ò 
Æntype = TERMINAL 
Æfi nullable = FALSE ¶ otype = NULL ¶ firstpos = {sn} ¶ 
Ælastpos = {sn} 
–____________________________ 
 

Invariants: 1) If node is an internal one then sequence 
number is zero. 2) If the node is null type then nullable 
variable has true value, the first and last position vari- 
ables are empty, and left and right children are null tree. 
3) If the node is terminal type then nullable variable has 
false value. Further, the operator type is null. The first 
and last position variables contain only the sequence 
number of the node. 

»_SyntexTree_______________________ 
ÆERE; null, root: Node; nodes: F Node 
Æparent: N x Node x Node ƒ Node 
Æfollow: N f F N 
«_______________ 
Ædisjoint „{null}, ran parentÒ 
ÆAtree: F Node • {null} U (parent · N x tree x tree ‚) z tree fi 
ÆNode z tree 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent • {n1, n2, n} z 
Ænodes 
ÆAi: N; n1, n2, n: Node | {n1, n2, n} z nodes • ((i, n1, n2), n) e 
Æparent 
–_____________________________ 
 

Invariants: 1) The null tree and range of parent func- 
tion are disjoint. 2) The union of null tree and the nodes 
in the parent function belong to the tree. 3) The domain 
and range of parent function belong to set of all the nodes 
of the tree. 4) Each element in the set of nodes of the tree 
is either in the domain or in the range of the parent func- 
tion. 

4.5. Operators Specification 

Formal specification of nullable, first and last positions, 
and follow functions is given in this section. Nullable is a 
Boolean function having value true or false. First and last 
position functions are collection of identifiers of the node 
computed based on the children nodes. All of these 
functions take syntax tree as input in first part of a schema 
and verification properties are defined in the second part 
of the schema.  

The nullable variable of the node is checked and 
verified based on values of the nullable variables of the 
children using the Nullables schema. Three types of nodes 
namely, alternation, concatenation and repetition are 
assumed. The first two functions, that is, nullable and 
positions will be used for the description of follow 
position function. After computing follow positions of the 
internal nodes of the abstract syntax tree deterministic 
finite automata will be constructed in the next sub-section.  
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»_Nullables_______________________ 
ÆSyntexTree 
«_______________ 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • (n . otype = OR 
Æ      fi n1 . nullable = TRUE v n2 . nullable = TRUE fi n . 
Ænullable = TRUE) 
Æ     ¶ (n . otype = CON 
Æ        fi n1 . nullable = TRUE ¶ n2 . nullable = TRUE fi n . 
Ænullable = TRUE) 
Æ     ¶ (n . otype = STAR fi n1 = n2 ¶ n . nullable = TRUE) 
–_____________________________ 
 

Invariants: 1) If the node of the syntax tree is alter- 
nation type then it is nullable if and only if one of its 
children is nullable. 2) If the node of the syntax tree is 
concatenation type then it is nullable if and only if both 
of its children are nullable. 3) If the node of the syntax 
tree is repetition type then it is nullable if and only if its 
child is nullable. 

The first position function of a node n is a set of 
positions in the sub-tree rooted at n that correspond to the 
first symbol of at least one string in the language described 
by a part of the regular expression rooted at n. The last 
position function of the node n is the set of positions in the 
sub-tree of the syntax tree rooted at n that correspond to 
the last symbol of at least one string in the language 
described by the sub-expression of the regular expression 
rooted at n. The first and last position functions are 
described by the schema LRPositions. 
 
»_LRPositions______________________ 
ÆSyntexTree 
«_______________ 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • n . otype = OR fi n . firstpos = n1 . firstpos U n2 . firstpos 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • n . otype = OR fi n . lastpos = n1 . lastpos U n2 . lastpos 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • n . otype = CON 
Æ     fi (n1 . nullable = TRUE fi n . firstpos = n1 . firstpos U 
n2 . Æfirstpos) 
Æ       ¶ (n1 . nullable = FALSE fi n . firstpos = n1 . firstpos) 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • n . otype = CON 
Æ     fi (n2 . nullable = TRUE fi n . lastpos = n1 . lastpos U 
n2 . Ælastpos) 
Æ       ¶ (n2 . nullable = FALSE fi n . lastpos = n2 . lastpos) 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • n . otype = STAR 
Æfi n1=n2¶n .firstpos= n1 . firstpos ¶ n . lastpos = n1 . lastpos 
–_____________________________ 

Invariants: 1) If a node of the syntax tree is an alter- 

nation type then its first position is union of first posi- 
tions of its left and right children. 2) If the node is an 
alternation type then its last position is union of the last 
positions of its left and right children. 3) If the node is 
concatenation and its left child is nullable then first posi- 
tion of the node is union of first positions of its left and 
right children. If left child is not nullable then first posi- 
tion of the node is same as first position of its left child. 4) 
If the node is concatenation and its right child is nullable 
then last position of the node is union of last positions of 
its left and right children. If right child is not nullable 
then right position of the node is same as last position of 
its right child. 5) If the node is repetition type then first 
and last positions of the node are same as first and last 
positions of its child respectively.  

Formal specification of the follows position function is 
described based on the nullable and, first and last posi- 
tion functions. The procedure of computing follows posi- 
tion is described and its explanation is given as invariants. 
After computing follows, the transition diagram can be 
created. Based on the transition diagram, the deterministic 
finite automata is constructed in the next subsection.  

 
»_Follows________________________ 
ÆSyntexTree 
«_______________ 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • n . otype = OR v n . otype = CON 
Æ     fi (Ai: N; follows: F N | i e n1 . lastpos ¶ (i, follows) e 
Æ     follow • follows = follows U n2 . firstpos) 
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent 
Æ   • n . otype = STAR 
Æ     fi (Ai: N; follows: F N | i e n . lastpos ¶ (i, follows) e 
follow 
Æ           • follows = follows U n . firstpos) 
–_____________________________ 
 

Invariants: 1) If a node n of the syntax tree is an al- 
ternation or concatenation type, n1 and n2 are its children 
then for each element x in the last position of n1, the new 
follows of x = follows of x already computed union first 
position of n2. 2) If a node n of the syntax tree is repeti- 
tion type then for each element x in the last position of n, 
the new follows of x is equal to old follows of x union 
first position of n. 

4.6. Construction of DFA 

The Kleene theorem [21] states that a deterministic finite 
automata (DFA) can be converted into a regular expre- 
ssion and vice versa. An efficient and correct conversion 
is one of the important area of research in the formal 
theory of languages. For this purpose, several methods 
have been proposed [22-28]. In this paper, formal con- 
struction of deterministic finite automata is described 
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from the regular expression based on the syntax tree 
directly. The formal mechanism of syntax tree construction 
is described above by the supporting algorithms. The 
formal specification of DFA construction is provided in 
the following. 

The formal specification is described by using the 
schema DFA which consists of five component in addition 
to SyntexTree schema. The DFA schema defines a rela- 
tionship between syntax tree and deterministic finite 
automata. The syntax tree is converted into DFA by 
extracting the information and storing into the required 
components, namely, initial state, set of all states, alphabets, 
transition function and set of final states of the required 
automata. The definitions of the components are given in 
first part and relationship between syntax tree and automata 
is provided in the second part of the schema. 
 
»_DFA_________________________ 
ÆSyntexTree 
Æinitial: F N 
Æstates: F (F N) 
Æalphabets: F Terminal 
Ætransition: F N x Terminal f F N 
Æfinals: F (F N) 
«_______________ 
Æinitial e states 
Æfinals z states 
ÆAs1, s2: F N; a: Terminal 
Æ   • s1 e states ¶ s2 e states ¤ ((s1, a), s2) e transition 
Æinitial = root . firstpos 
Æalphabets = terminals 
ÆAa: Terminal; s1: F N | a e alphabets ¶ s1 e states 
Æ   • Es2: F N | s2 = U { i: N; follows: F N 
Æ           | i e s1¶ (i, follows) e follow ¶ (En: Node | n e 
nodes 
Æ              • (n . sn = i ¶ n . terminal = a)) • follows } 
Æ        • s2 e states ¶ ((s1, a), s2) e transition 
ÆAs: F N | s e states 
Æ   • s e finals ¤ (En: Node | n e nodes • n . ntype = HASH ¶ 
n . Æsn e s) 
–_____________________________ 
 

Invariants: 1) The initial state is an element of set of 
all the states of the resultant automata. 2) Each element 
in the set of final states is an element of set of total states. 
3) For every state and for every alphabet there is a transi- 
tion in the automata. 4) Initial state is root of the syntax 
tree. 5) Alphabets of the automata are same as terminals 
of the grammar. 6) The transition function is defined 
based on the follows positions of every terminal. For 
every state s1 and for every alphabet a there exists a state 
s2 where s2 is union of collection of follows of all the 
element of s1 calculated at node a. Hence, there will be a 
function from s1 to s2 by reading a. 7) The state is final 

if it contains hash symbol. 

5. Formal Analysis 

Formal analysis for the Z specification is provided in this 
section. Although computer tools improve quality of soft- 
ware systems but there does not exist any real computer 
tool which may assure complete correctness of a model. 
That is why even the specification is formally well-written 
using any of the specification language, it may contain 
potential bugs and errors. Hence, an art of writing a formal 
specification does not provide any guarantee that the 
system underhand is complete, consistent and correct. If 
the formal specification is analyzed and validated using 
computer tools, it increases quality and confidence over 
the system to be developed. On the other hand, we have 
observed that knowledge and experience of using com- 
puter tools is an art which must be practiced before model 
analysis. 

There exists various tools for analyzing the Z spe- 
cification. The Z/Eves is a one of the powerful tools used 
here for analyzing the specification for construction of 
DFA directly from a regular expression. A snapshot of the 
specification analysis is presented in Figure 1.  

In the Figure, the first column on the left hand side shows 
syntax checking. The second column in the Figure 
represents further analysis and proof correctness of the 
specification. The symbol “Y” shows that the formal 
specification is correct syntactically and proof is also 
correct. If there is symbol “N” instead of “Y” it shows 
existence of errors. There are eight schemas described in 
the formal specification which are fully analyzed. All of 
the schemas are checked to prove that specification is 
correct in syntax and has a correct proof obligation. Some 
schemas of the specification were proved using reduction 
techniques available in the toolset. Summary of the results 
is presented in Table 1. In first column of the Table, name 
of the schema is given. In column 2, the symbol “Y” 
indicates that all schemas are well-defined and proved. 
Domain checking, reduction and proof by reduction are 
represented in columns 3, 4 and 5 respectively. The 
character “Y” annotated with “*” symbol shows that the 
schema is proved by performing reduction on the 
specification in predicates part to make specification more 
meaningful. 

6. Conclusions 

Compiler construction is an advanced research area 
because of size and complexity of the code generated. 
Correctness, verification, optimization and generalization 
are some of its main issues. The source code is usually 
written in higher level languages which is complex in 
nature and consequently increases abstraction. Hence, 
design and construction of a fully verified and error free  
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Figure 1. Snapshot of the formal analysis. 
 

Table 1. Results of formal analysis. 

Schema Name 
Syntax Type 

Check 
Domain 
Check 

Reduction Proof

ERE Y Y Y Y 

RE Y Y Y Y 

Node Y Y Y Y 

SyntexTree Y Y Y Y 

Nullables Y Y Y* Y 

LRPositions Y Y Y Y 

Follows Y Y Y* Y 

DFA Y Y Y* Y 

 
compiler has become a challenge of the current century.  

In this paper, formal construction procedure of deter- 
ministic finite automata (DFA) from regular expression is 
presented. Syntax tree is described based on regular 
expression. Then formal description of required operators 
is described. The transition diagram is constructed from 
the follow positions and then converted into DFA. Formal 
specification is described using Z and analyzed by Z/Eves 
toolset. 

The Z is used in this research because of abstraction 
and computer tool support. We observed that the use of 
Z/Eves enhanced reliability and correctness of the 
models. It is realized that the formal specification helped 
us to make it possible resolving ambiguities and in- 
consistencies in the models. Several tools exist to support 
formal specification written in Z but the Z/Eves is found 
a powerful one to analyze the specification because of its 
rich mathematical notations. The Z/Eves made it possible 
to reason about behavior of the specification more 
effectively. It is realized that a need for such tools is 
required in other applications including pattern recognition, 
pattern matching and defining queries in databases. An 
exhaustive survey of existing work was performed [29- 
37] but our approach is different because of abstract and 
conceptual level integration. Verification of other concepts 
related to compiler will appear soon. 
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