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ABSTRACT 

Let  ,nS a b  denote a set of all real nxn symmetric matrices with entries in the interval A  ,a b . In this article, we pre- 
sent bounds for the second largest eigenvalue  2 A  of a real symmetric matrix�A, such that .  3 ,S b bA A
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1. Introduction 

Throughout this article,  ,nS a b  denotes a set of A n n  
real symmetric matrices whose entries are in the interval 
 ,a b . Eigenvalues of any real  symmetric matrix 
A, will be represented by 

n n

        nλ A λ A λ A1 2 .        (1.1) 

The smallest  nλ A  and the largest  λ A1  eigen- 
values have been studied extensively in the recent dec- 
ades. Recently, many researchers have turned attention to 
the second largest eigenvalue  λ A2  due to its applica- 
tions in science and engineering. For example, thesecond 
largest eigenvalue governs the rate at which the statistics 
of the Markov chain converge to equilibrium. Here, we 
investigate bounds for  A  when entries of A vary in 
the interval  ,b b .  

In 1985, Constantine [1] showed that if  , 0nS bA A , 
then 
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2n n

n bnb 
 

 A A
2

     (1.2) 

if n is even and odd respectively. Similar results are pre-
sented in [2]. In [3], Zhan gave bounds for both the larg-
est eigenvalue  1 A  and the smallest eigenvalue 

 n A  when entries of A are in a general interval  ,a b . 
In the same paper [3], Zhan posed the following problem: 
For a given integer j with , find  2 1j n  
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We are concerned with the case j = 2 when  

 3 ,S b bA A . We employ analytical approach discussed 
in [4] and the properties  
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      (1.4) 

to determine these bounds. The following result will 
prove useful later. If  ijA a  is any real 3 × 3 matrix 
such that 1ija  , then det 4A 

 ,S b b

 [5,6]. It immediately 
follows that if 

3
AA , then 

3det 4A b                 (1.5) 

This paper is organized as follows. In Section 2, ana-
lytical method for eigenvalues of real 3 × 3 symmetric 
matrices is discussed. In Section 3, we derive bounds for 

 2 A . Finally, a numerical example is given in Section 
4. 

2. Analytical Calculation of Eigenvalues 

A detailed description of this technique can be found in 
[4]. Let  

11 12 13

12 22 23

13 23 33

a a a

a a a

a a a

 
   
  

A              (2.1) 

be a real 3 × 3 symmetric matrix. Eigenvalues of A can 
be directly calculated by solving the corresponding char- 
acteristic equation 

  3 2
2 1 0 0k c c c                (2.2) 
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where,  

2 11 22 33

2 2 2
1 11 22 11 33 22 33 12 13 23

2 2 2
0 11 23 22 13 33 12 11 22 33 12 13 232

c a a a

c a a a a a a a a a

c a a a a a a a a a a a a

   

     

    

(2.3) 

Equation (2.2) is then solved by first depressing it, i.e., 
transforming it to the form 

3
3 23 2x x p


  q                (2.4) 

with, 
2
2 1

3
0 2 2 1

2
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2 2
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c          (2.5) 

Solutions to Equation (2.4) are given by 

1

2

3

2cos ,

cos 3 sin ,

cos 3 sin .

x

x

x



 

 



  

  

           (2.6) 

where, 
3 2

11
tan

3

p q

q
  
            (2.7) 

Finally, eigenvalues of A becomes  

  2

1

3 3i i

p
A x c   , for       (2.8) 1, 2,3.i 

3. Bounds for the Second Largest Eigenvalue 
 λ A2  

Note that 2 cos 3 sinx     , corresponds to the 
second largest eigenvalue. We therefore determine the 
values of x2, p and c2 which minimizes or maximizes 

 2 A



. However, this is not straight forward since x2, p 
and c2 depends on the entries of A which vary in the in- 
terval ,b b


. We shall heavily rely on minimizing or 

maximizing . 2

For the lower bound we require the largest possible 
value of p such that x2 and  are minimum. Observe 
that if we put , then  

c

2c
iia  b

   
 

2

2 2 2
12 13 23

12 13 23

min min 3 ,
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c trA
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b

       (3.1) 

Setting ij kj ika a a   b  such that 
3

ij kj ika a a b                    (3.2) 

where  with  we obtain,  1 , , 3i j k  i j k 

29p p  and .           (3.3) 327q b

Thus 2 3 1x x   , as required. These correspond to 
the eigenvalues:  

   2 3 2A A  b              (3.4) 

Now, suppose there exist  2 A  and  3 A  such 
that  

       * *
2 2 32 (A A b A b          2 ) , (3.5) 

for some real numbers 0  . Note that  

     * * *
1 2 3 3trA A A A b             (3.6) 

Therefore we must have  *
1 A b  . However, this is 

impossible since from (1.5) we have  

 
     

*
1 * * 2
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det det

4 2

A A
A b

A A b b


   
  

   
. (3.7) 

We thus deduce that  2 2A b   . Equality is at- 
tained by the following matrices: 

, ,

, .

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

      
        
        
      
          
          

      (3.8) 

Similarly, for the upper bound, we require the largest 
possible value of p such that x2 and  are maximum. 
Note that setting 

2c
iia b  yields 
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max max 3 ,
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c trA
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           (3.9) 

Now, if we put ij kj ika a a b    such that 
3

ij kj ika a a b                 (3.10) 

where 1 , , 3i j k   with  we have,  i j k 
29p b  and .          (3.11) 327q   b

Check that 

   3 22 3

1
3

9 271
tan

3 27

b b

b
 

 
 


60˚    (3.12) 

and hence 1 2 1x x  , corresponding to the eigenvalues:  

   1 2 2A A   b .          (3.13) 

Again, assume there exist  *
1 A  and  *

2 A  such 
that  

        * *
2 2 12 2A A b A b          , (3.14) 
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for some real numbers 0  . Considering the fact   

     * * *
1 2 3 3trA A A A b      ,    (3.15) 

we necessarily have  *
3 A b   . Again from (1.5) we 

obtain   

 
     

*
3 * * 2

1 2

det det

4 2

A A
A b

A A b b


   
 

   
  .   

(3.16) 

This is a contradiction and hence we conclude that 
 2 2A b  . Equality is attained by the following matri- 

ces: 

, ,

, .

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

    
     
      

  
     
    











     (3.17) 

4. Numerical Example 

Let  3 2.3,2.3 . We first consider the lower bound 
for 

SA A
 2 A
22 33a a a  

. According to Equation (2.8), we require 
, so that  11 2.3

   

 

2

2 2 2
1 12 13 23

2 2 2
0 23 13 12 12 13 23

min min 6.9,

15.87

2.3 12.167 2 .

c trA

c a a a

c a a a a a

   

   

      a

 (4.1) 

Substituting (4.1) into (2.5) yields 

 2 2 2
12 13 23

12 13 23

3 ,

2 .7

p a a a

q a a a

  


                (4.2) 

Now, p is maximum when . 
However, by noting that , we require . 
Thus we must have 12 13 23 , with 

. Finally, from (2.6), (2.7) and (4.2), we easily 
have , corresponding to the eigenvalues 

. We now let 

12 13 23 2.3a a a   
1 0q 

32.3 12.167 

 *
2

21 x 
a a a

2.3ija  

 2 3 
2 3 1x x  

 A A 4.6  A  and  *
3 A  

be eigenvalues such that  

         * *
2 2 34.6 4.6A A A           , 

for some real numbers 0  . It immediately implies 
that 

     * * *
1 2 3 6.9A A A              (4.3) 

However, (4.3) is valid only if . Apply- 
ing (1.4) results in 

 *
1 2.3A 

 
     

*
1 * *

2 3

det 48.668
2.3

21.16 4.6

A
A
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Note that  

 3 * 3
0det 48.668 2.3 det 2.3 4 ,A c A      

where *det A  is the maximum determinant of a real 3 
× 3 matrix whose entries are in a unit closed disc. T us h

  4.6A  
.8). For

2

from (3  the upper bound we set 11 22 33a a a    
2.3, giving 

. The minimizing matrices readily follow 
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2 2 2
1
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12 13 23

2 2 2
0 23 13 12 12 13 23

.87

2.3 12.16 .7 2

,a a a

c a a a a a a

  

    

  (4.4) 

Substituting (4.4) into (2.5) results in  

 2 2 2
12 13 233 ,p a a a  

12 13 232 .7q a a a
             (4.5) 

It is easy to check that if 
that 

12a a 13 23 2.3a   , such 

12 13 23 12.167a a a  
spond to the eigenvalues 

, the
. Simi- 

la

n 1 2x
   1 2 4.6A A  

1x  . This corre- 

rly if we let  1 A  and  2 A  such that  

        1 4.6A *
2 2 4.6A A   *    , 

then 
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1 2 3 6.9A A A            .6) 

eck that (4.6) holds only if  How- 
ever, 
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Thus  2 4.6A   
 (3.17). 

and the maximizing matrices fol
low from
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