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ABSTRACT 

The purpose of this paper is to study the effect of presence of fluid within and around a poroelastic circular cylindrical 
shell of infinite extent on axially symmetric vibrations. The frequency equation each for a pervious and an impervious 
surface is obtained employing Biot’s theory. Radial vibrations and axially symmetric shear vibrations are uncoupled 
when the wavenumber is vanished. The propagation of axially symmetric shear vibrations is independent of presence of 
fluid within and around the poroelastic cylindrical shell while the radial vibrations are affected by the presence of fluid. 
The frequencies of radial vibrations and axially symmetric shear vibrations are the cut-off frequencies for the coupled 
motion of axially symmetric vibrations. The non-dimensional phase velocity as a function of ratio of thickness to wave-
length is computed and presented graphically for two different types of poroelastic materials for thin poroelastic shell, 
thick poroelastic shell and poroelastic solid cylinder.  
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1. Introduction 

Gazis [1] discussed the propagation of free harmonic 
waves along a hollow elastic circular cylinder of infinite 
extent and presented numerical results. Bjorno and Ram 
Kumar [2] presented theoretical and experimental results 
of propagation of axially symmetric waves in submerged 
elastic rods. Chandra et al. [3] studied the axially sym-
metric vibrations of cylindrical shells immersed in an 
acoustic medium. Employing Biot’s [4] theory, Tajuddin 
and Sarma [5] studied the torsional vibrations of poroe-
lastic cylinders. Wisse et al. [6,7] presented the experi-
mental results of guided wave modes in porous cylinders 
and extended the classical theory of wave propagation in 
elastic cylinders to poroelastic mandrel modes. Chao et 
al. [8] studied the shock-induced borehole waves in po- 
rous formations. Vashishth and Poonam Khurana [9] pre- 
sented the solutions of elastic wave propagation along a 
cylindrical borehole in an anisotropic poroelastic solid 
and derived frequency equations for empty and fluid- 
filled boreholes. Farhang et al. [10] investigated the 
wave propagation in transversely isotropic cylinders. 
Tajuddin and Ahmed Shah [11,12] studied the circum-
ferential waves and torsional vibrations of infinite hollow 
poroelastic cylinders in presence of dissipation. Ahmed 
Shah [13,14] studies the axially symmetric vibrations of 
fluidfilled poroelastic circular cylindrical shells and 

spherical shells of various wall-thicknesses.  
In the present analysis, the axially symmetric vibra- 

tions of poroelastic circular cylindrical shells of infinite 
extent immersed in an acoustic medium are investigated 
employing Biot’s [4] theory. Biot’s model consists of an 
elastic matrix permeated by a network of interconnected 
spaces saturated with liquid. The frequency equation of 
such vibrations is derived each for a pervious surface and 
an impervious surface. Cut-off frequencies when the 
wavenumber is zero are obtained both for pervious and 
impervious surfaces. For zero wavenumber, the frequency 
equations of axially symmetric shear vibrations and ra- 
dial vibrations are uncoupled. Axially symmetric shear 
vibrations are independent of nature of surface as well as 
presence of fluid within and around the poroelastic cy- 
lindrical shell. The radial vibrations are dependent on 
nature of surface and these are affected by the presence 
of fluid within and around poroelastic cylindrical shell. 
Nondimensional phase velocity for propagating modes is 
computed in absence of dissipation for cylindrical shells 
immersed in an acoustic medium each for a pervious and 
an impervious surface. The cut-off frequency as a func- 
tion of h/r1 is determined. The results are presented 
graphically for two types of poroelastic materials and 
then discussed. By ignoring the liquid effects, and after 
rearrangement of terms, results of purely elastic solid are 
shown as a particular case considered by Chandra et al. 
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[3], Bjorno and Ram Kumar [2]. The considered problem 
is applicable to deep sea sound sources and transducers, 
petrochemical industries, acoustic waveguides, ultrasonic 
delay-lines and frequency control devices. 

2. Governing Equations 

The equations of motion of a homogeneous, isotropic 
poroelastic solid (Biot, [4]) in presence of dissipation b 
are  
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where 2 is the Laplacian,  u, v, wu  and  
 are displacements of solid and liquid re- 

spectively, e and  are the dilatations of solid and liquid; 
A, N, Q, R are all poroelastic constants and ij (i, j = 1, 2) 
are the mass coefficients following Biot [4]. The poroe- 
lastic constants A, N corresponds to familiar Lame’ con- 
stants in purely elastic solid. The coefficient N represents 
the shear modulus of the solid. The coefficient R is a 
measure of the pressure required on the liquid to force a 
certain amount of the liquid into the aggregate while total 
volume remains constant. The coefficient Q represents 
the coupling between the volume change of the solid to 
that of liquid.  

U,V, WU 

The equation of motion for a homogeneous, isotropic, 
inviscid elastic fluid is 
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where  is displacement potential function and Vf is the 
velocity of sound in the fluid. The displacement of fluid 
is .  f f f fu , v , wu

The stresses ij and the liquid pressure s of the poroe-
lastic solid given by Biot [4] are  

 ij ij ij2Ne Ae Q ,  (i, j 1, 2,3),

s Qe R ,

     

  
,    (3) 

where ij is the well-known Kronecker delta function. 
The fluid pressure Pf is given by 
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P

t
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In Equation (4), f is the density of the fluid. 
The subscript “if” or “of” associated with a quantity 

represents that the quantity is related to inner or outer 
fluid. For example, Vif is the velocity of sound in the 
inner fluid and Pof is the outer fluid pressure.  

3. Solution of the Problem 

Let (r, , z) be the cylindrical polar coordinates. Consider 
a homogeneous, isotropic, infinite poroelastic cylindrical 
shell immersed in an inviscid elastic fluid. Let the inner 
and outer radii of the poroelastic cylindrical shell be r1 
and r2 respectively so that the thickness of shell is h [= (r2 
– r1) > 0]. The axis of the poroelastic shell is in the direc- 
tion of z-axis. The fluid column within the poroelastic 
cylindrical shell extends from zero to infinity in axial 
direction and zero to r1 in the radial direction. The outer 
fluid extends from r2 to infinity in radial direction and 
zero to infinity in axial direction. Then for axially sym- 
metric vibrations, the displacement of solid  

 u u,0, w


 that can readily be evaluated from field 
Equation (1) is (as shown in the bottom of this page). 

In Equation (5),  is the frequency of wave, k is 
wavenumber, C1, C2, C3, C4, A and B are constants, J0(x), 
Y0(x) are Bessel functions of first and second kind each 
of order zero, J1(x), Y1(x) are Bessel functions of first 
and second kind each or order one. Here i is complex 
unity or i2 = –1 and  
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where Vi (i = 1, 2) are dilatational wave velocities of first 
and second kind respectively, V3 is shear wave velocity. 

The displacement of inner fluid column uif = (uif, 0, wif) 
for axially symmetric vibrations is  
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where Aif is constant and  
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with the help of displacement potential function, the 
pressure of the inner fluid column is given by  

  i kz t2
if if if 0 ifP A J r e     , when ifkV   (9) 

Similarly, the displacement and the outer fluid pres- 
sure are given by equations  
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 1
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where Aof is constant,  is Hankel function of first 
kind and order n and  

nH
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velocity {/k} is less than Vof the Hankel function of 
first kind  is replaced by the modified Bessel 
function of second kind K0(ofr).  

  1
n ofH 

Substituting the displacement function u and w from 
Equation (5), fluid pressures from Equations (9) and (10), 
into Equation (3) together with Equation (7), the relevant 
displacement, liquid pressure and stresses are For imaginary values of of, that is, when the phase   

              i kz t
rr if 1 11 2 12 3 13 4 14 15 16 if 17s P C M r C M r C M r C M r AM r BM r A M r e             ,   (12) 

            i kz t
rz 1 21 2 22 3 23 4 24 25 26C M r C M r C M r C M r AM r BM r e          ,                   (13) 
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              i kz t
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where C1, C2, C3, C4, A, B, Aif, Aof are all constants and 
the coefficients Mij(r), Nij(r) are 
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P = A + 2N and 
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Equation 

For perfect contact between the poroelastic cylindrical 
shell and the fluids, we assume that the normal and
stresses and radial displacements are continuous at r = r1 

ditions in case of a per-

conditions in case of an impervious 
surface are  

4. Frequency 

 shear 

and r = r2. Thus the boundary con
vious surface are 
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Substitution of Equations (12)-(14) and (16)-(18) into 
the Equation (22) result in a system of eight homogene
ous algebraic equations in eight constants C1, C2, C3, C4, 
A, B, Aif and Aof. For a non-trivial solution, the determ
nant of the coefficients must vanish. By eliminating t
co

- 

i- 
hese 

nstants, the frequency equation of axially symmetric 
vibrations of poroelastic circular cylindrical shell im- 
mersed in fluid in case of a pervious surface is  

ijA 0 , i, j 1,2, ,8  .          (24) 

In Equation (24), the elements Aij are 

 ij ij 1A M r ,  i 1, 2,3,4 and j 1, 2,3, 4,5,6,7,8,  

 ij ij 2A M r ,  i 5,6,7  and j 1,2,3,  ,8 4,5,6,7,8,
  (25) 

w .  
(12), (13), (15)- 

(18) together with the Equation (23) yield the freque
equation of axially symmetric vibrations of por
circular cylindrical shell immersed in fluid, in case of an 

here Mij(r) are defined in Equation (19)
Arguing on similar lines, Equations 

ncy 
oelastic 

impervious surface to be 
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where the elements Bij are  
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where Mij(r) and Nij(r) are defined in Equation (19). 
By eliminating liquid effects from frequency equation 

of pervious surface (24), that is, setting b0, 120, 
220,  2A Q R , N, Q0, R0 and
some rearrangement of terms, the results of purely elastic 
solid are recovered as a special case considered by Chan- 

ious 

dius h. Then the frequency equation of a pervious surface 

 after 

dra et al. (1976). The frequency equation of an imperv
surface (26) has no counterpart in purely elastic solid. 

4.1. Frequency Equation for Poroelastic Solid 
Cylinder 

When the ratio of thickness to inner radius of the poroe- 
lastic cylindrical shell i.e., h/r1 as r10 with finite 
thickness, it reduce to a poroelastic solid cylinder of ra- 

(24) is reduced to  
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where the elements Qij are 
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Equations (28) and 0) are the frequency equations of (3
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axially symmetric ibrations  a poroelas - 
der immersed in fluid, for a pervious and an i pervious 
surface, respectively.  

By eliminating liquid effects and after s e rear- 
rangement of term in Equat
elastic solid consi red by B
ar

D1D2 = 0,               (32) 

 v  of tic solid cylin
m

om
s ion (28), the results of purely 

de jorno and Ram Kumar (1972) 
e recovered as a special case. Frequency equation of an 

impervious surface (30) has no counterpart in purely elas- 
tic solid.  

4.2. Cut-Off Frequencies 

The frequencies obtained by equating wavenumber to 
zero are referred to as the cut-off frequencies. Thus for k 
= 0, the frequency equation of pervious surface (24) re- 
duce to the product of two determinants as 

where D1 and D2 are  
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The elements Aij of D1 and D2 are defined in Equation 
(25) are now evaluated for k = 0. From Equation 
clear that either D1 = 0 or D2 = 0 and these two equations 
give the cut-off frequencies of axially symmetric vibra- 
tions. The frequency equation 

D1 = 0,                 (34) 
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ve the frequencies of radial vibrations of poroelastic 
cylindrical shells immersed in an acoustic medium, for a 
pervious surface while the frequency equation  

D2 = 0,                 (35) 

does not depend on fluid param
etric shear vibrations which are 

independent of presence of fluid within and around the 
poroelastic cylindrical shell. The radial vibrations are 
affected by the presence of fluid within and around the 
poroelastic cylindrical shell while the axially symmetric 

t affected as can be seen from 
Equations (34) and (35).  

Similarly, the frequency equation of an impervious 
surface (26), when k = 0 is reduced to the product of two 
determinants 
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The elements appearing in D3 and D4 are defined in 
Equation (27) are now evaluated for k = 0. From Equa- 
tion (36) it is clear that either D3 = 0 or D4 = 0. T
tion  

D3 = 0,                 (38) 

corresponds to frequencies of radial vibrations of a 
poroelastic cylindrical shell immersed in an acoustic me- 
di

e cut-off frequencies independent of presence of 
fluid. Also it is seen th

und the poroelastic 
surface, that is, pervious

g non-dimensional vari- 

73 74B B 0 0

81 82B B

he equa- 

um in case of an impervious surface, while the equa- 
tion  

D4 = 0,                 (39) 

yield th
at Equations (35) and (39) are 

same by virtue of Equation (27). Hence Equation (39) is 
independent of nature of surface, that is, pervious or im- 
pervious. Therefore, the cur-off frequencies given by 
Equation (39) are independent of presence of fluid within 
and aro cylindrical shell and nature of 

 or impervious. Equation (35) is 
the frequency equation of axially symmetric shear vibra- 
tions. From Equation (32), it is clear that the radial vibra- 
tions and axially symmetric shear vibrations are uncou- 
pled for poroelastic cylindrical shell immersed in an 
acoustic medium in case of a pervious surface. Similarly, 
these are uncoupled for an impervious surface as can be 
seen from Equation (36). The cut-off frequencies of 
poroelastic solid cylinder for pervious and impervious 
surfaces are obtained in a similar way as obtained in case 
of poroelastic cylindrical shells. 

5. Non-Dimensionalization of Frequency 
Equation 

For the purpose of numerical computation we set b = 0, 
and the wavenumber k is real. The phase velocity C is 
the ratio of frequency to wavenumber, that is, C=/k. To 
analyze the frequency Equations (24) and (26) it is con- 
venient to introduce the followin
ables:  
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2a QH , 1 1
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11 11m   , 1
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6. Results and Discussions 

Two types o stic materials are considered to 
carry out the computational work, one is sandstone satu- 
rated with kerose

f poroela

ne, say M
one satu
), whos
in Table 1.  

aterial-I (Fatt,
 water,
ensional p

l, fr
iona

thick poroelasti

 [15]), the ot

uency Equations
ed using Eq

c cylindrical

her 
 M

eq  
liz ua- 

 

numerically to compute either the phase velocity or the 
frequency, following the analysis of Gazis [1]. The coun-
terpart of frequency Equation (34) was not solved nu-
merically for elastic medium by Chandra et al. [3] while 
the author solved these equations for poroelastic medium 
in a different paper. 

The phase velocity of axially symmetric vibrations of 
poroelastic cylindrical shells immersed in an acoustic 
medium is presented in Figures 1-3 for material- I and II 
each for a pervious and an impervious surface. Figure 1 
shows the phase velocity for materials-I and II in case of 
pervious and impervious surfaces. From Figure 1 it is 
clear that the phase velocity for a pervious surface is 
higher than that of an impervious surface in 0    0.5  

one is sandst
and Jogi, [16]
eters are given 

sh

a

rated with aterial-II (Yew 
e non-dim hysical param- 

For a given poroelastic materia
(24) and (26), when non-dimens
tions (40) and (41), constitute a relation between non- 
dimensional phase velocity  and ratio of thickness to 
wavelength  (= h/L) for fixed values of g. Different 
values of g, viz., 1.034, 3 and infinity are taken for nu- 
merical computation. These values of g represent thin 
poroelastic cylindrical shell, 

ell and poroelastic solid cylinder respectively. The 
values of  lie in [0, 1]. Non-dimensional phase velocity 
 is determined for different values of  and for fixed 
values of g, each for a pervious and an impervious sur- 
face. For poroelastic cylindrical shells immersed in an 
acoustic medium, the values of m, m1, t and t1 are taken 
as m = m1 = 1.5 and t = t1 = 0.4. To compute the fre- 
quencies of radial vibrations of poroelastic cylindrical 
shells immersed in an acoustic medium, Equations (34) 
and (38) are non-dimensionalized using Equations (40) 
nd (41). Equations (34) and (38) constitute the relation 

between non-dimensional frequency  and ratio of thick- 
ness to inner radius h/r1. For broad spectrum of values of 
h/r1, frequency  is computed for the considered poroe- 
lastic materials-I and II. To compute the frequency of 
radial vibrations of poroelastic cylindrical shells im- 
mersed in an acoustic medium, the values of t, t1, m2, m3  

are taken as t = t1 = 0.4, m2 = m3 = 1.5. The non-dimen- 
sional form of Equations (24), (26), (34), (38) are solved 

 

Figure 1. Phase velocity as a function of wavelength (Mat-I, 
Mat-II, Thin-Shell) axially symmetric vibrations of poroe-
lastic cylindrical shells immersed in an acoustic medium. 

 

Figure 2. Phase velocity as a function of wavelength (Mat-I, 
Mat-II, Thick-Shell) axially symmetric vibrations of poroe-
lastic cylindrical shells immersed in an acoustic medium. 

rial Parameters. 

m11 m12 m22 

 
Table 1. Mate

Material/Parameter a1 a2 a3 a4 x  y  z  

I 0.843 0.065 0.028 0.234 0.901 –0.001 0.101 0.999 4.763 3.851 

II 0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129 
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Figure 3. Phase velocity as a function of wavelength (Mat-I, 
Mat-II, Solid cylinder) axially symmetric vibrations of po- 
roelastic solid cylinders immersed in an acoustic medium. 

for material-I while beyond  = 0.5 it is less than or equal 
to the phase velocity of an impervious surface. T  he phase
velocity of pervious and impervious surfaces is almost is 
same in case of material-II. The phase velocity for mate-
rial-I, in general, is higher than that of material-II both 
for pervious and impervious surfaces. Thus it can be in-
ferred that presence of mass-coupling parameter in-
creases the phase velocity for thin poroelastic cylindri- 
cal shells immersed in an acoustic medium.  

Figure 2 shows the phase velocity of thick poroelastic 
cylindrical shells immersed in an acoustic medium in 
case of materials-I and II each for a pervious and an im- 
pervious surface. It is seen from Figure 2 that the phase 
velocity of a pervious surface in case of material-I is - 

nd 0.7    1. In 0.2    0.5 the phase velocity of a 
pervious surface is higher than that of an
surface while in 0.5    0.7 it is less than that of an 
im . Ag  as in case of a t  poroelastic 
cylindrical shell, the phase velocity is sa  pe  
nd impervious surfa hi oel ylin  
ell. In general, the phase velocity for thick poroelastic 

cylindrical shell is higher in case of material-I than that 
of material-II. The phase velocity decreased with the 
increase of thickness for a pervious surface in case of 
material-I. In case of an impervious surface, in general, 
the phase velocity increases with the increase of thick- 
ness. Increase of thickness has no significant effect on 
phase velocity in case of material-II for pervious and 
impervious surfaces.  

Figure 3 shows the phase velocity of poroelastic solid 
cylinders immersed in an acoustic medium each for a 
pervious and an impervious surface in case of materials-I 

- 
locity of a pervious surface, in general, is higher than that 

ic 
solid cylinder. Also the presence of mass-coupling pa- 
rameter increases the phase velocity of an impervious 
surface of the poroelastic solid cylinder. In general, the 
phase velocity is less in poroelastic solid cylinder than 
that of either a thin shell or a thick shell both for pervious 
and impervious surfaces and for both the considered ma- 
terials. 

7. Concluding Remarks 

The study of axially symmetric vibrations of poroelastic 
cylindrical shells immersed in an acoustic medium has 
lead to following conclusions: 

ar 
vibrations is independent of nature of surface and pres- 
ence of fluid within and around the poroelastic cylindri- 
cal shell. 

3) The phase velocity is same for pervious and im- 
pervious surfaces in case of material-II each for thin and 
thick poroelastic cylindrical shell. 

4) In general, the phase velocity is higher for mate- 
rial-I than that of material-II each for a pervious and an 
impervious surface. 

5) The frequency of radial vibrations of poroelastic cy- 
lindrical shell immersed in an acoustic medium for a per- 
vious surface is higher than that of an impervious surface 
in case of material-I. 

uency of an impervious surface is higher 
 pervious surface in case of material-II. 
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