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ABSTRACT 

This paper discusses the estimation of parameters in the zero-inflated Poisson (ZIP) model by the method of moments. 
The method of moments estimators (MMEs) are analytically compared with the maximum likelihood estimators (MLEs). 
The results of a modest simulation study are presented. 
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1. Introduction 

Zero-inflated models have found applications in situa-
tions where excess number of zero observations are gen-
erated. The application of the zero-inflated Poisson 
model by Lambert [1] in a count regression model is well 
known. Recently Couturier et al. [2] have used the zero- 
inflated truncated generalized Pareto distribution for the 
analysis of radio audience data.  

The ZIP model is introduced in this section in the con-
text of a practical situation. Maximum likelihood estima-
tion of the parameters involved in the model is discussed 
in Section 2. The MMEs of the parameters are obtained 
in Section 3. The ZIP model is shown to be a member of 
the two-parameter exponential family and hence the as-
ymptotic normality of the MMEs is established. Further, 
in Section 4, the details of computing the Fisher informa-
tion matrix corresponding to this model are shown. In 
Section 5, the MMEs and the MLEs are asymptotically 
compared. Also, an empirical evidence for the asymp-
totic result is given through a modest simulation study in 
Section 6.  

A random variable X is said to have a zero-inflated 
Poisson distribution, if its probability mass function 
(p.m.f.) is given by      
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Thus the distribution of X is a convex combination of a 

distribution degenerate at zero and a Poisson distribution 
with mean θ. This is known as the zero-inflated Poisson 
model. 

2. Maximum Likelihood Estimation 

Let X = (X1, X2, X3, ···, Xn) be a random sample on X with 
the p.m.f. specified in (1.1). Then the likelihood function 
is given by 
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It is obvious that the above likelihood function does 
not yield closed form expressions for the MLEs of θ and 
 . 

Yip [3] has shown that the conditional MLE of θ treat-
ing　   as a nuisance parameter, is the solution of  
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1  . Note that  
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where and 
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of θ also has no closed form expression and it has to be 
computed using a numerical procedure. Of course, it is 
much easier than computing the MLE of θ by maximiz-
ing (2.1). He has also observed that finding the values of 
θ and   that maximize the likelihood function (2.1) is 
difficult because of its flat surface and boundary problem. 
Also, it is not necessary that the global maximum is lo-
cated for every observed sample (See [3]). Kale [4] has 
obtained the optimal estimating equation for θ treating 
  as a nuisance parameter when 1 ;p x   is the p.m.f. 
of a general power series distribution. When  1 ;p x   
is the p.m.f. of a Poisson distribution with mean θ, the 
optimal estimating equation obtained by Kale [4] for θ 
reduces to (2.2). 

Estimating   may be of significant interest and it 
cannot be treated as a nuisance parameter. 

EM Algorithm 

When the likelihood function has a complicated structure 
and maximizing it by numerical methods is difficult, a 
simple alternative procedure is the EM-algorithm devel-
oped by Dempster et al. [5]. Nanjundan [6] has computed 
the MLEs of θ and   using the EM algorithm. He has 
obtained the E- and M-steps by rewriting the likelihood 
function so as to accommodate missing data.  
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The likelihood function of the complete data is given 
by  
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In the E-step, the expectation of the likelihood func-
tion of the complete data is taken and E(Z) is replaced by  
the conditional expectation  0 0, , ,j jE Z X   where 0  

and 0  are respectively the initial estimates θ and   In 

the M-step  , ,cE L x u    is maximized with respect 

to θ and   If 1  and 1  are the values of θ and   

which maximize  , ,cE L x u    , then the E-step is 

repeated using 1  and 1 . 

The computational details of these steps can be sum-
marized as follows.  
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3) Using the realization (x1, x2, ···, xn) of the observed 
sample, compute the improved estimates of θ and   by  
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4) Repeat steps 2) and 3) until the difference between 
the successive  ,L   x  [or log ,L   x ] values is 
less than a desired threshold value. 

The corresponding values of 1  and 1  are the MLEs 
of θ and   respectively (See [5]). Unlike Fisher’s 
method of scoring, the EM algorithm does not yield the 
estimate of the standard errors of the MLEs as a by prod-
uct.  

Nanjundan [7] has further compared the MLE and the 
conditional MLE of θ. 

3. Method of Moments Estimators 

The first and the second theoretical moments of X having 
the p.m.f. (1.1) are   
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The MMEs of θ and   are respectively 
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Note that the probability mass function (1.1) can be 
written as  
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Taking log on both sides of (3.3), we get 
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After simple rearrangement of terms, the above ex-
pression can be written as 
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which is the general form of two parameter exponential 
family. Hence the zero-inflated Poisson model belongs to 
two parameter exponential family and thus  
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is minimal sufficient and complete for  ,  . 
Since the ZIP model belongs to two parameter expo-

nential family and the MMEs are based on these minimal 
sufficient statistics for the parameters,  
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where  is the Fisher information matrix and it is ob-
tained in the next section. 



4. Fisher Information Matrix 

Note that log ; ,p x    is twice differentiable w.r.t. 

both θ and  . 
Taking logarithm on both sides of (1.1), we get  
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On simplification, we get, 
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After simplification we arrive at the following expres-
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sion  
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Therefore the Fisher information matrix becomes 
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5. Asymptotic Relative Efficiency 

Since the MLEs of the parameters θ and   in the ZIP 
model have no closed form expressions, their exact stan-
dard errors are unlikely. Hence we are left with the as-
ymptotic relative efficiencies of the estimators for the 
analytical comparison. Since the ZIP model in (1.1) be-
longs to two parameter exponential family, the MLEs of 
θ and   are also asymptotically normal and 
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Hence the asymptotic relative efficiency of m̂  with 
respect to m̂le  is  
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 

ˆ ˆ, 1m
mle m

mle

AV
ARE

AV


 


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Therefore, the MMEs and the MLEs of θ are asymp-
totically equally efficient. The same is true in the case of 
  too. 

6. Simulation Study 

Using R software, 1000 samples of various sizes were 
simulated fixing θ = 2.5 and   = 0.3. For each of the 
samples the MLEs and the MMEs of θ and   were com-
puted. The histograms of the MLEs and the MMEs were 
separately drawn for θ and  . The histograms are given 
in the Figures 1-4. 

Nanjundan et al. [8] have carried out an elaborate 
simulation study by considering various values of θ and 
  and varying the number of samples. From the above 
histograms, it can be observed that the MMEs are also 
normally distributed even for moderate sample sizes. 
This gives the graphical evidence for the asymptotic 
normality of the MLEs and the MMEs of both the pa-
rameters in the model.  

The mean squared errors (MSEs) computed from the 
simulation study are shown in the Appendix. The fol-
lowing observations about the performance of the esti-
mates are made from the mean squared errors. 

1) Though the MSEs corresponding to the MLEs are 
less than the MSEs of MMEs, the difference is very in-
significant. That is the MMEs also perform equally good 
when compared the MLEs. 

2) For the majority of the combinations of θ and  ,  
 

 

Figure 1. Histograms of the MMEs and the MLEs of θ and 
φ based on 1000 samples of size 25 each drawn from the 
distribution 0.3p0(x) + 0.7p1(x, 2.5). 
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Figure 2. Histograms of the moment estimators and the 
MLEs of θ and φ based on 1000 samples of size 50 each 
drawn from the distribution 0.3p0(x) + 0.7p1(x, 2.5). 
 

 

Figure 3. Histograms of the moment estimators and the 
MLEs of θ and φ based on 1000 samples of size 100 each 
drawn from the distribution 0.3p0(x) + 0.7p1(x, 2.5). 
 
the MSEs corresponding to θ are less than the MSEs 
corresponding to   in the case of both the estimates.  

7. Discussion and Conclusions 

Zero-inflated Poisson models are readily applicable in 
many biological and social contexts. Two such situations 
are briefly discussed in this section.  

Insects live on the leaves of a tree when they are found  

 

Figure 4. Histograms of the moment estimators and the 
MLEs of θ and φ based on 1000 samples of size 250 each 
drawn from the distribution 0.3p0(x) + 0.7p1(x, 2.5). 
 
to be suitable for feeding and they do not live on those 
which are unsuitable for feeding. Suppose that the pro-
portion of unsuitable leaves in a tree is   and the num-
ber of insects on a suitable leaf has a Poisson distribution 
with mean θ. If an observed leaf has any insects on it, 
then it is definitely a suitable one. On the other hand, if a 
leaf has no insects, then it may or may not be suitable for 
feeding. Let X denote the number of insects on any leaf. 
Then X has the p.m.f. given in (1.1). 

A social group under study may have fertile and sterile 
couples. If the proportion of sterile couples is   and the 
number of children per fertile couple has a Poisson dis-
tribution with mean θ. Then X, the number of children of 
a randomly chosen couple, has the ZIP distribution 
specified in (1.1).  

For more applications, one can refer to Lambert [1] 
and Kale [4].  

The MLEs of the parameters in the ZIP model have no 
closed form expressions and computing them even by the 
EM algorithm needs computer facility. Whereas the 
MMEs have simple closed form expressions and they can 
be computed even with pocket calculators. The MMEs 
and the MLEs are asymptotically equally efficient. 
Hence MMEs can easily be used instead of the MLEs 
when the sample size is sufficiently large. 

8. Acknowledgements 

Part of this work was done during a short visit of the first 
author to the Dept. of Statistics, University of Poona, 
Pune during Jan, 2008. He is grateful to Prof. B. K. Kale 
for his guidance in this direction. He is also thankful to 

Copyright © 2012 SciRes.                                                                                  AM 



G. NANJUNDAN, T. R. NAIKA 

Copyright © 2012 SciRes.                                                                                  AM 

615

Prof. Naik Nimbalkar for providing research facility. The 
authors appreciate Prof. K. Suresh Chandra for useful 
suggestions in the presentation of the results. The authors 
record their deep sense of gratitude to the referee for 
valuable suggestions which improved the content of the 
paper.  

REFERENCES 
[1] D. Lambert, “Zero-Inflated Poisson Regression with an 

Application to Detects in Manufacturing,” Technometrics, 
Vol. 34, No. 1, 1992, pp. 1-14. doi:10.2307/1269547 

[2] D.-L. Couturier and M.-P. Victoria-Feser, “Zero-Inflated 
Truncated Generalized Pareto Distribution for the Analy-
sis of Radio Audience Data,” The Annals of Applied Sta-
tistics, Vol. 4, No. 4, 2010, pp. 1824-1846. 
doi:10.1214/10-AOAS358 

[3] P. Yip, “Inference about the Mean of Poisson Distribution 
in the Presence of a Nuisance Parameter,” Australian 
Journal of Statistics, Vol. 30, No. 3, 1998, pp. 299-306. 
doi:10.1111/j.1467-842X.1988.tb00624.x 

[4] B. K. Kale, “Optimal Estimating Equations for Discrete 
Data with Higher Frequencies at a Point,” Journal of the 
Indian Statistical Association, Vol. 36, 1998, pp. 125- 
136.  

[5] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maxi-
mum Likelihood Estimation from Incomplete Data via the 
EM Algorithm (with Discussion),” Journal of the Royal 
Statistical Society: Series B, Vol. 39, No. 1, 1977, pp. 1- 
38. 

[6] G. Nanjundan, “An EM Algorithmic Approach to Maxi-
mum Likelihood Estimation in a Mixture Model,” 
Vignana Bharathi, Vol. 18, 2006, pp. 7-13. 

[7] G. Nanjundan, “On the Computation of the Maximum 
Likelihood Estimates of the Parameters in a Mixture 
Model,” Mapana Journal of Sciences, Vol. 6, No. 2, 2007, 
pp. 57-66. 

[8] G. Nanjundan, A. Loganathan and T. R. Naika, “An Em-
pirical Comparison of Maximum Likelihood and Moment 
Estimators of Parameters in a Zero-Inflated Poisson 
Model,” Mapana Journal of Sciences, Vol. 8, No. 2, 2009, 
pp. 59-72.  

 

http://dx.doi.org/10.2307/1269547
http://dx.doi.org/10.1214/10-AOAS358
http://dx.doi.org/10.1111/j.1467-842X.1988.tb00624.x


G. NANJUNDAN, T. R. NAIKA 616 

Appendix 

In the following table, the upper and the lower cells give the mean squared errors of the MLEs of θ and φ respectively. 
The values within the brackets are the mean squared errors corresponding to MMEs. Sample size = 100 and number of 
samples = 1000. 
 

φ 
θ 

0.1 0.2 0.3 0.4 0.5 

0.000015890 
(0.000018) 

0.000003922 
(0.000004) 

0.000000523 
(0.00001176) 

0.000026110 
(0.000037) 

0.000112500 
(0.000201) 

1.0 
0.000017560 
(0.000018) 

0.000000459 
(0.000001) 

0.000022330 
(0.00005334) 

0.000019460 
(0.000028) 

0.000004312 
(0.000009) 

0.000046160 
(0.000137) 

0.000021410 
(0.000063) 

0.000008818 
(0.00003429) 

0.000003785 
(0.000087) 

0.000002866 
(0.000053) 

1.5 
0.000009075 
(0.000026) 

0.000001006 
(0.000001) 

0.000004636 
(0.00001474) 

0.000000529 
(0.000008) 

0.000004723 
(0.000013) 

0.000179800 
(0.000129) 

0.000015930 
(0.000047) 

0.000006417 
(0.00001075) 

0.000001070 
(0.000052) 

0.000007593 
(0.000025) 

2.0 
0.000000402 
(0.000001) 

0.000007379 
(0.000017) 

0.000000010 
(0.00000339) 

0.000001976 
(0.000019) 

0.000000784 
(0.000001) 

0.000000446 
(0.000004) 

0.000006934 
(0.000060) 

0.000168400 
(0.00017120) 

0.004630000 
(0.000095) 

0.000002480 
(0.000142) 

2.5 
0.000000585 
(0.000003) 

0.000000106 
(0.000003) 

0.000000534 
(0.00000057) 

0.000000103 
(0.000001) 

0.000000096 
(0.000002) 

0.000023510 
(0.000074) 

0.000013210 
(0.000130) 

0.000016830 
(0.00003353) 

0.000000598 
(0.000002) 

0.000000764 
(0.000007) 

3.0 
0.000000145 
(0.000002) 

0.000000033 
(0.000002) 

0.000001772 
(0.00000095) 

0.000000472 
(0.000001) 

0.000001413 
(0.000002) 
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