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ABSTRACT 

The growing internationalization of markets, backed by the free movement of capital flows, has redefined the past 
quarter century’s business strategies and tends to continue driving economic and financial integration throughout this 
century. In this context, firms that aim to stand out in such markets should use the essence of the theoretical apparatus to 
allocate scarce resources efficiently. This means seeking the best possible benefits to offset the constraints that are in-
herent to the nature of the business environment. In this turbulent and competitive world, there is an increasing need to 
devise planning models to address the multiple issues that affect competitiveness, such as: planned rate of return, price 
adjustment, technological obsolescence, optimal investment path, among others. In an effort to contribute to solutions 
for this need, this paper proposes a dynamic model based on the Hamiltonian approach that combines the Cobb Douglas 
function and Pontryagin conditions. The model also suggests valuable improvements for company operations. 
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1. Introduction 

In today’s tumultuous world with its scenario of complex 
interrelated variables and its intense uncertainties, cor-
porate strategies must be unfailingly dynamic. Hence, 
constant readjustments are fundamental in dealing with 
the cyclical dynamics of self-regulated markets. Today, 
strategy and modeling cannot be taken as absolutes, for 
there are countless uncertainty factors that may be very 
difficult to resolve. The importance of business strategies 
and modeling of action planning increases in proportion 
to increasing uncertainty. Strategies must therefore be 
dynamic and change constantly to deal with unpredict-
able external factors. In view of the above, we believe 
that the best way to face today’s business uncertainties is 
through strategizing and modeling, followed by continu-
ous revisions of the strategy and the model. 

Established companies should brace themselves for a 
future of hypercompetition and be prepared to respond to 
rapid changes in the business environment by adopting a 
new approach—one that combines modeling and strate-
gic thinking.  

One of the basic notions in economics is that a com-
pany’s capital accumulation is a future-oriented activity, 
and as such, it should depend on what the company be-
lieves is likely to occur. The fact that the future cannot be 
known with certainty has led to several investigations of  

the effects of increased uncertainty on the company’s 
decision-making ability. Nickell [1], for instance, exam-
ined these effects based on several assumptions. 

During the last forty years it has been increasingly 
recognized that many economic problems can be viewed 
as involving the optimization of an intertemporal objec-
tive function by a decision-maker who is constrained by 
a dynamic system subject to various kinds of uncertain-
ties [2]. Robinson and Lakhani [3], demonstrated the fact 
that dynamic price models can be used to test the long 
run consequences of specific pricing rules or to deter-
mine the optimum long run pricing scenario within the 
context of any constraints which a manager might wish 
to impose. As opposed to the conventional static theory 
which emphasizes the instantaneous profit flow, the dy-
namic models use an appropriately discounted accumu-
lated profit as the major parameter for making value 
judgments. They considered a specific example that em-
phasizes the importance of these ideas for a growth mar-
ket and suggests that dynamic models can lead to as 
much as an order of magnitude more profit in the long 
run than the conventional static theory. 

However, such problems arise both on the level of the 
individual firm, necessitating extensions of operations 
research and management science to methods of dynamic 
optimization [4] under uncertainty, as well as on the level 
of policy-making for national economy [2,4]. 

Copyright © 2012 SciRes.                                                                                  ME 



S. A. DAVID  ET  AL. 385

The field of economics and its priorities for analysis 
are broadened considerably leaving behind a monist view 
of the economy, as in the dominant model of economic 
analysis, and adopting a pluralist view where different 
forms of enterprise—each with its own form of govern-
ance and profit or surplus distribution and its own objec-
tives—coexist, cooperate and compete in the economic 
system. In a plural economy approach, the forms of pri-
vate enterprise that do not maximize profits and whose 
behavior logic is not guided by the capital factor, such as 
the various forms of SE (Social Economy) enterprises, no 
longer occupy a marginal position but are at the centre of 
economic analysis [5]. In accordance to [5], the field of 
economic analysis needs to be broadened, abandoning 
the mainstream monism that emphasizes the study of 
capitalist private enterprises and taking a plural view of 
the economy. 

Moreover, in the globally competitive business world 
there is an increasing need to create planning models to 
deal with a wide variety of problems [6]. 

Regarding the method for the assessing and the plan-
ning the technology, Claro et al. [7] proposed a method, 
developed with the integration and adaptation of a set of 
state-of-the-art tools and concepts which involves, among 
others, dynamic planning and valuation and dynamic 
business plan preparation. Furthermore, Graves et al. [8], 
developed a new model for studying requirements plan-
ning in multistage production-inventory systems. Their 
approach is to use a model for a single production stage 
as a building block for modeling a network of stages and 
to analyze the single-stage model to determine the pro-
duction smoothness and stability for a production stage 
and the inventory requirements. Also, the model attempts 
to show how to optimize the tradeoff between production 
capacity and inventory for a single stage. 

However, do not have a tangible way to meet those 
terms. 

We believe that there is an increasing need to devise 
planning models that address multiple issues which affect 
competitiveness, such as planned rate of return, price 
adjustment, technological obsolescence, and optimal in-
vestment path, among others.  

In an effort to contribute to solutions to satisfy this 
need, we propose a dynamic coupled model that ad-
dresses the aforementioned issues. The model is based on 
a mathematical formulation using the Hamiltonian ap-
proach [9] considering the Cobb Douglas function and 
Pontryagin’s minimum principle. The Pontryagin’s mini- 
mum principle and the “minimum-time” problem were 
also used and derived by Lewis in optimal control appli-
cations involving the problem adjustment time in mone-
tary growth model [10]. In this present work, the model 
is intended for application in environmental business 
action planning and we believe that this paper offers a 

contribution to this investigation field. It is divided as 
follows: Section 2 outlines the dynamic optimization 
model considering the Cobb Douglas function and Pon-
tryagin’s conditions. Section 3 describes the conditions 
for optimality. Section 4 presents the results of simula-
tions. Lastly, Section 5 offers a discussion, our conclu-
sions and a future outlook. 

2. The Dynamic Optimization Model 

The development of a business must include a planned 
rate of return. Once the rate of return is determined, it 
can be written as a product of the profit margin vs. circu-
lation of capital, as expressed by the following equation: 

s M G                    (1) 

where, 

Profit

Revenue
M                  (2) 

and  

Revenue

Capital
G                (3) 

With this fact in mind, we examine the behavior of the 
rate of return (ROR) more closely. This close scrutiny 
reveals why the ROR does not follow its predicted course, 
and indicates how to change its course, or planning, de-
pending on the type of business in question. 

In addition, the model allows one to observe the opti-
mal investment path, on both the finite and infinite hori-
zons (steady-state values). In the case of the finite hori-
zon, in particular, the model is more qualitative than 
quantitative. However, in both cases, it allows for a vari-
ety of sensitivity analyses. 

The study involved two types of input market struc-
tures: an input market representing imperfect competition 
(convex adjustment costs) and a market of scale econo-
mies (concave adjustment costs) [11,12]. 

The cumulative profit to be maximized is then [13, 
14]: 

     

   

,

0

π dmax
T

rt rT
L I spF K wL C I t C K Te e

sK wL
K I K p S p

F K
  

      

  
            



 
 

(4) 

Equation (4) describes the company’s instantaneous 
cash flow constraints: 

     K t I t K t               (5) 

   
    sK t wL

p t S p t
F K t

 
  

  
          (6) 
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Factors K and L are the two input factors, i.e., capital 
stock and labor stock, respectively. The  K t  function 
is the time derivative of K(t). 

The  function is the unit price. The  p t  p t  func-
tion is the time derivative of p(t) and states the price ad-
justment mechanism [9]. 

As an initial assumption, due to the minor variation in 
the value of L (number of employees), L is considered 
constant and can therefore be written as , while 
F depends only on K.  

wL 

The F function can be seen as the Cobb Douglas func-
tion [15,17]. Thus,  

  1 2
0, a aF K L a K L                (7) 

is the firm’s production function.  

Since L is a constant value, one has   0K

F
F K

K


 


, 

with  and,  0 0F   
2

2
0KK

F
F K

K


 


. 

We also considered I(t) as the gross investment and 
C(I) as the total cost investment function, with  

     d
0, 0

d

C I
C I C I

I
    and C(0) = 0.  

The remaining parameters are as follows: 
 π is the cumulative profit; 
 w is the wage rate; 
 C  is the scrap value of the capital goods; s

 S is a speed for price adjustment; 
 r is the discount rate; 
 α is the depreciation rate; 

 s  is the capital return rate, 
π

a

s
C K

  , Ca is the unit  

value of the capital goods, and  is the annual profit. 
We know that  

π apF C K                (8) 

Thus, s  can be written as: 

a

a

pF C K
s

C K

                 (9) 

Therefore, 
0pF sK                 (10) 

where  

     0, 0  and 0a 0s C s K K p p        (11) 

We would like to point out that, in this context, the 
meanings of Equations (6) and (10) are not regulated [15], 
but there is a planned objective for profit. Thus, it can be 
demonstrated that, under particular conditions, Equations 
(6) and (10) are equivalent. 

After some manipulation, Pontryagin’s necessary con-
ditions yield: 

   
     

  2

K

K

q r q pF K

F K s sK F K
S

F K





  

    
  



     (12) 

   S r F K               (13) 

 q C I                 (14) 

where rtq e and rte   are the shadow prices re-
lated to K(t) and p(t) respectively. 

With regard to the input market (suppliers), two condi-
tions can be stated [6,16]. 

2.1. Convex Total Investment Costs 

The supplier market is an imperfect capital market, 
where   0C I   and C(I) is assumed to be:  

C(I) = A·I2 + B·I, A and B positive constants. 

2.2. Concave Total Investment Costs 

In this case, the costs decrease due to scale economies.  

Therefore   0C I   and  C I AI  where A is a  

positive constant. The problem here is a non-convex one. 
According to [5], it is possible to solve the artificially 
“convexified” problem by replacing the C(I) function  

with a function constructed by setting 
 C I

q
I

  for all  

I, 00 I I  , where 
 0

0

C I
q

I
 .  

Thus, for this “convexified” problem,  ,q K   is a 
feasible steady-state with a level of investment I K  
and an average cost of investment q . 

3. Conditions for Optimality 

In addition to the conditions stated in the previous sec-
tion, several important conditions for the model’s appli-
cation and for investigation are considered in this section, 
namely: planned ROR, price adjustment and optimal 
investment path, technological obsolescence involving a 
depreciation model and various general conditions. 

3.1. Planned Rate of Return  

This model works with a planned ROR. Therefore, s  is 
a planned objective of the company. For instance, if the 
objective is to achieve a ROR of 12%, the model maxi-
mizes the cumulative profit for this kind of premise. In 
addition, one can write: 

s M G   , where 
π

M
pF

  (profit margin) and  

pF
G

K
  (circulation of capital).  
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If s  changes, s also changes because  as C s   . 
Thus, it is possible to evaluate the two effects separately 
to achieve the same s  value. In some situations it is 
better to vary M and in others it is more advantageous to 
vary G. 

3.2. Price Adjustment and Optimal Investment  
Path 

The dynamics that governs the price is that of equation 
(10), based on the planned ROR (the company’s objec-
tive). Combining Equation (10) with Equation (1) and 
using a numerical technique to converge to a fixed point 
(which will be explained in greater detail in Section 4), 
the model leads the price and capital values to converge 
at an equilibrium point, indicating the optimal investment 
path. 

3.3. Technological Obsolescence and  
Depreciation Model 

The historical depreciation model is not the best one to 
explain technological obsolescence. Instead, technologi-
cal obsolescence is best explained by the sum-of-digits 
model [17]. However, because the time between the sev-
eral operation ages (vintages) [17-20] is extremely dis-
crepant, it is more convenient to model depreciation as a 
general model based on the Fisher-Pry model (S shape 
model). Instead of a constant value of α, the depreciation 
rate has a time variation. The Fisher-Pry mathematical 
model can be written as: 

   
1

1 b a
y

e 
 




              (15) 

where y() is the fraction of the new technology in time . 
The parameter a describes the time at which the new 
technology reaches 50% of the entire time between the 
new and the old technologies. The parameter b measures 
the speed of substitution. Based on the Fisher-Pry model, 
the mean depreciation rate can be written as: 

   
1

0
1 b ae 

  
 

 


            (16) 

where α0 is the initial depreciation rate. The final depre-
ciation rate is 0 1   

 a

. Thus, Equation (16) can be 
incorporated into the dynamic equations, keeping in 
mind that s C s   . 

The Figure 1 shows the evolution of the depreciation 
rate. 

3.4. General Conditions 

The company is always constrained to satisfy demand 
and presumably knows all the relevant information about 
the supply and demand functions (output market, cus-
tomers) [21,22]. The Figure 1, show the depreciation 

rate. In this figure we can see a significant grow at the 
point 7.6 and at year 10 the depreciation rate is 3 times 
more. 

Assuming a demand function p = a – bQ, the maxi-
mum revenue value occurs at point a/2b. Figure 2 indi-
cates that a slight variation around the equilibrium point, 
assuming an admissible variation in p, causes a slight 
variation in Q = F(K).  

This slight variation in Q causes a slight admissible 
variation in the revenue. The model exploits this range of 
variations because the solution depends on a type of con-
traction to a fixed point before converging to stationary 
values due to a numerical solution.  

The Figure 2 illustrates the range of applications of 
the model. The upper portion of this figure contains the 
supply and demand functions. The red line corresponds 
to the supply function and the blue line to the demand 
function. In the lower portion of this figure, the green 
line corresponds to the revenue curve as a function of Q 
= F(K). 
 

 

Figure 1. Depreciation rate evolution. 
 

 

Figure 2. Range for model application. 
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4. Simulations Results 

Assuming a fixed value of I(t), or equivalently, its infi-
nite value, Equation (5) can be written as follows: 

    01 t tI
K t e e 


    K          (17) 

It is interesting to note that 
I

K



  , as expected.  

The model assumes the maintenance of I(t) as a t con-
stant and calculates K= K(t) as a time function for each 
different time. Proceeding in the same way, Equation (6) 
will become: 

      01 St StsK
p t e e p

F K
             (18) 

The Equations (19) and (20) can be treated similarly, 
but their integration constants must disappear over time. 
The time it takes for them to reach their stationary values 
can be investigated (this is a sort of “warm-up” time). 
Their stationary values will thus be: 

     
 

 2

1

K
K

q
r

F K s sK F K
S p F K

F K







  
 






      
    

(19) 
 F K

S r
 
 


                (20) 

The four Equations (17)-(20) are then coupled and I(t) 
is calculated from Equation (14) and with  
I(q) = (C'(Ì(q)))–1. 

See the additional observation for concave adjustment 
costs as in [5].  

The model is actually more qualitative than quantita-
tive, but it gives a good idea about the optimal path and, 
in addition, it allows for a thorough sensitivity analysis. 

The equations resulting from the Hamiltonian ap-
proach (12), (13) and (14) and the model’s Equations (3), 
(6) and (10) were solved using the Matlab/SimulinkTM 
software package. 

Next, we describe some of the [the most important] 
results of these simulations and briefly discuss each one.  

The Figure 3 indicates, for the concave adjustment 
costs and rate of return 12%s , that the relation be-
tween profit margin (M) and capital circulation (G) has 
an important dependence about the depreciation rate. If 
the company, for instance, can not to make a higher 
capital circulation, the depreciation rate can not be in-
creased. 

 

The Figure 4 presents the phase diagram for the 
steady-state relative to depreciation rate equal to 0.1 and 
C(I) with the concave shape. Besides, it shows the in 

 

Figure 3. C(I)—concave shape. 
 

 

Figure 4. C(I)—concave shape. 
 

vestment path to reach the feasible steady-state  ,q K  
for a given K0 value. The value for K is 8346 and do not 
appear in figure because its scale values. Price variations 
achieved by changing the ROR are presented in Figures 
5 and 6.  

The Figures 5 and 6 shows that when the ROR in-
creases, shifting the curve to the right and the relation-
ship between M and G also changes. 

Price variations achieved by changing the ROR are 
presented in Figures 7 and 8. At the figure 8, the ROR of 
the 12%, presents a discontinuity around 17 years. 

The company can choose how to achieve a ROR of 
18%. For instance, it can increase G or, alternatively, it 
can increase M between the admissible limits. 

When the ROR s  changes from 12% to 18%, for in-
stance, the price level goes to a higher steady-state value. 

The Figure 9 shows the phase diagram of Price (p) vs. 
Capital (K) for the cost convex shape, with s  = 12% 
and a depreciation rate of 0.1, that is the common values 
usually found in the literature. In this figure, note that the 
Price reaches the steady-state. 
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Figure 5. C(I)—convex shape. 
 

 

Figure 6. C(I)—concave shape. 
 

 

Figure 7. C(I)—concave shape. 
 

On the other hand, Figure 10 shows the phase diagram 
of Price (p) vs. Capital (K) for a cost concave shape with 
s  = 18% and a depreciation rate of 0.3. 

The phase diagram in Figure 11 shows the cost con-  

 

Figure 8. C(I)—convex shape. 
 

 

Figuer 9. Phase diagram for C(I) convex shape. 
 
vex shape and a depreciation of 0.1, as well as the in-
vestment path to reach the steady-state for a given K0 
value. 

The Figure 12 shows the phase diagram for a cost 
convex shape and depreciation equal to 0.3. A compari-
son of this figure with Figure 11 with the same value of 
K0 indicates that the steady-state was reached at a lower 
value. This implies a lower ROR at the equilibrium point. 

5. Conclusions 

An evaluation of the model’s variations of the steady- 
state price indicates that the concave cost model is more 
sensitive and therefore has a higher probability of leaving 
a given operating point stipulated by the company’s ob-
jective as the depreciation rate increases.  

However, as the depreciation rate increases, two con-
ditions can be observed in the model, i.e., an increase in 
the steady-state price and an increase in the circulation of 
capital (G), although the profit margin (M) may some-
times decrease. In fact, the best situation would be in-  
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Figure 10. Phase diagram for C(I) concave shape. 
 

 

Figure 11. Phase diagram for C(I) convex shape and depre-
ciation 0.1. 
 

 

Figure 12. Phase diagram for C(I) convex shape and depre-
ciation 0.3. 
 
crease in G and M, but some companies have large 
amounts of capital and which they cannot easily put into 

Another f

circulation. 

act about our model is that the stationary 
point has a lower profit value, since the profit is given by 
the expression  as C K t , where s  is the planned 
ROR and Ca is th capital goo s.  

With the increase in ROR, 
e value of d

s , the main condition ob-
se

ble way to achieve greater accuracy and confi-
de

model is very comprehensive 
an

zation model 
m

REFERENCES 
[1] S. Nickell, “U he Investment De- 

rved is a price increase. In certain cases, regulatory 
agencies may establish a maximum limit for prices (or 
tariffs), causing the planned ROR to become unattainable. 
Moreover, taking into account possible changes in the 
price (or tariff), another relevant issue is undoubtedly the 
competition (output market). However, a possible shift 
from the supply and demand operating point can be 
foreseen. 

A possi
nce in the model’s application, even for qualitative 

purposes, would be to make a data survey using regres-
sion and data fitting models, employing the two main 
functions involved: the Cobb-Douglas type F(K,L) func-
tion, and the production function (or F(K)), if it depends 
only on K and C(I). The same applies to total investment 
costs or adjustment costs. 

This newly developed 
d allows for the evaluation of other types of parameters, 

such as the sensitivity of discount or interest rates, r, or 
variations in the cost of a capital good, Ca. 

We believe that the use of this optimi
ay make action planning clearer and lead to easier, 

more accurate and efficient decisions. 

ncertainty and Lags in t
cisions of Firms,” The Review of Economic Studies, Vol. 
44, No. 2, 1977, pp. 249-263. doi:10.2307/2297065 

[2] J. Matulka and R. Neck, “Optcon: An Algorithm for the 
Optimal Control of Nonlinear Stochastic Models,” Annals 
of Operations Research, Vol. 37, No. 1, 1992, pp. 375-401.  
doi:10.1007/BF02071066 

[3] B. Robinson and C. Lakhani, “Dynamic Price Models for 
New-Product Planning,” Management Science, Vol. 21, 
No. 10, 1975, pp. 1113-1122.  
doi:10.1287/mnsc.21.10.1113 

[4] M. Alghalith, “General Closed-Form Solutions to the Dy- 
namic Optimization Problem in Incomplete Markets,” 
Applied Mathematics, Vol. 2, No. 4, 2011, pp. 433-435.  
doi:10.4236/am.2011.24054 

[5] R. Chaves and J. L. Monzón, “Beyond the Crisis: The 
Social Economy, Prop of a New Model of Sustainable 
Economic Development,” Service Business, Vol. 6, No. 1, 
2012, pp. 5-26. doi:10.1007/s11628-011-0125-7 

[6] J. C. Eckalbar, “Closed-Form Solutions to Bundling Prob- 

.x

lems,” Journal of Economics & Management Strategy, 
Vol. 19, No. 2, 2010, pp. 513-544.  
doi:10.1111/j.1530-9134.2010.00260  

r Assessing and 
Planning Uncertain Technology Investments,” Interna- 

[7] J. Claro, et al., “Integrated Method fo

Copyright © 2012 SciRes.                                                                                  ME 

http://dx.doi.org/10.2307/2297065
http://dx.doi.org/10.2307/2297065
http://dx.doi.org/10.1007/BF02071066
http://dx.doi.org/10.1007/BF02071066
http://dx.doi.org/10.1287/mnsc.21.10.1113
http://dx.doi.org/10.1287/mnsc.21.10.1113
http://dx.doi.org/10.4236/am.2011.24054
http://dx.doi.org/10.4236/am.2011.24054
http://dx.doi.org/10.1007/s11628-011-0125-7
http://dx.doi.org/10.1007/s11628-011-0125-7
http://dx.doi.org/10.1111/j.1530-9134.2010.00260.x
http://dx.doi.org/10.1111/j.1530-9134.2010.00260.x


S. A. DAVID  ET  AL. 

Copyright © 2012 SciRes.                                                                                  ME 

391

 Chain Optimization,”

tional Journal of Engineering Management and Econom- 
ics, Vol. 1, No. 1, 2010, pp. 3-30.  

[8] S. C. Graves, et al., “A Dynamic Model for Requirements 
Planning with Application to Supply  
Operations Research, Vol. 46, No. 3, 1998, pp. S35-S49.  
doi:10.1287/opre.46.3.S35 

[9] E. G. Davis, “A Dynamic Model of the Regulated Fir
with a Price Adjustment M

m
echanism,” The Bell Journal of 

 

Economics and Management Science, Vol. 4, No. 1, 1972, 
pp. 270-282. doi:10.2307/3003148 

[10] S. D. Lewis, “Adjustment Time and Optimal Control of 
Neoclassical Monetary Growth Models,” Optimal Control 
Applications and Methods, Vol. 2, No. 3, 1981, pp. 251- 
267. doi:10.1002/oca.4660020305 

[11] L. E. Ohanian, E. C. Prescott and N. L. Stokey, “Intro- 
duction to Dynamic General Equilibrium,” Journal of 
Economic Theory, Vol. 144, No. 6, 2009, pp. 2235-2246.  
doi:10.1016/j.jet.2009.09.001 

[12] R. Davidson and R. Harris, “Non-Convexities in Continu- 
ous-Time Investment Theory,” Review of Economic Stu- 
dies, Vol. 48, No. 2, 1981, pp. 235-253.  
doi:10.2307/2296882 

[13] E. Silberberg, “The Structure of Economi
tical Analysis,” 2nd Ed

cs: A Mathema-
ition, McGraw Hill, Boston, 1990

 
.  

[14] H. Goldstein, C. P. Poole and J. Safko, “Classical Me- 
chanics,” 3rd Edition, Addison Wesley, Boston, 2001.  

[15] S. Katayama, “Optimal Investment Policy of the Regu- 

lated Firm,” Journal of Economic Dynamics and Control, 
Vol. 13, No. 4, 1989, pp. 532-552.  
doi:10.1016/0165-1889(89)90002-X 

[16] E. P. López, et al., “A Model Predictive Control Strategy 
for supply Chain Optimization,” Computers & Chemical 
Engineering, Vol. 27, No. 8-9, 2003, pp. 1201-1218.  
doi:10.1016/S0098-1354(03)00047-4 

[17] L. K. Vanston and R. L. Hodges, “Depreciation Lives for 

“Comparison of Economic Life Techniques,” 

s of Endogenous 

Telecommunications Equipment,” Technology Futures, Inc., 
Austin, 1996. 

[18] S. L. Barreca, 
Technology Futures, Inc., Austin, 1999.  

[19] L. C. Won, “On the Policy Implication
Technological Progress,” The Economic Journal, Vol. 
111, No. 471, 2001, pp. 164-179.  
doi:10.1111/1468-0297.00626 

[20] H. Aoyama, et al., “Fluctuation of Firm Size in the Long- 
Run and Bimodal Distribution,” Advances in Operations 
Research, 2011, pp. 1-21. doi:10.1155/2011/269239 

[21] R. Dorfman, “An Economic Interpretation of Optimal 

hatelier Principle in Optimal 

0058-3

Control Theory,” American Economic Review, Vol. 59, 
No. 5, 1969, pp. 817-831. 

[22] L. G. Epstein, “The Le C
Control Problems,” Journal of Economic Theory, Vol. 19, 
No. 1, 1978, pp. 103-122.  
doi:10.1016/0022-0531(78)9  

 
 

http://dx.doi.org/10.1287/opre.46.3.S35
http://dx.doi.org/10.1287/opre.46.3.S35
http://dx.doi.org/10.1287/opre.46.3.S35
http://dx.doi.org/10.2307/3003148
http://dx.doi.org/10.2307/3003148
http://dx.doi.org/10.2307/3003148
http://dx.doi.org/10.1002/oca.4660020305
http://dx.doi.org/10.1002/oca.4660020305
http://dx.doi.org/10.1002/oca.4660020305
http://dx.doi.org/10.1016/j.jet.2009.09.001
http://dx.doi.org/10.1016/j.jet.2009.09.001
http://dx.doi.org/10.1016/j.jet.2009.09.001
http://dx.doi.org/10.2307/2296882
http://dx.doi.org/10.2307/2296882
http://dx.doi.org/10.2307/2296882
http://dx.doi.org/10.1016/0165-1889(89)90002-X
http://dx.doi.org/10.1016/0165-1889(89)90002-X
http://dx.doi.org/10.1016/S0098-1354(03)00047-4
http://dx.doi.org/10.1016/S0098-1354(03)00047-4
http://dx.doi.org/10.1111/1468-0297.00626
http://dx.doi.org/10.1111/1468-0297.00626
http://dx.doi.org/10.1155/2011/269239
http://dx.doi.org/10.1155/2011/269239
http://dx.doi.org/10.1016/0022-0531(78)90058-3

