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ABSTRACT 

Tropical cyclones (TCs) are the most destructive weather phenomena to impact on tropical regions, and reliable predic- 
tion of TC seasonal activity is important for preparedness of coastal communities in the tropics. In investigating pros- 
pects for improving the skill of TC seasonal prediction in the South Indian and South Pacific Oceans, including the 
Australian Region, we used linear regression to model the relationship between the annual number of cyclones and 
three indices (SOI, NIÑO3.4 and 5VAR) describing the strength of the El Niño-Southern Oscillation (ENSO). The cor- 
relation between the number of Australian Region (90˚E - 160˚E) TCs and the indices was strong (3-month 5VAR 
−0.65, NIÑO3.4 −0.62 and SOI +0.64), and a cross-validation assessment demonstrated that the models which used 
July-August-September indices and the temporal trend as the predictors performed well. The predicted number of TCs 
in the Australian Region for 2010/2011 and 2011/2012 seasons was 14 (11 recorded) and 12, respectively. We also 
found that the correlation between the numbers of TCs in the western South Indian region (30˚E to 90˚E) and the east- 
ern South Pacific region (east of 170˚E) and the indices was weak, and it is therefore not sensible to build linear regres- 
sion forecast models for these regions. We conclude that for the Australian Region, the new statistical model provides 
prospects for improvement in forecasting skill compared to the statistical model currently employed at the National 
Climate Centre, Australian Bureau of Meteorology. The next step towards improving the skill of TC seasonal prediction 
in the various regions of the Southern Hemisphere will be undertaken through analysis of outputs from the dynamical 
climate model POAMA (Predictive Ocean-Atmosphere Model for Australia). 
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1. Introduction 

Tropical cyclones (TCs) are the most destructive weather 
phenomena to impact on tropical regions. Reliable pre- 
diction of seasonal TC activity is important for prepar- 
edness of coastal communities of Australia and island 
nations in the Pacific and Indian Oceans ahead of the 
coming cyclone season. Over recent decades, statistical 
model-based methods for prediction of TC activity in the 
coming season have been developed for a number of re- 
gions in various ocean basins, starting with the pioneer- 
ing work of Gray [1]. Statistical models explore rela- 
tionships between large-scale environmental drivers which 
modulate TC activity, for example the El Niño-Southern 
Oscillation (ENSO) phenomenon, and observed numbers 
of TCs to derive linear regression equations which can be 
used for prediction of future cyclone activity. Indices 

such as the Southern Oscillation Index (SOI) and sea 
surface temperatures (SSTs) in some oceanic areas are 
commonly used to build such statistical models. How- 
ever, there are two major constraints associated with the 
statistical model-based approach. Firstly, accurate his- 
torical cyclone records (ideally records covering a rea- 
sonably long period of time) are required. Secondly, in a 
globally warming environment, statistical relationships 
based on historical data may not produce reliable results 
when values of the environmental indices are outside of 
the range of historical records. 

The availability of satellite imagery has significantly 
improved our knowledge of TCs, with satellite remote 
sensing being vital for accurate estimates of parameters 
such as TC position (e.g., the location of minimum at- 
mospheric pressure) and TC intensity, however with the 
latter to a lesser degree of confidence compared to esti- 
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mating TC position [2]. Satellite images are used by 
forecasters for preparing operational (real-time) and best- 
track data, and a complete digital Geostationary Mete- 
orological Satellite (GMS) archive for the Southern 
Hemisphere has been prepared at the Australian Bureau 
of Meteorology for use in TC reanalysis [3]. Thus, TC 
historical records for the Southern Hemisphere, at least in 
terms of the annual number of cyclone occurrences, are 
of high quality for the “satellite era”—that is from early 
1970s [2,4,5]. 

Utilising historical data for the Australian region, 
Nicholls [6] examined interannual variability in TC ac- 
tivity, and demonstrated a link between ENSO and in- 
ter-seasonal variations in TC numbers. The TC-ENSO 
relationship was used in developing statistical method- 
ology for forecasting seasonal TC activity in the Austra- 
lian and some other regions in subsequent studies (e.g., 
[7-9]). In general, such a methodology of statistical sea- 
sonal forecasting of seasonal cyclone numbers ahead of 
the season (November to April in the Southern Hemi- 
sphere) employs ENSO indices (e.g., the SOI which de- 
scribes the state of the atmospheric circulations, or the 
NIÑO4 and NIÑO3.4 SST anomaly indices) for months 
which precede the TC season (e.g., a three-month aver- 
age for August, September and October). These models 
performed reasonably well over past years; however, 
during the 2010-2011 TC season, which corresponded to 
a very strong La Niña event, the statistical models signi-
fycantly over-predicted the number of TCs in the Austra- 
lian region. 

The 2010-2011 Australian region cyclone season was 
actually a near-average tropical cyclone season, with 
eleven tropical cyclones forming compared to an average 
of 12. However, the seasonal forecast issued by the Bur- 
eau of Meteorology’s National Climate Centre (NCC) 
ahead of the season for the Australian region (the area 
south of the equator, 90˚E to 160˚E) predicted on the 
basis of strong La Niña conditions that the basin could 
turn into the most active season since 1983/1984, with 20 - 
22 tropical cyclones developing in or moving into the 
region [10]. Similarly, the Guy Carpenter Asia-Pacific 
Climate Impact Centre (GCACIC) at the City University 
of Hong Kong has issued a forecast that predicted that 19 
TCs would either develop within or move into the basin 
[11]. 

Thus, a motivation for this study was to investigate 
prospects for improving the skill of operational seasonal 
prediction of TC activity in the regions of the Southern 
Hemisphere using statistical model-based approaches. In 
respect of this, the new best track TC database for the 
Southern Hemisphere described in the next section of 
this paper is used for the analysis of historical TC data. 
The statistical prediction models developed are presented 
in Section 3. This is followed by a discussion and conclu- 

sions in the final section. 

2. Data and Methodology 

A TC archive for the Southern Hemisphere has been 
prepared at the NCC in the Australian Bureau of Meteor- 
ology in close collaboration with international partners 
[2]. The archive is a result of multinational efforts of the 
National Meteorological and Hydrological Services from 
the Southern Hemisphere nations and has been derived 
from several data sources. The data for the western South 
Indian Ocean (30˚E to 90˚E) have been provided by 
Météo-France (La Réunion), for the Australian region 
(90˚E to 160˚E) by the Australian Tropical Cyclone 
Warning Centres (Brisbane, Darwin and Perth), and for 
the eastern South Pacific Ocean (east of 160˚E) by the 
Meteorological Services of Fiji and New Zealand. TC 
tracks from these archives were merged into one archive, 
ensuring consistency of track data when TCs cross re- 
gional borders. The data from the Southern Hemisphere 
TC archive are available from the Pacific Tropical Cy- 
clone Data Portal  
(http://www.bom.gov.au/cyclone/history/tracks). 

The time series of TC annual occurrences in the Aus- 
tralian region is presented in Figure 1. To keep consis- 
tency with results of our previous studies, the genesis of 
a TC is defined when a cyclonic system first attains a 
central pressure equal to or less than 995 hPa. Primary 
focus of the study is the Australian region, however, 
prospects to develop skillful statistical models for TC 
seasonal forecasting in the eastern South Pacific Ocean 
and the western South Indian Ocean were also investi- 
gated. 

A linear regression model technique was used to 
model the relationship between the number of cyclones 
in three regions of the Southern Hemisphere. Studies by 
Ramsay et al. [12] and Kuleshov et al. [8] demonstrated 
a strong correlation (about −0.7) between the annual 
number of TCs in the Australian region and the Au- 
gust-September-October-averaged NIÑO4 and NIÑO3.4 
indices, with some other ENSO indices also showing 
high correlation. For the eastern South Pacific Ocean, the 
NIÑO3.4, SOI and 5VAR indices correlated with the TC 
number better than other ENSO indices [8]. 

The NIÑO3.4 and the SOI are the two most commonly 
used indices in defining ENSO phases. The SOI data 
used in this study were obtained from the Australian Bu- 
reau of Meteorology and are available on its website at 
www.bom.gov.au/climate/current/soihtm1.shtml. Values 
for the NIÑO3.4 (SST anomalies in Niño3.4 region, 
3-month running mean) were obtained from the Climate 
Prediction Center, NOAA (ftp.cpc.ncep.noaa.gov/wd52dg/ 
data/indices/sstoi.indices). A multivariate ENSO index, 
ased on the first principal component of monthly Darwin b   
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Figure 1. Time series of TC annual occurrences in the Australian region for the 1969/1970 to 2009/2010 seasons. 
 
mean sea level pressure (MSLP), Tahiti MSLP, and the 
NIÑO3, NIÑO3.4 and NIÑO4 SST indices, has been 
developed at the NCC (see also [5,8]). Its base period is 
1950-1999. Strength of a multivariate index is in inte- 
grating both atmospheric and oceanic responses to changes 
in the ENSO phases in one index. We denote this stan- 
dardised monthly anomaly index as the 5VAR index. In 
this study, the NIÑO3.4, the SOI and the 5VAR indices 
were used for further investigation of the TC-ENSO rela- 
tionship. 

3. Results 

3.1. Correlation between the Annual Number of 
TCs and the ENSO Indices 

The correlation coefficient was calculated between the 
annual number of TCs and the three selected indices for 
each month of two consecutive years in which the TC 
season is included. Thus, we measure a degree of corre- 
lation between the number of cyclones in the TC season 
with the indices before, during and after the TC season. 
For each index, there would be twenty-four correlation 
coefficients for individual months denoted as January (t), 
February (t), , December (t), January (t + 1),  and 
December (t + 1), where t is the year in which the cy-
clone season starts. We also investigated the correlation 
by averaging values of the ENSO indices for m neigh- 
bouring months, where m takes values 2 and 3. The 
higher the values of m, the less importance is given to 

individual monthly values of the index as equal weights 
are given to each of the m months. The correlation be-
tween annual number of TCs in the Australian region and 
the monthly 5VAR, NIÑO3.4 and SOI indices is pre-
sented in Figure 2 (for the SOI, correlations with –SOI 
are plotted for consistency of sign with the other indices). 

In agreement with earlier studies, the best correlation 
is found for the months from August, A (t), to January of 
the next year, J (t + 1). While the 5VAR and NIÑO3.4 
indices demonstrate high correlation in a range from −0.6 
to −0.7 for six months from A (t) to J (t + 1), the SOI has 
the strongest correlation in A (t) (−0.62) which then de- 
creases to less than −0.5 from October, O (t), onwards. It 
appears that the state of the atmosphere alone (as de- 
scribed by the SOI) is an important contributor to the 
environment in which TCs form early in the season, but 
not as important as ocean (or combined contribution of 
ocean and the atmosphere as described for example by 
5VAR) during the TC season. 

The correlation coefficients were also computed for 
two-month and three-month averages (Figures 3 and 4, 
respectively). Similar conclusions can be drawn from the 
analysis of the correlation of the TC number with bi- and 
tri-monthly averaged ENSO indices. The highest correla- 
tion was found for the averages that include A (t) up to 
those that include J (t + 1) (although still with the excep- 
tion of the SOI). 

 

A TC seasonal forecast for the regions of the Southern 
Hemisphere is typically issued in October, prior to the   



Y. KULESHOV  ET  AL. 301

  

 

Figure 2. The correlation between annual number of TCs in the Australian region and the monthly 5VAR, NIÑO3.4 and SOI 
indices. 

 

 

Figure 3. As for Figure 2, but for the bi-monthly indices. 
 

 

Figure 4. As for Figure 2, but for the tri-monthly indices. 
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beginning of the TC season. As monthly-averaged values 
of the ENSO indices are usually available in the second 
week of the following month, for the prediction model to 
be implemented operationally the values for the months 
beyond September cannot be used. Consequently, in Ta- 
ble 1 we present the highest correlation coefficient of the 
total annual number of TCs in the Australian region with 
the three ENSO indices examined and the corresponding 
months that have been averaged only for months prior to 
October. Note that the highest correlations for the entire 
24-month period examined are only marginally higher 
for the months beyond September. For example, in the 
case of the 2-month average for the 5VAR index, the 
strongest correlation of −0.678 arises from the average of 
the September and October values, while the correlation 
arising from the average of August and September values 
(presented in the table) is −0.665. 

As can be seen from the table, the 5VAR performs 
better than other two indices examined demonstrating the 
strongest monthly, bi-monthly and tri-monthly correla- 
tion. Inspecting the correlations of each index, we found 
that the strongest correlation for the 5VAR is one month 
pre-season September, while it is the two-month average 
of August and September for NIÑO3.4 and the three- 
month average of July, August and September for the 
SOI (shown in bold font in Table 1). Based on these 
finding, models were built for each of the indices using 
the appropriate m-month averages of the data. 

3.2. Multiple Regression Models 

We modified the simple linear regression model devel- 
oped earlier in [8] by adding a temporal trend variable (T) 
as one of the predictors. The candidate models are 

Model 1 

0 1AR 2T 5VAR    

2 NINO3.4

   

Model 2 

0 1TAR      

2T SOI

 

Model 3 

0 1AR        

 
Table 1. The highest correlation coefficients between the 
annual number of TCs in the Australian region and the 
monthly, bi-monthly and tri-monthly 5VAR, NIÑO3.4 and 
SOI indices. Letters following the numerical values denote 
which months or combinations of months are used. 

 1 month 2 month 3 month 

5VAR −0.668 S −0.665 AS −0.655 JAS 

NINO3.4 −0.613 S −0.628 AS −0.623 JAS 

SOI +0.622 A +0.640 AS +0.643 JAS 

where  denotes the noise variable, assumed to be nor- 
mally distributed with mean 0 and variance 2, i.e., ~N 
(0,σ2). 

It was found that all three models have significant co- 
efficients for the three indicial predictors. The assump- 
tions of randomly and normally distributed residuals are 
also satisfied. Although the temporal predictor is not 
statically significant for the first two models (although 
not far from being statistically significant), the adjusted 
values R2 for all three models have increased by com- 
paring with our earlier model without the temporal trend. 
The adjusted values R2 for the model with the 5VAR as a 
predictor has increased from 0.432 to 0.452, while R2 

increased from 0.3791 to 0.4005 for the NIÑO3.4 models. 
As for the model with SOI as a predictor, the temporal 
predictor is marginally significant at the 10% signifi-
cance level, the percentage of explained variation has 
increased from 0.4063 to 0.4462. As in our earlier study, 
the regression model with 5VAR as the predictor sur-
passes the other two models with SOI or NIÑO3.4 as the 
predictors. 

In our analyses, we also take into account an influen- 
tial point, which is an observation that greatly affects the 
slope of the regression line. Observations can be flagged 
as potential influential points by means of leverage 
points, DFFITS and Cook’s distance. The cut off point 
for leverage in the above three models is 0.0487, but note 
that a leverage point is not always an influential point. 
DFFITS is a diagnostic meant to show how influential a 
point is in a statistical regression [13]. It is defined as the 
change (“DFFIT”), in the predicted value for a point, 
obtained when that point is left out of the regression, 
“Studentized” by dividing by the estimated standard 
deviation of the fit at that point:  

 

 

ˆ ˆ
DFFITS

i i i

iii

y y

s h




ŷ ŷ

 

where i  and  i i  are the prediction for point i with 
and without point i included in the regression, s(i) is the 
standard error estimated without the point in question, 
and hii is the leverage for the point. Large values of 
DFFITS indicate influential observations. An observation 
with DFFITS value greater than 0.453 is flagged for 
scrutiny. As for Cook’s distance, an observation is also 
flagged if the value is greater than 1. 

In our analyses, the following observations were 
flagged as potential influential points: 

Model 1: Observations 1, 20 and 29, 
Model 2: Observations 1 and 29, and 
Model 3: Observations 1 and 20. 
Model 1 was then adjusted and fitted three times, each 

time omitting one flagged observation and the same was 
done with Models 2 and 3 by excluding observations 20 
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and 29 alternatively. The models with the highest ad- 
justed R2 values were kept separately from Models 1, 2 
and 3. In order to detect if any multi-collinearity prob- 
lems are present in the above models, VIF (Variance 
inflation factor) was also calculated. The results (not 
shown) demonstrated that there were no multi-collinear- 
ity problems in the proposed multiple regression models. 

The first observation, five TCs in the 1969/1970 sea- 
son, was found to be the most influential point for all 
three models. All three indices along with the temporal 
trend explained 44% to 50% of the total variation in the 
annual number of TCs in the Australian region. After 
removing the influential point, one can see that all three 
modified regression models perform better in terms of 
improved adjusted R2 values. The temporal trend effect 
also became significant (P-values < 0.05) after removing 
the first observation, making the temporal trend an es-
sential predictor for the annual number of TCs in Austra-
lian region. 

One of the possible reasons for TC donward trend in 
the Australian region could be due to ENSO impact on 
TC geographical distribution. In the Australian region, a 
reduction in TC activity is usually observed in El Niño 
years, while in La Niña years TC activity is typically 
higher compared to El Niño years [5,14]. In 1970s, four 
La Niña events and four El Niño events were identified, 
while during the next three decades only five La Niña 
events were observed, with 12 El Niño events recorded 
[8]. Such distribution in frequency of the ENSO cold and 
warm phases is one of the plausible reasons for the ob- 
served downward trend in TCs in the Australia regions. 
This trend could also reflect a slow periodicity in TC 

variability due to variation in major climatic drivers with 
a period rather longer than the study period (see, for ex- 
ample, impact of the Pacific Decadal Oscillation on TC 
variability over the western North Pacific described in 
[15]). Thus, incorporation of a temporal trend in the sta- 
tistical model requires its regular revision, perhaps annu- 
ally, accounting for TC activity in the last season and 
adjusting the model accordingly. 

By comparing with the simple linear regression coun- 
terparts in [8], all the developed models have improved 
performance. For example, the model using SOI as a 
predictor was not the best model in our earlier study with 
the adjusted R2 of about 40%, while in the current analy- 
ses the model demonstrates an improvement in modelling 
the annual number of TCs with the R2 reaching 50%. 

Cross-validation was employed to assess the models’ 
performance, each time leaving one observation out and 
validating the analysis on that single observation. The 
RMSE (root mean squared error) was calculated as the 
measurement of fit. RMSEs were 2.72, 2.86 and 2.70 for 
the Models 1.1 (5VAR), 2.1 (NIÑO3.4) and 3.1 (SOI), 
respectively. The cross-validation results are in agree- 
ment with those using adjusted R2 as the model assess- 
ment criteria, that is, the models which used the pre- 
season July-August-September SOI and September 
5VAR indices and the time trend as the predictors dem- 
onstrated the best performance. 

Using the developed models, the modelled annual 
number of TCs in the Australian region was compared 
with the observed (Figure 5). 

Using the developed models, forecast of a number of 
TCs in the Australian region in 2010/11 was prepared 

 

 
Figure 5. Time series of the total annual number of TCs in the Australian region as observed (solid line) and predicted using 
the 5VAR index + Time (Model 1.1), NIÑO3.4 index + Time (Model 2.1) and the SOI index + Time (Model 3.1).    
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(Table 2), with the standard error (SE) of the forecast 
given in brackets. The predicted number averaged over 
the three models is 14, which is higher than the observed 
number of 11 cyclones; however the models demonstrate 
improvement in prediction skill compared to the statistic- 
cal models currently used by the NCC which predicted 
20 to 22 cyclones. 

The forecast for the number of TCs in 2011/2012 was 
also prepared using the three models. The numbers are 
similar for all three models and they indicate that the 
predicted TC activity in the Australian region for 
2011/2012 cyclone season, 12 cyclones averaged over 
the three models, is expected to be similar to the long- 
term average of 12 cyclones. 

Regression analysis for the eastern South Pacific 
Ocean and the western South Indian Ocean was also 
performed. Correlation between a number of TCs in the 
regions and the ENSO indices was calculated for the 1-, 
2- and 3-month average. For each index, the month 
(months) with the highest correlation with the number of 
TCs in the region were selected. It was found that the 
correlations were not as strong as in the Australian region. 
For example, in the eastern South Pacific Ocean the 
strongest relationship with the number of TCs was found 
for September indices, although the association was 
weak (0.297 for the 5VAR, 0.318 for the NIÑO3.4 and 
0.273 for the SOI). With these weak correlations, we 
conclude that it is not sensible to further build linear re-
gression models. 

3.3. Statistical-Dynamical Model-Based 
Approach for TC Seasonal Prediction 

The Australian Bureau of Meteorology has developed a 
dynamical climate prediction model POAMA (Predictive 
Ocean-Atmosphere Model for Australia) [16]. It has been 
demonstrated that POAMA has substantial skill in pre- 
dicting SSTs and rainfall across the Asia-Pacific region 
[17]. The skill results indicate the potential for develop- 
ing TC seasonal prediction using statistical-dynamical 
model-based approach. Developing the improved statis- 
tical regression models, we found that the 5VAR index 
demonstrated the best correlation with the TC number 
and the correlation was constantly high (close to 0.7 in 
the Australia region) for six months from August, A (t), to  
 
Table 2. Forecasts of the number of TCs occurring in the 
Australian region in 2010/11 and 2011/12 prepared using 
the developed models. 

 Model 1.1 Model 2.1 Model 3.1 Average

2010/2011 
Forecast (SE) 

14.34 
(1.29) 

13.47 
(1.25) 

14.54 
(1.28) 

14.12 

2011/2012  
Forecast (SE) 

11.82 
(0.96) 

11.26 
(0.96) 

11.65 
(0.92) 

11.58 

January of the next year, J (t + 1) (Section 3.1). It leads 
us to a proposition that using outputs from the dynamical 
model POAMA obtained prior to the TC season, it is 
possible to compute predicted values for the ENSO indi- 
ces in advance (e.g. POAMA outputs generated in Au- 
gust and September can be used to compute Octo- 
ber-November-December 5VAR values) and then use a 
statistical model to predict TC number. This approach 
may be particularly beneficial for early warning of ex- 
pected active TC season (issued 1 - 2 months ahead of 
the statistical model-based forecast). In this study, we 
simulated such approach by the development of a regres- 
sion model using October-November-December values 
of the 5VAR index as a predictor. Similar to the results 
in Section 3.2, the model with additional time trend has 
better performance than having 5VAR index only as the 
single explanatory variable. 

There were four observations flagged as potential in- 
fluential points in our proposed model, and they were 
observations 1, 20, 29 and 39. The models were re-built 
iteratively each time by omitting one flagged observation, 
and the model that excludes the first observation 
(1969/1970 season) was retained due to its highest ad- 
justed R2 value (0.4932). The results are given in Table 3. 
One can see that both the 5VAR index and time trend are 
significant at 5% level of significance in the model. 

The forecast of the number of TCs was also derived 
based on the developed model with the values of Octo- 
ber-November-December 5VAR index in 2010. The re- 
sulting predicted number of TCs in the Australian region 
in 2010/2011 is 13.45, with the standard error 1.11. The 
obtained results of our pilot study for possible applica- 
tion of statistical-dynamical model-based approach en- 
courage us to continue this investigation using POAMA 
outputs which we aim to conduct in our subsequent 
study. 

4. Discussion and Conclusions 

Interannual variability in the intensity and distribution of 
TCs is large, and presently greater than any trends that 
are ascribable to climate change. Historically TCs have 
had major impacts on agriculture, water supplies, safety 
and economic wellbeing of Australia and island countries 
of the South Pacific and South Indian Oceans. Better 
managing the year to year variability in cyclones is a 
practical means for decreasing current and future  
 
Table 3. Multiple linear regression with both time trend 
and the October-November-December 5VAR. 

 T 5VAR Residual SE Adj R2 

Coefficient −0.086 −1.935 

P-value 0.014 6e-06 
2.410 0.493 
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vulnerability to TCs. In addition, understanding the driv- 
ers of variability provides greater confidence in future 
predictions and projections. This is particularly important 
as the current understanding of TCs and seasonal condi- 
tions is mainly drawn from historical data and past co- 
variability with drivers such as the ENSO, which are less 
valid in a changing climate. One issue that has emerged 
is a problem in predicting TC occurrence based on his- 
torical relationships, with predictors such as the SOI and 
SSTs now frequently lying outside of the range of past 
variability which was demonstrated by over-predicting 
TC activity in the Australian region for 2010/2011 TC 
season. 

Currently, a statistical model-based prediction of TC 
activity in the coming season is used by the NCC for 
operational seasonal forecasting in the Australian region 
and the Pacific. Statistical models are also used by other 
agencies, for example the National Institute for Water 
and Atmospheric Research (NIWA) in New Zealand and 
the GCACIC, Hong Kong. In this study, we demon- 
strated a possibility of improving the accuracy of sea- 
sonal forecasts in the Australian region using statistical 
model-based approach. However, we also found that sta- 
tistical models cannot produce skilful forecast of TC ac- 
tivity for other regions of the Southern Hemisphere. 

We also made a first step towards investigating a pos- 
sibility to apply statistical-dynamical model-based ap- 
proach for TC seasonal prediction. The statistical models 
are based on historical climate data. Consequently, it leads 
to shortcomings because the statistical models cannot 
account for aspects of climate variability and change that 
are not represented in the historical record. This is an 
increasing problem as climate change brings new and 
unforeseen climate conditions. Dynamical (physics-based) 
climate models do not have this short-coming and are 
consequently better at incorporating the effects of a 
changing climate, whatever its character or cause. There- 
fore, the transition from a statistical to a dynamical pre- 
diction system will ultimately provide more valuable and 
applicable climate information about tropical cyclone 
seasonal variability, which can inform decision making, 
responses and adaptation in Australia and Pacific and 
Indian Ocean island countries. High-quality TC seasonal 
prediction also enables to move to a lesser reliance on 
historical climatologies which can give misleading in- 
formation about the to-be-expected climate conditions 
and the likelihood of extreme events. 

We conclude that for the Australian region the devel- 
oped statistical models demonstrate improvement in 
forecasting skill compared to the currently employed 
NCC model. The next step towards improving skill of 
TC seasonal prediction in the regions of the Southern 
Hemisphere will be undertaken through the direct analy- 
sis of outputs from the dynamical climate models such as 

POAMA. 
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