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ABSTRACT 

The source reactive-current compensation is crucial in energy transmission efficiency. The compensator design in fre- 
quency-domain was already widely discussed and examined. This paper presents results of a study on how to design 
reactive compensators in time-domain. It’s the first time the reactive compensator has been designed in time domain. 
The example of compensator design was presented. 
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1. Introduction 

This article is a discussion on issue raised in the article of 
L. S. Czarnecki [1] where the author consider if it is pos- 
sible to make current decomposition into active, reactive 
and unbalanced current in time domain and basing on it 
build reactive compensators. The current decomposition 
in time domain was presented in the previous articles [2, 
3] and in this article is presented the reactive compensa- 
tors design in time-domain. 

2. Reactive Current Compensation in 
Time-Domain 

In the article [3] was shown that source-receiver current 
can be decomposed into active and reactive current in “s” 
domain i.e. for Laplace transform of signals. Reactive 
current can be compensated with the reactive compensa- 
tor. The source-receiver current decomposition is given 
below:  
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where: 
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stand for the active and reactive parts of receiver admit- 
tance operator Yo(s). 

The I(s) transform for T-periodic signals is derived 
using the following relation between non-periodic and 

periodic signals transform [3]. 
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where t  [0, T), Re(σ) > 0, T-time period. 
It can be also calculated directly in time-domain as the 

T-periodic convolution: 

       o oi t g t b t e t            (5) 

where go(t), bo(t) stands for T-periodic impulse response 
of admittance active and reactive part. 

Connecting in parallel the compensator (Figure 1) the 
reactive current balance in time-domain states that: 

    0k ob t b t               (6)  

3. T-Periodic Impulse Response of  
Compensator and Receiver 

Admittance of the elementary RLC compensator branch  

 

Figure 1. The zero impedance source with receiver and almost 
lossless compensator connected in parallel. 
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is:  
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(We assume later that the compensator is composed of 
almost lossless elementary branches). And its reactive 
part is then (3) 
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which leads to general form 
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where L(s), M(s)—odd and even polynomials. 
The residues meet the relations: if 
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then:  
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where: 
M′(s) is the derivative of M(s) with respect to s, d— 

real number. 
Thus (7) reduces to 
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and under (4) and trigonometric identity  
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Thus the T-periodic impulse response of reactive part 
of the elementary RLC branch (without R) has form 
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—angular and rela-  

tive resonance frequency of m-th branch, and is depicted 
in Figure 2. 

Later, in the article, it assumes that the reactive part of 
receiver Yo(s) has only real poles, so the receiver is non- 
oscillatory circuit not as the compensator.  

For the single pole receiver e.g. RL or RC type the op- 
erational admittance is 

1 1oB s b
a s a s

     
0a     

thus its impulse response is 

 

Figure 2. T-periodic impulse response of the compensator 
elementary branch.  
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Figure 3. Example of the RRLC load. 

 

Figure 4. Example of the RRLC load. 
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Figure 5. T-periodic single pole reactive operator impulse 
response of the load (a) RL (b > 0); (b) RC (b < 0).  
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where M—total number of compensator branches.  
The solution of (14) (see Figures 6 and 7) for the un- 

knowns Lm and Cm, can by find with optimization method. 
The (14) can be rewritten in respect to Dm and wm  
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4. Frequency-Domain Compensator Design 

The frequency-domain approach is a well known method 
(see M. Pasko [4-6]). 

The counterpart of (6) in frequency-domain is 
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where  
n—harmonic number,  
m—branch number. 
Comparing (18) with (21) we can see that both formu- 

las are the system of linear equations, but in (18) we have  

 

 

Figure 6. T-periodic time-domain response: (a) Receiver 
bo(t); (b) Compensator (–bk(t)) and frequency response; (c) 

Bo  ω ω 1
 + Bk ω ω , for α = 1 4 . 

1
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Figure 7. T-periodic time-domain response: (a) Receiver 
bo(t); (b) Compensator (–bk(t)) and frequency response; (c) 

Bo ω ω
1   + Bk ω ω

1  , for α = 1 1

the impulse response instead of the frequency response 
of the receiver. 

5. Calculation Example 

Let consider the RL load in series for which: P = 500 [W], 
T = 0.02 [s], ω1 = 314 [rad/s], AL = T/τ = 10, Lo = 25.7 
[mH] and M = 10, τ—time-constant of the load.  

Effective compensation is up to 5-th harmonic (see Fig
ures 6 and 7).  

The integral in the right side of (18) was calculated 
numerically using 21 samples and time samples was shifted 
by T/21/2 due to singularity problem. 

6. Conclusion 

The frequency response method used until now to syn-  

ne [1], 
ha

s can be found with simple optimization 
te

stead of harmonic 
analysis. Moreover it is the first time in literature that the 

ve compensator design is presented. 
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