
Intelligent Information Management, 2012, 4, 138-146
http://dx.doi.org/10.4236/iim.2012.44021 Published Online July 2012 (http://www.SciRP.org/journal/iim)

Syntax-Tree Regular Expression Based DFA Formal
Construction

Nazir Ahmad Zafar, Fawaz Alsaade
Department of Computer Science, King Faisal University, Hofuf, KSA

Email: {nazafar, falsaade}@kfu.edu.sa

Received May 7, 2012; revised June 16, 2012; accepted July 9, 2012

ABSTRACT

Compiler is a program whose functionality is to translate a computer program written in source language into an
equivalent machine code. Compiler construction is an advanced research area because of its size and complexity. The
source codes are in higher level languages which are usually complex and, consequently, increase the level of abstrac-
tion. Due to such reasons, design and construction of error free compiler is a challenge of the twenty first century. Veri-
fication of a source program does not guarantee about correctness of code generated because the bugs in compiler may
lead to an incorrect target program. Therefore, verification of compiler is more important than verifying the source pro-
grams. Lexical analyzer is a main phase of compiler used for scanning input and grouping into sequence of tokens. In
this paper, formal construction of deterministic finite automata (DFA) based on regular expression is presented as a part
of lexical analyzer. At first, syntax tree is described based on the augmented regular expression. Then formal descrip-
tion of important operators, checking null-ability and computing first and last positions of internal nodes of the tree is
described. In next, the transition diagram is described from the follow positions and converted into deterministic finite
automata by defining a relationship among syntax tree, transition diagram and DFA. Formal specification of the proce-
dure is described using Z notation and model analysis is provided using Z/Eves toolset.

Keywords: Automata Theory; Compiler Verification; Lexical Analyzer; Automated Tools; Z Specification

1. Introduction

A compiler is itself a computer program which translates
computer program written in source language into an
equivalent machine code. The translation process is called
compilation divided into phases reducing complexity of
the compiler. The source code is always written in a
higher level language in comparison to machine code. The
higher level languages are usually complex in nature and
consequently increase the level of abstraction between
source code and the resulting machine code. Therefore,
the increased complexity requires formalizing such abstract
structures for construction and verification of a com-
piler.

Compiler construction is considered as an advanced
research area due to the size and complexity of the code
generated. The design and construction of a fully verified
compiler will remain a challenge of the twenty first
century. Although there exists much work on compiler
construction and verification but it needs further in-
vestigation. This is because the bugs in the compiler can
lead to an incorrect machine code even the source
program is completely verified to be correct. Bugs which
are detected in the executable machine code might be due
either the source program or the compiler itself. It means

writing correct compiler is more important than writing a
correct program to be compiled which has led the scientific
community to investigate in this area.

Formal methods are mathematics-based techniques
used for specification and verification of systems [1]. The
process of verification means applying formal techniques
to verify the properties of systems to be correct. Formal
verification targets the program to check its semantics by
giving precise meanings to that program. Formal spe-
cification is a mathematical description of a system in
terms of set theory and first order or higher logic. The
benefits of using mathematics in systems development are
obvious. Although, there are some disadvantages of using
mathematical notations but the application of formal
methods has proved that its use is required for correct
modeling and specification of systems [2].

Lexical analyzer is an important part of compiler which
scans input stream dividing groups into tokens. The
tokens are sequences of characters which have meanings
in collective format. The preliminary results of this re-
search describing formal construction of syntax tree from
regular expression were described in [3]. In that research,
some errors and inconsistencies were identified which are
fixed and refined here. In this paper, direct formal con-

Copyright © 2012 SciRes. IIM

N. A. ZAFAR, F. ALSAADE 139

struction of deterministic finite automata (DFA) based on
regular expression is presented using Z notation. Regular
expression, which is in fact the source program, is
described by defining all of its possible constructs and
variables. The regular expression is augmented by joining
a special symbol at the end. An abstract syntax tree is
described based on the augmented regular expression. The
operators of the regular expression are assumed as internal
nodes and alphabets are taken as children nodes of the
syntax tree. Then formal description of three important
operators checking null-ability and computing first and
last positions of all the internal nodes of the syntax tree are
described. Nullable is a Boolean function having value
true or false and its value depends upon the type of node.
First and last position functions are collection of identifiers
of a node computed based on its children. The nullable
and positions functions are used for description of the
follow position function used for transition diagram.
Finally, the diagram is converted into deterministic finite
automata by defining a relationship among syntax tree,
transition diagram and DFA. Formal specification of the
algorithm is described using Z notation and model analy-
sis is provided using Z/Eves toolset.

Although integration of approaches has become a well-
researched area in computer science [4-6] but there does
not exist much research work on construction and veri-
fication of compiler by linking formal techniques and
automata theory. Dong et al. have described an integration
of timed automata and Object Z [7,8]. R. L. Constable has
presented formal description of few important concepts of
automata theory [9,10]. A formal relationship is explored
between Petri-nets and Z notation in [11]. Formal analysis
of UML is presented in [12,13] using B. An introduction
to algebraic structures is investigated using fuzzy automata
in [14]. A formal procedure of fuzzy automata and
language theory is discussed in [15]. An important notion
of algebraic and automata theories is presented in [16].
Rest of the paper is organized as follows:

In Section 2, an introduction to Z is given. In Section 3,
reasoning to construct verified complier is provided. For-
mal construction of DFA is described in Section 4. Formal
analysis of the model is presented in Section 5. Conclusion
and future work are discussed in Section 6.

2. An Introduction to Z Notation

Formal methods are mathematical approaches used for
describing properties of software systems using computer
tools. These techniques are based on discrete structures
such as logic, sets, relations, functions, graphs and auto-
mata. Formal approaches may be classified as property
oriented and model descriptive. Property based methods
are used to describe software in terms of properties and
invariants. Model oriented methods are used to construct
model of a system emphasizing statics and dynamics of a

software system. Although there are various formal nota-
tions, the integration of formal and existing approaches
for complete and consistent description of systems is still
required at the current stage of development of formal
methods.

There exist various traditional methods which are used
for expressing software specifications using computer
tools for checking properties of systems. The use of such
methods requires a full commitment because the specifi-
cation of the system must be used to construct a complete
and consistent model which will be assumed as a baseline
for the further development. For incomplete models such
methods are not effective, however, for a complete
validation and verification of large scale software speci-
fication, it needs to apply mathematics-based techniques
to overcome the weaknesses of these traditional approaches.
Experience of applying formal notations shows that it is a
best option for modeling complex particularly safety
critical systems for checking and verifying the properties.

Z notation is a model centered approach based on
fundamental structures such as, sets, sequences, bags,
relations, functions and, predicate and propositional logic
used at an abstract level of specification [17]. The Z is
usually used for specifying behavior of sequential
programs by the abstract data types and has standard set
operators, including union, intersection, comprehensions,
Cartesian products and power sets. The Z allows organizing
a system into its smaller components using a powerful
data structure named schema. The schema defines a way
in which state of a system can be specified and further
refined by describing detail of a system. Schema has two
parts one for variables definitions and other for defining
properties of the variables. Refinement is a promising way
of Z supporting verifiable transformation from an abstract
specification into an executable code. Specification de-
scribed in Z can further be refined and transformed to an
implemented system.

3. Lexical Analyzer

The primary objective of compiler construction is to prove
that it is correct and error free. Constructive formulation
of showing correct compiler in terms of syntax and
semantics translation processes from source to target
languages effectively is a major issue in compiler con-
struction. As a sub-problem, compiler verification has
become an open research problem in compiler construction.
Compiler verification is an area of software engineering in
which it is required to prove that compiler behaves exactly
as the language description. Software testing and use of
formal approaches are two main techniques for validation
and verification in construction of a compiler. Testing of
compiler has various disadvantages similar to testing of
other computer programs. It is impossible to prove by
testing that a compiler is completely correct, error free and

Copyright © 2012 SciRes. IIM

http://en.wikipedia.org/wiki/Programming_language

N. A. ZAFAR, F. ALSAADE 140

often used for traditional description and specification of
systems. There are some disadvantages of using mathe-
matical notations. For example, people understand more
use of natural languages than complex mathematical
structures in the area of computer science. However, the
uses and benefits of formal methods are observed in
modeling and designing of computer systems.

optimized. There exists much research work showing and
referring that most of the tested compilers have bugs and
errors [18]. Therefore, it is required to find approaches for
correct and optimal construction of compiler. Application
of formal methods in compiler verification is an alternative
way to find proofs ensuring correctness and reducing
complexity of code of construction procedure. It is realized
that construction of a fully verified compiler has become a
challenge of the twenty first century [19].

The main functionality of a compiler is to translate a
source code into an executable and optimized machine
code. An accuracy in compiler construction has much
importance because the bugs in the compiler can lead to
an incorrect code even the source program is verified.
Functionality of lexical analyzer is to scan the input
stream of characters from left to right and grouping it into
tokens. The tokens are sequences of characters having
meanings in a grouped format. Verification of lexical
analyzer is an important phase of compiler. There are two
primary methods for implementing the lexical analyzer.
The first one is a hard coded program to perform the
scanning tasks in which main loop in the program reads
characters one by one from the input program and uses a
switch statement to process it. The output of the procedure
is a sequence of tokens from the source program. The
second one uses regular expressions and automata theory
to model the scanning process. In this method, the source
program is read character by character beginning with the
start state. After reading a character, the transition function
is used to move from current state to the next one. In a
final state, it is checked if the token read is reserved word,
it is passed to the token stream as output, otherwise, its
name is put in the symbol table if does not exist already.
After a final state is reached, an associated action is
performed and the same process is continued. If we are not
able to reach a final state an error is encountered. In this
case, error handling called upon is used for error recovery.
The input is a regular expression and output is a collection
of tokens identified by an automaton [20].

4. Formal Specification

In this section, at first, benefits of formal specification are
addressed. Then direct formal construction of deterministic
finite automata based on regular expression is presented
using Z notation. A syntax tree is constructed from regular
expression before construction of the automaton.

4.1. Importance of Specification

4.2. Definitions

Symbol is an abstract entity. Letters, digits and punctuation
are examples of it. Alphabet is a finite set of symbols used
to build larger structures. In automata theory, alphabet is
usually denoted by the Greek letter sigma ∑.

Example: ∑ = {a, b, c} is an alphabet, where a, b, c are
symbols, and abcb is a structure.

Empty String: consists of zero symbol and is denoted
by ε.
∑*: is a set of all possible strings that can be generated

from a given alphabet ∑.
Regular Expression: is a rule to define the set of words

that are valid tokens in a formal language. The regular
expressions are usually built up from three operators
named as concatenation, alternation and repetition.

4.3. Regular Expressions

Formal specification of extended regular expression is
given in this section. Then regular expression is generalized
by removing the special symbol as an end character which
is used to show the end of input string given to the lexical
analyzer. Internal node of the syntax tree is defined to
have information including left and right positions, and
nullable variables. The syntax tree is described based on
the given regular expression. Then functions for comput-
ing left positions, right positions and nullable operator for
every node of the syntax tree are described. Further, fol-
lows of all internal nodes are computed. Finally, deter-
ministic finite automata is described based on the transi-
tion diagram constructed from the syntax tree. Although
we are well-acquainted with the regular expressions but a
brief review is given below before its formal description.

In formal specification of extended regular expression,
four main components are assumed as listed in the schema
ERE given below. The first one is terminals which is a
collection of all the alphabets of the language. The second
is a set of operators representing internal nodes in the
syntax tree. The operators has values concatenation, alter-
nation (union) and repetition. The third one is a collection
of symbols which is a finite set of symbols other than
operators and terminals representing children in the syntax
tree. The fourth component is extended regular expression
represented by ere and is a sequence of symbols. The
Symbol, Terminal and Operator are sets at an abstract
level of specification over which operators, for example,
union, intersection and complement cannot be defined.

Formal specification is a description of a system using
mathematical notations and abstract models in terms of set
theory and first order or higher order logic. The benefits of
using mathematics in system development are obvious,
for example, the models are precise and un-ambiguous
unlike the model described in natural languages which are

Copyright © 2012 SciRes. IIM

N. A. ZAFAR, F. ALSAADE 141

[Symbol]; Terminal = = Symbol Invariants: 1) The intersection of sets terminals and
operators in the grammar is an empty set. 2) Each ele-
ment in the set of terminals is an element of set of sym-
bols. 3) Each element in the set of operators is also an
element of set of symbols. 4) The repetition, concatena-
tion and alternation are elements of the set of operators. 5)
The left parenthesis, right parenthesis and hash are ele-
ments of the set of symbols. 6) The last element of input
string is hash symbol showing end of file. There does not
exit hash symbol in rest of the input string. 7) If the
regular expression is non-empty, then its left most ele-
ment cannot be the alternation, repetition or concatena-
tion operator. Further, the first element cannot be right
parenthesis. 8) If the regular expression is non-empty,
then its right most element cannot be the alternation or
concatenation operator. The last element cannot be left
parenthesis. 9) If repetition symbol is an element of
regular expression then cardinality of the regular expres-
sion is more than 2 and on the left of repetition symbol
there must be either terminal or right parenthesis. 10) If
concatenation operator is an element of the regular ex-
pression then cardinality of the regular expression is
more than 2. Further, on the left of the concatenation
operator there must be either a terminal or it should be
the right parenthesis. Furthermore, a terminal or left pa-
renthesis must be on the right hand side of the concatena-
tion operator. 11) If an alternation operator is an element
of the regular expression then cardinality of the regular
expression is more than 3. The left parenthesis, concate-
nation operator and alternation operator cannot be on the
left hand side of the alternation operator. Further, right
parenthesis, concatenation operator and alternation op-
erator cannot be on the right hand side of the alternation
operator. 12) If left parenthesis is an element of regular
expression then cardinality of the regular expression is
more than 2. Further, the right parenthesis, repetition
operator, concatenation operator, alternation operator and
hash symbol cannot be on the right hand side of the left
parenthesis. 13) If right parenthesis is an element of
regular expression then cardinality of the regular expres-
sion is more than 2. In addition to it, left parenthesis,
alternation operator and concatenation operator cannot be
on the left hand side of the right parenthesis.

Operator = = Symbol

In first part of the schema ERE, definitions of variables
describing extended regular expression are given. Invariants
over the variables are defined in the second part of the
schema in terms of properties. The invariants prove the
well-defined-ness of the variables. In definition of vari-
ables, terminals has a type of power set of Terminal. The
symbols has a type of power set of Symbol. The variable
operators has a type of power set of Operator. The last
one regular expression has a sequence type consisting of
alphabets, operators and symbols.

In the schema, star, conc and or symbols are used to
represent repetition, concatenation and alternation. The
symbols, lp, rp and hash are used to represent left
parenthesis, right parenthesis and hash symbol. The hash
symbol is put at the end of file as mentioned above.

»_ERE________________________
Æterminals: F Terminal; operators: F Operator
Æsymbols: F Symbol; star, conc, or: Operator
Ælp, rp, hash: Symbol; ere: seq Symbol
«_______________
Æterminals I operators = 0
ÆAt: Terminal | t e terminals • t e symbols
ÆAo: Operator | o e operators • o e symbols
Æstar e operators ¶ conc e operators ¶ or e operators
Ælp e symbols ¶ rp e symbols ¶ hash e symbols
ÆAi: N | i e 1 .. # ere - 1 • # ere ˘ i fi ere i Î hash
Æ# ere ˘ 1 ¶ (1, ere 1) e ere
Æfi ere 1 Î or ¶ ere 1 Î star ¶ ere 1 Î conc ¶ ere 1 Î rp
Æ# ere ˘ 1 ¶ (# ere, ere (# ere)) e ere
Æfi ere (# ere) Î or ¶ ere (# ere) Î lp ¶ ere (# ere) Î conc
Æstar e ran ere
Æfi # ere ˘ 3 ¶ (Ai: N | i e 2 .. # ere
Æ • (ere i = star fi ere (i - 1) e terminals v ere (i - 1) = rp))
Æconc e ran ere fi # ere ˘ 3
Æ ¶ (Ai: N | i e 2 .. # ere - 1 • (ere i = conc
Æ fi (ere (i - 1) e terminals v ere (i - 1) = rp)
Æ ¶ (ere (i + 1) e terminals v ere (i + 1) = lp)))
Æor e ran ere fi # ere ˘ 4
Æ ¶ (Ai: N | i e 2 .. # ere - 1 • (ere i = or
Æ fi ere (i - 1) Î lp ¶ ere (i - 1) Î conc ¶ ere (i - 1) Î or
Æ ¶ ere (i + 1) Î rp¶ ere (i + 1) Î conc ¶ ere (i + 1) Î
or))
Ælp e ran ere fi # ere ˘ 3
Æ ¶ (Ai: N | i e 1 .. # ere - 1 • (ere i = lp
Æ fi ere (i + 1) Î rp ¶ ere (i + 1) Î star ¶ ere (i + 1) Î
conc
Æ ¶ ere (i + 1) Î or ¶ ere (i + 1) Î hash))
Ærp e ran ere fi # ere ˘ 3
Æ ¶ (Ai: N | i e 2 .. # ere • (ere i = rp
Æ fi ere (i - 1) Î lp ¶ ere (i - 1) Î or ¶ ere (i - 1) Î conc))
–_____________________________

We have described formal definition of extended
regular expression. Our objective is to construct deter-
ministic finite automata from extended regular expression
based on the construction of syntax tree. The syntax tree
is a tree having left and right children which might be
itself trees. The left and right children may not contain
the hash symbol (end of input symbol). Therefore, the
extended regular expression is generalized to describe
regular expression using the RE schema given below.
The range subtraction operator in Z notation is used to
remove the hash symbol from the extended regular ex-

Copyright © 2012 SciRes. IIM

N. A. ZAFAR, F. ALSAADE 142

The syntax tree is described using the schema Syntex-
Tree given below by defining a relationship between
regular expression and syntax tree. The schema consists of
five components in addition to the ERE schema. The first
one represents the null tree. The second one represents the
root identifier. The third one defines all the possible nodes
of the syntax tree. The fourth is used to define a rela-
tionship between parent and the children in addition to the
parent identifier. The last one is a function defining fol-
lows of all the sequence nodes. The description of ERE
schema components are already given in the definition of
extended regular expression.

pression defined above.

»_RE_________________________
ÆERE; re: ERE
«_______________
Ære . ere = ere u {hash}
–___________________________

4.4. Syntax Tree Construction

The syntax tree from the augmented regular expression is
described below. Before description of the syntax tree a
generic definition of an internal node of the tree is given
below using the schema Node. The schema consists of
eight variables. The first one is sn termed as sequence
number (node identifier) which is of type of natural num-
ber. The second number is node type. There are four
types of nodes that is terminal, internal, null and hash
node. The third one is operator type associated with a
node. The operator variable has four types namely, alter-
nation, concatenation, repetition and null. The fourth and
fifth variables represent the left and right children of the
tree. The sixth and seventh variables represent the first
and last position of a node of the syntax tree and are of
types of power set of natural numbers. The last one is
nullable variable having two values either true or false to
check nullability of a node.

[N]; NULLABLE ::= TRUE | FALSE
NTYPE ::= TERMINAL | INTERNAL | EPSI | HASH
OTYPE ::= OR | CON | STAR | NULL
Tree ::= tip | fork œN x Tree x Tree∑
»_Node_________________________
Æsn: N; ntype: NTYPE; otype: OTYPE
Æleft, right: RE; firstpos, lastpos: F N; nullable: NULLABLE
«_______________
Æntype = INTERNAL fi sn = 0
Æntype = EPSI
Æfi nullable = TRUE ¶ firstpos = {} ¶ lastpos = {}
Æ ¶ left . re . ere = „Ò ¶ right . re . ere = „Ò
Æntype = TERMINAL
Æfi nullable = FALSE ¶ otype = NULL ¶ firstpos = {sn} ¶
Ælastpos = {sn}
–____________________________

Invariants: 1) If node is an internal one then sequence
number is zero. 2) If the node is null type then nullable
variable has true value, the first and last position vari-
ables are empty, and left and right children are null tree.
3) If the node is terminal type then nullable variable has
false value. Further, the operator type is null. The first
and last position variables contain only the sequence
number of the node.

»_SyntexTree_______________________
ÆERE; null, root: Node; nodes: F Node
Æparent: N x Node x Node ƒ Node
Æfollow: N f F N
«_______________
Ædisjoint „{null}, ran parentÒ
ÆAtree: F Node • {null} U (parent · N x tree x tree ‚) z tree fi
ÆNode z tree
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent • {n1, n2, n} z
Ænodes
ÆAi: N; n1, n2, n: Node | {n1, n2, n} z nodes • ((i, n1, n2), n) e
Æparent
–_____________________________

Invariants: 1) The null tree and range of parent func-
tion are disjoint. 2) The union of null tree and the nodes
in the parent function belong to the tree. 3) The domain
and range of parent function belong to set of all the nodes
of the tree. 4) Each element in the set of nodes of the tree
is either in the domain or in the range of the parent func-
tion.

4.5. Operators Specification

Formal specification of nullable, first and last positions,
and follow functions is given in this section. Nullable is a
Boolean function having value true or false. First and last
position functions are collection of identifiers of the node
computed based on the children nodes. All of these
functions take syntax tree as input in first part of a schema
and verification properties are defined in the second part
of the schema.

The nullable variable of the node is checked and
verified based on values of the nullable variables of the
children using the Nullables schema. Three types of nodes
namely, alternation, concatenation and repetition are
assumed. The first two functions, that is, nullable and
positions will be used for the description of follow
position function. After computing follow positions of the
internal nodes of the abstract syntax tree deterministic
finite automata will be constructed in the next sub-section.

Copyright © 2012 SciRes. IIM

N. A. ZAFAR, F. ALSAADE 143

»_Nullables_______________________
ÆSyntexTree
«_______________
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • (n . otype = OR
Æ fi n1 . nullable = TRUE v n2 . nullable = TRUE fi n .
Ænullable = TRUE)
Æ ¶ (n . otype = CON
Æ fi n1 . nullable = TRUE ¶ n2 . nullable = TRUE fi n .
Ænullable = TRUE)
Æ ¶ (n . otype = STAR fi n1 = n2 ¶ n . nullable = TRUE)
–_____________________________

Invariants: 1) If the node of the syntax tree is alter-
nation type then it is nullable if and only if one of its
children is nullable. 2) If the node of the syntax tree is
concatenation type then it is nullable if and only if both
of its children are nullable. 3) If the node of the syntax
tree is repetition type then it is nullable if and only if its
child is nullable.

The first position function of a node n is a set of
positions in the sub-tree rooted at n that correspond to the
first symbol of at least one string in the language described
by a part of the regular expression rooted at n. The last
position function of the node n is the set of positions in the
sub-tree of the syntax tree rooted at n that correspond to
the last symbol of at least one string in the language
described by the sub-expression of the regular expression
rooted at n. The first and last position functions are
described by the schema LRPositions.

»_LRPositions______________________
ÆSyntexTree
«_______________
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • n . otype = OR fi n . firstpos = n1 . firstpos U n2 . firstpos
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • n . otype = OR fi n . lastpos = n1 . lastpos U n2 . lastpos
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • n . otype = CON
Æ fi (n1 . nullable = TRUE fi n . firstpos = n1 . firstpos U
n2 . Æfirstpos)
Æ ¶ (n1 . nullable = FALSE fi n . firstpos = n1 . firstpos)
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • n . otype = CON
Æ fi (n2 . nullable = TRUE fi n . lastpos = n1 . lastpos U
n2 . Ælastpos)
Æ ¶ (n2 . nullable = FALSE fi n . lastpos = n2 . lastpos)
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • n . otype = STAR
Æfi n1=n2¶n .firstpos= n1 . firstpos ¶ n . lastpos = n1 . lastpos
–_____________________________

Invariants: 1) If a node of the syntax tree is an alter-

nation type then its first position is union of first posi-
tions of its left and right children. 2) If the node is an
alternation type then its last position is union of the last
positions of its left and right children. 3) If the node is
concatenation and its left child is nullable then first posi-
tion of the node is union of first positions of its left and
right children. If left child is not nullable then first posi-
tion of the node is same as first position of its left child. 4)
If the node is concatenation and its right child is nullable
then last position of the node is union of last positions of
its left and right children. If right child is not nullable
then right position of the node is same as last position of
its right child. 5) If the node is repetition type then first
and last positions of the node are same as first and last
positions of its child respectively.

Formal specification of the follows position function is
described based on the nullable and, first and last posi-
tion functions. The procedure of computing follows posi-
tion is described and its explanation is given as invariants.
After computing follows, the transition diagram can be
created. Based on the transition diagram, the deterministic
finite automata is constructed in the next subsection.

»_Follows________________________
ÆSyntexTree
«_______________
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • n . otype = OR v n . otype = CON
Æ fi (Ai: N; follows: F N | i e n1 . lastpos ¶ (i, follows) e
Æ follow • follows = follows U n2 . firstpos)
ÆAi: N; n1, n2, n: Node | ((i, n1, n2), n) e parent
Æ • n . otype = STAR
Æ fi (Ai: N; follows: F N | i e n . lastpos ¶ (i, follows) e
follow
Æ • follows = follows U n . firstpos)
–_____________________________

Invariants: 1) If a node n of the syntax tree is an al-
ternation or concatenation type, n1 and n2 are its children
then for each element x in the last position of n1, the new
follows of x = follows of x already computed union first
position of n2. 2) If a node n of the syntax tree is repeti-
tion type then for each element x in the last position of n,
the new follows of x is equal to old follows of x union
first position of n.

4.6. Construction of DFA

The Kleene theorem [21] states that a deterministic finite
automata (DFA) can be converted into a regular expre-
ssion and vice versa. An efficient and correct conversion
is one of the important area of research in the formal
theory of languages. For this purpose, several methods
have been proposed [22-28]. In this paper, formal con-
struction of deterministic finite automata is described

Copyright © 2012 SciRes. IIM

N. A. ZAFAR, F. ALSAADE 144

from the regular expression based on the syntax tree
directly. The formal mechanism of syntax tree construction
is described above by the supporting algorithms. The
formal specification of DFA construction is provided in
the following.

The formal specification is described by using the
schema DFA which consists of five component in addition
to SyntexTree schema. The DFA schema defines a rela-
tionship between syntax tree and deterministic finite
automata. The syntax tree is converted into DFA by
extracting the information and storing into the required
components, namely, initial state, set of all states, alphabets,
transition function and set of final states of the required
automata. The definitions of the components are given in
first part and relationship between syntax tree and automata
is provided in the second part of the schema.

»_DFA_________________________
ÆSyntexTree
Æinitial: F N
Æstates: F (F N)
Æalphabets: F Terminal
Ætransition: F N x Terminal f F N
Æfinals: F (F N)
«_______________
Æinitial e states
Æfinals z states
ÆAs1, s2: F N; a: Terminal
Æ • s1 e states ¶ s2 e states ¤ ((s1, a), s2) e transition
Æinitial = root . firstpos
Æalphabets = terminals
ÆAa: Terminal; s1: F N | a e alphabets ¶ s1 e states
Æ • Es2: F N | s2 = U { i: N; follows: F N
Æ | i e s1¶ (i, follows) e follow ¶ (En: Node | n e
nodes
Æ • (n . sn = i ¶ n . terminal = a)) • follows }
Æ • s2 e states ¶ ((s1, a), s2) e transition
ÆAs: F N | s e states
Æ • s e finals ¤ (En: Node | n e nodes • n . ntype = HASH ¶
n . Æsn e s)
–_____________________________

Invariants: 1) The initial state is an element of set of
all the states of the resultant automata. 2) Each element
in the set of final states is an element of set of total states.
3) For every state and for every alphabet there is a transi-
tion in the automata. 4) Initial state is root of the syntax
tree. 5) Alphabets of the automata are same as terminals
of the grammar. 6) The transition function is defined
based on the follows positions of every terminal. For
every state s1 and for every alphabet a there exists a state
s2 where s2 is union of collection of follows of all the
element of s1 calculated at node a. Hence, there will be a
function from s1 to s2 by reading a. 7) The state is final

if it contains hash symbol.

5. Formal Analysis

Formal analysis for the Z specification is provided in this
section. Although computer tools improve quality of soft-
ware systems but there does not exist any real computer
tool which may assure complete correctness of a model.
That is why even the specification is formally well-written
using any of the specification language, it may contain
potential bugs and errors. Hence, an art of writing a formal
specification does not provide any guarantee that the
system underhand is complete, consistent and correct. If
the formal specification is analyzed and validated using
computer tools, it increases quality and confidence over
the system to be developed. On the other hand, we have
observed that knowledge and experience of using com-
puter tools is an art which must be practiced before model
analysis.

There exists various tools for analyzing the Z spe-
cification. The Z/Eves is a one of the powerful tools used
here for analyzing the specification for construction of
DFA directly from a regular expression. A snapshot of the
specification analysis is presented in Figure 1.

In the Figure, the first column on the left hand side shows
syntax checking. The second column in the Figure
represents further analysis and proof correctness of the
specification. The symbol “Y” shows that the formal
specification is correct syntactically and proof is also
correct. If there is symbol “N” instead of “Y” it shows
existence of errors. There are eight schemas described in
the formal specification which are fully analyzed. All of
the schemas are checked to prove that specification is
correct in syntax and has a correct proof obligation. Some
schemas of the specification were proved using reduction
techniques available in the toolset. Summary of the results
is presented in Table 1. In first column of the Table, name
of the schema is given. In column 2, the symbol “Y”
indicates that all schemas are well-defined and proved.
Domain checking, reduction and proof by reduction are
represented in columns 3, 4 and 5 respectively. The
character “Y” annotated with “*” symbol shows that the
schema is proved by performing reduction on the
specification in predicates part to make specification more
meaningful.

6. Conclusions

Compiler construction is an advanced research area
because of size and complexity of the code generated.
Correctness, verification, optimization and generalization
are some of its main issues. The source code is usually
written in higher level languages which is complex in
nature and consequently increases abstraction. Hence,
design and construction of a fully verified and error free

Copyright © 2012 SciRes. IIM

N. A. ZAFAR, F. ALSAADE 145

Figure 1. Snapshot of the formal analysis.

Table 1. Results of formal analysis.

Schema Name
Syntax Type

Check
Domain
Check

Reduction Proof

ERE Y Y Y Y

RE Y Y Y Y

Node Y Y Y Y

SyntexTree Y Y Y Y

Nullables Y Y Y* Y

LRPositions Y Y Y Y

Follows Y Y Y* Y

DFA Y Y Y* Y

compiler has become a challenge of the current century.

In this paper, formal construction procedure of deter-
ministic finite automata (DFA) from regular expression is
presented. Syntax tree is described based on regular
expression. Then formal description of required operators
is described. The transition diagram is constructed from
the follow positions and then converted into DFA. Formal
specification is described using Z and analyzed by Z/Eves
toolset.

The Z is used in this research because of abstraction
and computer tool support. We observed that the use of
Z/Eves enhanced reliability and correctness of the
models. It is realized that the formal specification helped
us to make it possible resolving ambiguities and in-
consistencies in the models. Several tools exist to support
formal specification written in Z but the Z/Eves is found
a powerful one to analyze the specification because of its
rich mathematical notations. The Z/Eves made it possible
to reason about behavior of the specification more
effectively. It is realized that a need for such tools is
required in other applications including pattern recognition,
pattern matching and defining queries in databases. An
exhaustive survey of existing work was performed [29-
37] but our approach is different because of abstract and
conceptual level integration. Verification of other concepts
related to compiler will appear soon.

REFERENCES
[1] C. J. Burgess, “The Role of Formal Methods in Software

Engineering Education and Industry,” Technical Report,
University of Bristol, Bristol, 1995.

[2] D. Richard , K. R. Chandramouli and R. W. Butler, “Cost
Effective Use of Formal Methods in Verification and
Validation,” Foundations V&V Workshop, 2002.

[3] N. A. Zafar, “Automatic Construction of Formal Syntax
Tree Based on Regular Expressions,” The 2012 Inter-
national Conference of Computer Science and Engineering
(ICCSE), 2012, in Press.

[4] H. Beek, A. Fantechi, S. Gnesi and F. Mazzanti, “State/
Event-Based Software Model Checking,” Integrated Formal
Methods, Vol. 2999, 2004, pp. 128-147.
doi:10.1007/978-3-540-24756-2_8

[5] O. Hasan and S. Tahar, “Verification of Probabilistic
Properties in the HOL Theorem Prover,” Integrated Formal
Methods, Vol. 4591, 2007, pp. 333-352.
doi:10.1007/978-3-540-73210-5_18

[6] F. Gervais, M. Frappier and R. Laleau, “Synthesizing B
Specifications from EB3 Attribute Definitions,” Integrated
Formal Methods, Vol. 3771, 2005, pp. 207-226.
doi:10.1007/11589976_13

[7] J. S. Dong, R. Duke and P. Hao, “Integrating Object-Z
with Timed Automata,” 10th IEEE International Con-
ference on Engineering of Complex Computer Systems,
Singapore, 16-20 June 2005, pp. 488-497.

[8] J. S. Dong, et al., “Timed Patterns: TCOZ to Timed Auto-
mata,” The 6th ICFEM, Seattle, 8-12 November 2004, pp.
483-498.

[9] R. L. Constable, et al., “Formalizing Automata II: Decidable
Properties,” Technical Report, Cornell University, Ithaca,
1997.

[10] R. L. Constable, et al., “Constructively Formalizing Auto-
mata Theory,” Foundations of Computing Series, MIT
Press, Cambridge, 2000.

[11] M. Heiner and M. Heisel, “Modeling Safety Critical
Systems with Z and Petri Nets,” International Conference
on Computer Safety, Reliability and Security, Toulouse,
27-29 November 1999, pp. 361-374.
doi:10.1007/3-540-48249-0_31

[12] H. Leading and J. Souquieres, “Integration of UML and B
Specification Techniques: Systematic Transformation from
OCL Expressions into B,” Asia-Pacific Software Engi-
neering Conference, Vandoeuvre-les-Nancy, 2002, pp.
495-504.

[13] H. Leading and J. Souquieres, “Integration of UML
Views Using B Notation,” Proceedings of Workshop on
Integration and Transformation of UML Models, Málaga,
11 June 2002.

[14] W. Wechler, “The Concept of Fuzziness in Automata and
Language Theory,” Akademic-Verlag, Berlin, 1978.

[15] N. M. John and S. M. Davender, “Fuzzy Automata and
Languages: Theory and Applications,” Chapman & Hall,
London, 2002.

[16] M. Ito, “Algebraic Theory of Automata and Languages,”
World Scientific Publishing Co., New York, 2004.

Copyright © 2012 SciRes. IIM

http://dx.doi.org/10.1007/978-3-540-24756-2_8
http://dx.doi.org/10.1007/978-3-540-73210-5_18
http://dx.doi.org/10.1007/11589976_13
http://dx.doi.org/10.1007/3-540-48249-0_31

N. A. ZAFAR, F. ALSAADE

Copyright © 2012 SciRes. IIM

146

doi:10.1142/9789812562685

[17] J. M. Spivey, “The Z Notation: A Reference Manual,”
Printice-Hall, Englewood Cliffs, 1989.

[18] C. Lindig, “Random Testing of C Calling Conventions,”
Proceedings of the Sixth International Symposium on Auto-
mated Analysis-Driven Debugging, Monterey, 19-21 Sep-
tember 2005, pp. 3-12.

[19] J. A. Anderson, “Automata Theory with Modern Appli-
cations,” Cambridge University Press, Cambridge, 2006.
doi:10.1017/CBO9780511607202

[20] M. van den Brand, A. Sellink and C. Verhoef, “Generation
of Components for Software Renovation Factories from
Context-Free Grammars,” Proceedings of the Fourth
Working Conference on Reverse Engineering, Amsterdam,
6-8 October 1997, pp. 144-153.
doi:10.1109/WCRE.1997.624585

[21] M. Balakrishna, D. Moldovan and E. K. Cave, “Automatic
Creation and Tuning of Context-Free Grammars for
Interactive Voice Response Systems,” Proceedings of
2005 IEEE International Conference on Natural Language
Processing and Knowledge Engineering, Dallas, 30 Oc-
tober-1 November 2005, pp. 158-163.

[22] L. Pedersen and H. Reza, “A Formal Specification of a
Programming Language: Design of Pit,” Second Inter-
national Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, Grand Forks, 15-19
November 2006, pp. 111-118.

[23] D. P. Tuan, “Computing with Words in Formal Methods,”
Technical Report, University of Canberra, Canberra, 2000.

[24] A. Hall, “Correctness by Construction: Integrating Formality
into a Commercial Development Process,” Praxis Critical
Systems Limited, Vol. 2391, 2002, pp. 139-157.

[25] D. K. Kaynar and N. Lynchn, “The Theory of Timed I/O
Automata,” Morgan & Claypool Publishers, San Rafael,
2006.

[26] D. Jackson, I. Schechter and I. Shlyakhter, “Alcoa: The
Alloy Constraint Analyzer,” Proceedings of the 22nd
International Conference of Software Engineering, Lim-

erick, 4-11 June 2000, pp. 730-733.

[27] D. Aspinall and L. Beringer, “Optimisation Validation,”
Electronic Notes in Theoretical Computer Science, Vol.
176, No. 3, 2007, pp. 37-59.
doi:10.1016/j.entcs.2006.06.017

[28] S. Briaisa and U. Nestmannb, “A Formal Semantics for
Protocol Narrations,” Theoretical Computer Science, Vol.
389, 2007, pp. 484-511. doi:10.1016/j.tcs.2007.09.005

[29] L. Freitas, J. Woodcock and Y. Zhang, “Verifying the
CICS File Control API with Z/Eves: An Experiment in
the Verified Software Repository,” Science of Computer
Programming, Vol. 74, No. 4, 2009, pp. 197-218.
doi:10.1016/j.scico.2008.09.012

[30] S. E. Kleene, “Representations of Events in Nerve Nets
and Finite Automata, Automata Studies,” Princeton Uni-
versity Press, Princeton, 1956, pp. 3-42.

[31] J. Sakarovitch, “Elements de Theorie des Automates,”
Cambridge University Press, Vuibert, 2003.

[32] J. Sakarovitch, “The Language, the Expression, and the
Small Automaton, Implementation and Application of
Automata,” 10th International Conference (CIAA), Lecture
Notes in Computer Science, Vol. 3845, 2005, pp. 15-30.

[33] V. M. Glushkov, “The Abstract Theory of Automata,”
Russian Mathematical Surveys, Vol. 16, No. 5, 1961, pp.
1-53. doi:10.1070/RM1961v016n05ABEH004112

[34] R. F. McNaughton and H. Yamada, “Regular Expressions
and State Graphs for Automata,” IEEE Transactions on
Electronic Computers, Vol. 9, No. 1, 1960, pp. 39-57.
doi:10.1109/TEC.1960.5221603

[35] J. A. Brzozowski, “Derivatives of Regular Expressions,”
Journal of Association for Computing Machinery, Vol. 11,
No. 4, 1964, pp. 481-494. doi:10.1145/321239.321249

[36] V. Antimirov, “Partial Derivatives of Regular Expressions
and Finite Automaton Constructions,” Theoretical Computer
Science, Vol. 155, No. 2, 1996, pp. 291-319.
doi:10.1016/0304-3975(95)00182-4

[37] F. Gecseg and M. Steinby, “Tree Languages,” Handbook
of Formal Languages, Vol. 3, 1997, pp. 1-68.

http://dx.doi.org/10.1017/CBO9780511607202
http://dx.doi.org/10.1109/WCRE.1997.624585
http://dx.doi.org/10.1016/j.entcs.2006.06.017
http://dx.doi.org/10.1016/j.tcs.2007.09.005
http://dx.doi.org/10.1016/j.scico.2008.09.012
http://dx.doi.org/10.1070/RM1961v016n05ABEH004112
http://dx.doi.org/10.1109/TEC.1960.5221603
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1016/0304-3975%2895%2900182-4

