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ABSTRACT 

New form of necessary conditions for optimality (NCO) is considered. They can be useful for design the direct infinite- 
dimensional optimization algorithms for systems described by partial differential equations (PDE). Appropriate algo-
rithms for unconstrained minimizing a functional are considered and tested. To construct the algorithms, new form of 
NCO is used. Such approach demonstrates fast uniform convergence at optimal solution in infinite-dimensional space. 
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1. Introduction 

Three classes of optimization problems for PDE are 
known, e.g., [1]: optimal control, parameter identification, 
and optimal design. To solve its in general case are used 
optimization algorithms in infinite-dimensional spaces, 
and finite-dimensional spaces. In the last case the algo- 
rithms are applied after transformation a desired parame-
ter-function into a finite-dimensional space. We shall 
consider direct optimization [2,3], i.e. immediately mini- 
mization an objective functional ( )J u  by infinite-di- 
mensional methods on the basis of the gradient J . 
Here ( ; )J u   is a Frechet derivative, which is a linear 
functional. It depends on desirable parameter  and 
space-time variable 

u
 . 

It is well known classical NCO for unconstrained op- 
timization problems: 

 
( )

0
U S

J u  

S

             (1) 

where ( ) ( )u U 
( )U S

S ( )U S

 is an optimum value of a desired 
parameter,  is a space of desired parameters de- 
fined on ,  is an adjoint space.  

Because of computing errors the NCO (1) is never im- 
plemented. Approximate value of (1) is used sometimes 
for estimating a relative minimization of ( )J u  in linear 
search problems. Sometimes approximate value of (1) is 
used as a completion criterion for optimization. No one 
uses NCO (1) for choosing a minimization direction in 
optimization algorithms.  

We will consider NCO in a new form. It can be used 
for choosing a minimization direction for direct optimi- 
zation algorithms. 

2. Necessary Condition and Optimization 
Algorithm 

2.1. Algorithm 

For direct minimization approach the solution  
 minarg J u  is searched on the basis of the algorithm 

 1( ) ( ) ,;

, 0, 1, 2, ,

k k k ku u b p u

S k

  


  

  
       (2) 

where direction   ( );
kkp p Uu   

k kp J

S  is a linear func-
tional representing the anti-gradient of the objective 
functional, here  

k kp J
, or the conjugate gradients, 

e.g. Polak-Ribière (CG-PR) 1k p k   , 

 
21k k1,k k k kJ J J     J b,  is a step-size. 

Unfortunately, the optimizing by the algorithm (2) is 
not always possible. Even for a quadratic J there are no 
grounds of convergence for infinite-dimensional algo- 
rithm (2).  

Let’s replace (2) by the following algorithm: 

 1( ) ( ) ( ) ,;

, 0, 1, 2, ,

k k k k ku u b p u

S k

    


  

  
      (3) 

where ( )k 
ku

 is a function which regulates a conver- 
gence u  on each iteration. 

2.2. Necessary Condition 

How correctly to set a function ( )k   in (3)? Let’s re- 
quire: the algorithm (3) has to provide almost every- 
where on  (a.e. ) convergence in an adjoint space S S
U  . Thus instead of integral NCO (1) we must to intro- 
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duce the following NCO. 
Theorem. Let ( )J u

u

 be a smooth unconstrained func-
tional, and it has a strict minimum at . Then in some 
neighborhood of  the sequence  exists such, 
that 

u

u k u

  0;kJ u     a.e. S .           (4) 

The singularity of introduced NCO (4) is that it is im- 
posed on the gradient in vicinity of a minimum u  in- 
stead of not exactly at u  as it is presented in (1). 
Therefore the condition (4) can be used for constructing 
minimization steps near . We are going to use new 
NCO (4) to set a function 

u
k ( )   for algorithm (3). 

The algorithm (3) with implementation of (4) allows 
us to solve infinite-dimensional optimization problems, 
under assumption that from a convergence a.e.  in an 
adjoint space  the similar convergence follows in a 
primal space . 

S
U 

U
For a quantitative estimation of condition (4) let’s in- 

troduce NCO-function 
1

1

1
( ) sign ,

k
k k k

k k

kJ J
J J

J J
 







   

 


1, 2,k,    

For this function, it is possible to write the NCO (4) in 
a more strong form 

0k

U



  .           (5) 0k 

The NCO-Theorem with (5) instead of (4) requires 
decrease of function  ;kJ u   not only a.e. , but 
proportionally a.e.  for each iteration  under driving 
to 

S
S k

min J . The analogy in a finite-dimensional space for 
condition (5) denotes that the gradients vectors have to 
be collinear for all iterations up to  [4]. u

2.3. Implementation 

The difficulty of practical implementation of method (3) 
is contained in a selection of function ( )k   for satis- 
fying the NCO (4) or (5). Consider one of methods for 
approximate implementing (5) on initial iterations. 

We need to introduce a concept of template approxi- 
mations. Let initial 0 (u )  and  J 0 ;u  wn. Let’s 
set the first approximation 1( )u

 kno
( )   , e ( ) wher    

emplate function, for which the gradient ( ; )Jis a t    
o (5), i.e. proportionally decreases after the first 

iteration. Thus from (3) we can find, under 0 1b
satisfies t

 : 

 
0

0

0

( ) ( )
( )

;

u

J u

   






,  0 0;J Su     

On the following iterations we set parameter 

. 

( )k    
0 ( )  . In the given method from the researcher

 to make some first experimental iterations for se- 
lecting an appropriate template function ( )

 it is re-
quired

  , which 
satisfies to NCO (5).  

We call your attention that the described method for 
( )k   can be applied to such 0u , that  

 0 const;J u   , i.e. en Jsign
all 

wh  0 0;u    for 
S  . 

2.4. Example 

we shall consider a one-dimensional li- As an example 
near parabolic heat equation in area  

   0 1( , ) , ,a bt x t t x x  : 
2

2
0,

T T
C

t x
  

 
 

            (6) 

0 1

, ,
a

at
x x

T T
q u T

x x
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where is a temperature, ( , )T t x  C ,  , and   is a 
thermal ity, a density, and a thermal conduction 
accordingly. It is necessary to find a heat flow ( )u t  on 
bound 1

 capac

x  (set   1,a bS t t x  ) that keeps a tem ture 
T

pera

  on o er bounth d 0x  for given outflow q : 

 
0

2
( ) d min

b

a

t

x
t

J u tT T           (7) 

Applying the adjoint variables, we find the gradient 

( ; ) ( , )J u t f t x    on S , 

( , )f t x
 

where  is a solution of wing adjoint  the follo
problem
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The curve 1 on Figure 1 illustrates unsuccessful at- 
tempt of solving the problem (6), (7) by infinite-dimen- 
sional algorithm (1) with direction p  from method CG- 
PR. At initial approximation 0 ( ) 400u t  kJoule/(m2·s) 
and optimal 


   ( ) 350 a b au t t t 350t t     

kJoule/(m2·s)  v
segment 


 the gradient has form very non-uni alue on 

 ,a bt t  (up to 7 orders) and, as a corollary, we 
obtain a form convergence to u  by method 
CG-PR. 

The at

non-uni

tempt of solving the problem by finite-dimen- 
sional optimization algorithms has not given a positive 
outcome. Next we tried to do expansion of function  

1
( ) ( )

n

i iu t u B t



   through B-splines of zero order 

1i
(piece-wise functions) with carriers equal to time-step 

 b at t t n    as it was made in [5]. Given this, the 
al control nu R , 100n  , was found 

by quasi-Newton method BF ,7 lution coin- 
cided with the previous curve 1 on Figure 1. 

All minimizing was finished under relative cha

finite-dimension
GS [6 ]. The so

nge of 
J  and u  less than 1%. It is necessary to notice, that  
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Figure 1. Solution of optimal control problem. 1: methods 

e further iterating for method BFGS has allowed it to 

problem (6), 
(7

   (8) 

The given function satisfies the
se

CG-PR and BFGS; 2: method (3); u0: initial approximation; 
u*: exact solution. 
 
th
minimize J better than CG-PR. However, the curve 1 has 
varied not in essence. The outcomes speak that the opti- 
mization even with linear systems, which governed by 
PDE, is not always possible by traditional infinite-di- 
mensional and finite-dimensional methods. 

The curve 2 on Figure 1 is a solution of 
) by new infinite-dimensional method (3) under p  

chosen by method CG-PR with template function 
00.2u               

 NCO (4). We tried the 
cond template function as: 

   0( ) 0.036 1t u   8 a b at t t t      (9) 

It satisfies the strong NCO (5). Here solution has c
ci

oin- 
ded with u  precisely on Figure 1. 
To select a function ( )t  we analyze a behavior of 

function ( )t . A value is function for all methods 
on the f experimental step 

of th
irst 1 0 00.2u u u   is 

shown in Figure 2. We see, that t ods 
CG-PR, BFGS (see the curve 1) realize the new NCO 
badly, to be exact, they do not implement its. Method (3) 
with 

he classical meth

  in (8) (see the curve 2) not bad implements 
NCO (4), but does not implement strong NCO (5). 
Method (3) with   in (9) (see the curve 3) implements 
strong NCO (5) a  provides convergence to exact solu- 
tion u  better all especially on the first iterations.  

It necessary to tell, that the template function

nd

is s   

 

Figure 2. NCO-function η(t) for first experimental step. 1: 
method CG-PR; 2: method (3) with NCO (4); 3: method (3) 

on, and strict NCO (on a first 

with strong NCO (5). 
 
Table 1. Initial and final values of the objective functional, 

e proximity to an exact solutith
experimental step). 

Method Iteration k Functional Jk ku u    

 All 0 41.86 10  62.97 10  

CG-PR 14 2.62  61.73 10  11.32 10

BFGS 10 2.72  61.74 10  11.32 10

(3), (8) 54 42.12 10  44.31 10  24.71 10

(3), (9) 52 41.06 10  37.85 10  41.82 10

 
here  searching a ep-size e method 

olfe with quadratic interpolation  (Wright, 
N ut

Everyw  for st k , thb
was usedW

ocedal, 1999). Here step-size was comp ed from con- 
ditions  

   

 
1

2

, ,k k k k k kk

, ,k k k k k k

J u b p J c b J pu   

J u b p p c J p   
   (10) 

The parameters of a method were given 4
1 10c   and 

2 0.1c  . 
In the Table 1 are shown the obtained f the 

e f
values o

objectiv unctional, the proximity to exact solution, and 
NCO (5) (on a first step) for all methods. From outcomes 
of computations it is seen, that the new method on the 
basis of algorithm (3) with NCO (5) minimizes the func- 
tional J on 4 orders better than the traditional methods. 
The method has allowed us to approach to optimal solu- 
tion u  on 3 orders closer.  

3. Conclusion 

in (8) and (9) give noticeably different minimization out- 
comes only on the first iteration. With growth of itera- 
tions they give approximately equal good outcomes. It is 
explained to that the parameters ( )k t , regulating a de- 
scent in method (3), are comput h the account of 
NCO only on the first step. For discussed method  

ed wit

0( ) ( )k t t  . 

Thus, the new N
structing the algori

CO has appeared effective for con- 
thms of direct optimization for pro- 
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